
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #5 Solutions

Questions from Rudin:
Chapter 2 – 12,15

Solution: (#12) Let {Uα} be an open cover of K. Thus there is some Uβ containing 0. But since { 1n}
converges to 0 and Uβ is open, all but finitely many fractions 1

n are in Uβ . Each of these finitely many
exceptions are in some open set in our open cover, say Uα1

, . . . , Uαn
. Then Uα1

, . . . , Uαn
together with Uβ

gives a finite subcover of K.

Chapter 3 – 1

Solution: (#1) We begin with a lemma.

Lemma 0.1. For a, b ∈ Rk, we have ∣∣∣||b|| − ||a||∣∣∣ ≤ ||b− a||.

Proof. By the triangle inequality,

||b|| = ||b− a + a|| ≤ ||b− a||+ ||a||

and thus
||b|| − ||a|| ≤ ||b− a||.

Arguing in the same way with a and b reversed, we get

||a|| − ||b|| ≤ ||b− a||,

and thus ∣∣∣||b|| − ||a||∣∣∣ ≤ ||b− a||.

Now returning to question (#1), we are given that {sn} converges to some element of Rk, say s. We
claim that {||sn||} converges to ||s||. To see this, fix ε > 0. Then, by the convergence of {sn}, there exists
N such that n > N implies ||sn − s|| < ε. Now, by the lemma, we have∣∣∣||sn|| − ||s||∣∣∣ ≤ ||sn − s||

and thus for n > N , we have
∣∣∣||sn|| − ||s||∣∣∣ ≤ ||sn − s|| < ε which proves that ||sn|| → ||s||.



Additional questions:

1. Let F1, F2, . . . , Fn be closed subsets of a metric space. Prove that ∩ni=1Fi and ∪ni=1Fi are closed sets
directly from the definition of closed (i.e. do not use the criteria F is closed iff F c is open).

Solution: Let x be a limit point of ∩ni=1Fi. Thus, every neighborhood of x contains a point z in ∩ni=1Fi
different from x. Thus, z is in each Fi which means that x is a limit point of Fi. Since Fi is closed,
x ∈ Fi for each i. Hence, x ∈ ∩ni=1Fi which implies that ∩ni=1Fi is closed.

Let x be a limit point of ∪ni=1Fi. Assume x is not a limit point of any of the Fi. Then for each i,
there exists a radius ri ∈ R>0 such that Nri(x) contains no point in Fi other than perhaps x. But
then if r = min{r1, . . . , rn}, we would have that Nr(x) contains no point of ∪ni=1Fi other than perhaps
x. This contradicts that x is a limit point of ∪ni=1Fi. Hence, x is a limit point of some Fi. Since Fi is
closed, then x ∈ Fi and hence x ∈ ∪ni=1Fi. Therefore, ∪ni=1Fi is closed.

2. Let X1 = R2 denote the metric space where R2 is endowed with the metric d(x, y) = ||x − y|| (the
standard metric). Let X2 = R2 denote the metric space where R2 is endowed with the metric d(x, y) =
|x1 − y1|+ |x2 − y2| (the taxi-cab metric).

Let x ∈ R2. Let Nr(x) denote the ball of radius of r around x in X1 (i.e. with respect to the standard
metric). Let N̂r(x) denote the ball of radius of r around x in X2 (i.e. with respect to the taxi-cab
metrix).

(a) For each r ∈ R>0, show that there exists an s ∈ R>0 such that N̂s(x) ⊆ Nr(x).

Solution: It’s easy to check that N̂r(x) ⊆ Nr(x).

(b) For each r ∈ R>0, show that there exists an s ∈ R>0 such that Ns(x) ⊆ N̂r(x).

Solution: One checks that N√
2r
2

(x) ⊆ N̂r(x).

(c) Let U ⊆ R2. Prove that U is open in the standard metric if and only if U is open in the taxi-cab
metric.

Solution: Assume U is open in the standard metric. Then for x ∈ U , there exists r such that
Nr(x) ⊆ U . But then by the above exercise, there exists s such that N̂s(x) ⊆ Nr(x). Hence,
N̂s(x) ⊆ U and U is open in the taxicab metric. The converse is proven in exactly the same way.

(d) Prove pn → p in the standard metric if and only if pn → p in the taxi-cab metric.

Solution: We know that in any metric space pn → p if and only if for every open U all but finitely
many pn are in U . Thus convergence in a metric space is completely determined by the open sets.
Since the open sets in the standard metric are the same as open sets in the taxi-cab metric, we
deduce that pn → p in the standard metric if and only if pn → p in the taxi-cab metric.

3. Prove each of the following statements directly from the definition of a convergent sequence.

(a) If pn = 1
n3 , then pn → 0 in R under the standard metric.

Solution: Fix ε > 0 and let N =
(
1
ε

)1/3
. Then

n > N =⇒ n >

(
1

ε

)1/3

=⇒ n3 >
1

ε
=⇒ 1

n3
< ε.

Thus, ∣∣∣∣ 1

n3
− 0

∣∣∣∣ =

∣∣∣∣ 1

n3

∣∣∣∣ =
1

n3
< ε,

and we deduce 1
n3 → 0.



(b) If pn = 2n−1
3n+2 , then pn → 2

3 in R under the standard metric.

Solution: Fix ε > 0 and let N = 7
9ε −

2
3 . Then

n > N =⇒ n >
7

9ε
−2

3
=⇒ 3n >

7

3ε
−2 =⇒ 3n+2 >

7

3ε
=⇒ 3(3n + 2)

7
>

1

ε
=⇒ 7

3(3n + 2)
< ε.

Thus, ∣∣∣∣2n− 1

3n + 2
− 2

3

∣∣∣∣ =

∣∣∣∣6n− 3− 6n− 4

3(3n + 2)

∣∣∣∣ =

∣∣∣∣ −7

3(3n + 2)

∣∣∣∣ =
7

3(3n + 2)
< ε,

and hence, 2n−1
3n+2 →

2
3 .

(c) If pn = ( 1
n3 ,

2n−1
3n+2 ), then pn → (0, 2

3 ) in R2 under the standard metric.

Solution: Fix ε > 0. Since we know by (a) that 1
n3 → 0, we can find N1 such that n > N1 implies∣∣∣∣ 1

n3
− 0

∣∣∣∣ < ε√
2
.

Similarly, by (b), we can find N2 such that for n > N2, we have∣∣∣∣2n− 1

3n + 2
− 2

3

∣∣∣∣ < ε√
2
.

Let N1 =
(

1
ε/
√
2

)1/3
and N2 = 7

9(ε/
√
2)
− 2

3 . By the same computations, as in parts (a) and (b),

we get that for n > N1, we have ∣∣∣∣ 1

n3
− 0

∣∣∣∣ < ε√
2
,

and for n > N2, we have ∣∣∣∣2n− 1

3n + 2
− 2

3

∣∣∣∣ < ε√
2
.

Set N = max{N1, N2}. Then for n > N we have

∣∣∣∣∣∣∣∣( 1

n3
,

2n− 1

3n + 2

)
−
(

0,
2

3

)∣∣∣∣∣∣∣∣ =

√(
1

n3
− 0

)2

+

(
2n− 1

3n + 2
− 2

3

)2

<

√(
ε√
2

)2

+

(
ε√
2

)2

= ε.

Thus, ( 1
n3 ,

2n−1
3n+2 )→ (0, 2

3 ).

4. Let X be a metric space with the discrete metric. If pn → p, what can you say about the sequence
{pn}?

Solution: Since pn → p, for ε = 1
2 , there is some N such that n > N implies d(pn, p) < 1

2 . But in the
discrete metric, d(pn, p) < 1

2 implies d(pn, p) = 0. Thus for n large enough, p = pn. Thus the sequence
{pn} eventually stabilizes to p.

5. Let X be a metric space and let x ∈ X. Define the closed ball of radius r around x as

Nr(x) = {z ∈ X | d(z, x) ≤ r}.

Prove that Nr(x) is a closed set.

Solution: We will prove that the complement of Nr(x) is open. To this end, take w ∈ Nr(x)c. Thus,
d(w, x) > r. Set s = d(w, x) − r which is positive, and we claim that Ns(w) is entirely contained in



Nr(x)c. To see this, take y ∈ Ns(w) and assume y ∈ Nr(x) so that d(x, y) ≤ r. Then, by the triangle
inequality, we have

d(x,w) ≤ d(x, y) + d(y, w) < r + s = r + d(w, x)− r = d(w, x).

But then d(x,w) < d(x,w). This is a contradiction and thus y ∈ Nr(x)c and Ns(w) ⊆ Nr(x)c. This
implies that Nr(x)c is open and Nr(x) is closed.

6. Let K1 and K2 be compact subsets of a metric space X. Prove that K1 ∪ K2 is compact and that
K1 ∩ K2 is compact. Are these statements still true is we instead consider finite unions or finite
intersections of compact sets? What happens if we consider infinite unions or infinite intersections of
compact sets? Completely justify your answers with either proofs or counter-examples!

Solution: First, we will check that K1 ∪ K2 is compact. To this end, take an open cover {Uα} of
K1 ∪K2. But then {Uα} is an open cover of K1 and of K2. Since K1 is compact, there exists some
Uα1 , . . . , Uαn which cover K1. Likewise, there exists some Uβ1 , . . . , Uβm which cover K2. But then
Uα1 , . . . , Uαn , Uβ1 , . . . , Uβm gives a finite subcover of K1 ∪K2.

This argument easily generalizes to show that any finite union of compact sets is again compact. It is
not true however that arbitrary unions of compact sets are again compact. Indeed, [n, n+1] is compact
for every n, but the union of all of these sets is R which is not compact.

Now, we will check that if {Kα} is some arbitrary collection of compact sets then ∩αKα is again
compact. To see this, first note that by a proposition proven in class each Kα is closed. Thus, ∩αKα

is closed. But by another proposition in class, any closed subset of a compact set is again compact.

7. Give an example of each of the following or prove that no such example exists.

(a) A subset E of R2 such that both E and Ec are neither open nor closed.

Solution: Let x = (0, 0) and take E = N1(x) ∪ (1, 1) – that is, the open unit disc together with
the single point (1, 1). Then E is not open because (1,1) is not an interior point. Also, E is not
closed because (0,1) is a limit point not in E. Further Ec is not open since (0, 1) is not an interior
point, and Ec is not closed since (1,1) is a limit point not in the set.

(b) A subset E of R2 such that both E and Ec are compact.

Solution: This is impossible. If E is compact, then E is bounded, and if Ec is compact then Ec

is bounded. But the union of two bounded sets is again bounded and the union of E and Ec is
R2 which is not bounded.

(c) A subset E of R2 such that E is bounded and Ec is closed.

Solution: Take E equal to the empty set. Then E is vacuously bounded and Ec = R2 which is
closed.

(d) A convergent sequence {sn} in R that is unbounded.

Solution: Impossible as every convergent sequence is Cauchy and Cauchy sequences are bounded
– see below.


