
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #6

Questions from Rudin: Chapter 2: 8

Additional questions:

1. If X is a metric space, and A ⊆ X is bounded, show that A is bounded.

2. Let X = R2 under the standard metric. Let U = N1((0, 0)) which is the open unit ball of radius 1 and
let F = N1((0, 0)) which is the closed unit ball of radius 1.

(a) Give an example of an open cover of U which has no finite subcover.

(b) Give an example of an open cover of U which has a finite subcover.

(c) By adding more open sets, extend your answer to part (a) to an open cover of F . Exhibit a finite
subcover of this open cover (which must exist since F is compact).

3. We make the following important definition: a sequence {sn} is called a Cauchy sequence if for every
ε > 0 there is an integer N such that whenever n,m > N we have d(sn, sm) < ε.

(a) Prove {1/n} is a Cauchy sequence.

(b) If {sn} and {tn} are Cauchy sequences in R, prove that {sn + tn} is also a Cauchy sequence.

(c) We will see in class that every Cauchy sequence is automatically a convergent sequence. Can
you find an example of a metric space and a Cauchy sequence in that metric space that is not
convergent?

4. (a) Let {sn} and {tn} be two Cauchy sequences in Q. We define a relation on such Cauchy sequences
as follows

{sn} ∼ {tn} ⇐⇒ {sn − tn} converges to 0.

Prove that ∼ is an equivalence relation.

(b) Give an example of two Cauchy sequences {sn} and {tn} in Q such that {sn} 6= {tn} but {sn} ∼
{tn}.

5. (Optional challenge problems) Cauchy sequences are extremely convenient because their definition
does not refer to their limit. In fact, a standard use of Cauchy sequences is to construct R from Q.
We outline this construction in this exercise.

To this end, define the set of real numbers R to be the set of equivalence classes of Cauchy sequences
in Q. That is, if {sn} is a Cauchy sequence in Q, we let [sn] denote its equivalence class under ∼, i.e.

[sn] =
{
{tn} such that {tn} is a Cauchy sequence in Q and {sn} ∼ {tn}

}
.

Then R is defined to be the collection of all [sn].

We now need to define +, ·, <, on R and prove that R is a complete ordered field satisfying the least
upper bound axiom.

(a) For {sn} and {tn} Cauchy sequences in Q, define [sn] + [tn] = [sn + tn]. (Note that this definition
implicitly makes use of exercise 3b.) Prove that this definition is well-defined. That is, prove that
if {sn} ∼ {s′n} and {tn} ∼ {t′n}, then {sn + tn} ∼ {s′n + t′n}.

(b) Define [sn] · [tn] = [sn · tn] and again prove that this is well-defined.

(c) Prove that R is a field under + and ·.
(d) Define a relation ≤ on R by [sn] ≤ [tn] if there exists N such that n > N implies sn ≤ tn. Prove

this relation is well-defined.

(e) Prove that R is an ordered field under <. (Here [{sn}] < [{tn}] if [{sn}] ≤ [{tn}] and [{sn}] 6=
[{tn}].)

(f) Prove that R satisfies the least upper bound axiom.


