Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack HW #6

Questions from Rudin: Chapter 2: 8

Additional questions:

- 1. If X is a metric space, and $A \subseteq X$ is bounded, show that \overline{A} is bounded.
- 2. Let $X = \mathbb{R}^2$ under the standard metric. Let $U = N_1((0,0))$ which is the open unit ball of radius 1 and let $F = \overline{N}_1((0,0))$ which is the closed unit ball of radius 1.
 - (a) Give an example of an open cover of U which has no finite subcover.
 - (b) Give an example of an open cover of U which has a finite subcover.
 - (c) By adding more open sets, extend your answer to part (a) to an open cover of F. Exhibit a finite subcover of this open cover (which must exist since F is compact).
- 3. We make the following important definition: a sequence $\{s_n\}$ is called a *Cauchy sequence* if for every $\varepsilon > 0$ there is an integer N such that whenever n, m > N we have $d(s_n, s_m) < \varepsilon$.
 - (a) Prove $\{1/n\}$ is a Cauchy sequence.
 - (b) If $\{s_n\}$ and $\{t_n\}$ are Cauchy sequences in \mathbb{R} , prove that $\{s_n + t_n\}$ is also a Cauchy sequence.
 - (c) We will see in class that every Cauchy sequence is automatically a convergent sequence. Can you find an example of a metric space and a Cauchy sequence in that metric space that is not convergent?
- 4. (a) Let $\{s_n\}$ and $\{t_n\}$ be two Cauchy sequences in \mathbb{Q} . We define a relation on such Cauchy sequences as follows

 $\{s_n\} \sim \{t_n\} \iff \{s_n - t_n\}$ converges to 0.

Prove that \sim is an equivalence relation.

- (b) Give an example of two Cauchy sequences $\{s_n\}$ and $\{t_n\}$ in \mathbb{Q} such that $\{s_n\} \neq \{t_n\}$ but $\{s_n\} \sim \{t_n\}$.
- 5. (Optional challenge problems) Cauchy sequences are extremely convenient because their definition does not refer to their limit. In fact, a standard use of Cauchy sequences is to construct \mathbb{R} from \mathbb{Q} . We outline this construction in this exercise.

To this end, define the set of real numbers \mathbb{R} to be the set of equivalence classes of Cauchy sequences in \mathbb{Q} . That is, if $\{s_n\}$ is a Cauchy sequence in \mathbb{Q} , we let $[s_n]$ denote its equivalence class under \sim , i.e.

$$[s_n] = \left\{ \{t_n\} \text{ such that } \{t_n\} \text{ is a Cauchy sequence in } \mathbb{Q} \text{ and } \{s_n\} \sim \{t_n\} \right\}.$$

Then \mathbb{R} is defined to be the collection of all $[s_n]$.

We now need to define $+, \cdot, <$, on \mathbb{R} and prove that \mathbb{R} is a complete ordered field satisfying the least upper bound axiom.

- (a) For $\{s_n\}$ and $\{t_n\}$ Cauchy sequences in \mathbb{Q} , define $[s_n] + [t_n] = [s_n + t_n]$. (Note that this definition implicitly makes use of exercise 3b.) Prove that this definition is well-defined. That is, prove that if $\{s_n\} \sim \{s'_n\}$ and $\{t_n\} \sim \{t'_n\}$, then $\{s_n + t_n\} \sim \{s'_n + t'_n\}$.
- (b) Define $[s_n] \cdot [t_n] = [s_n \cdot t_n]$ and again prove that this is well-defined.
- (c) Prove that \mathbb{R} is a field under + and \cdot .
- (d) Define a relation \leq on \mathbb{R} by $[s_n] \leq [t_n]$ if there exists N such that n > N implies $s_n \leq t_n$. Prove this relation is well-defined.
- (e) Prove that \mathbb{R} is an ordered field under <. (Here $[\{s_n\}] < [\{t_n\}]$ if $[\{s_n\}] \le [\{t_n\}]$ and $[\{s_n\}] \ne [\{t_n\}]$.)
- (f) Prove that \mathbb{R} satisfies the least upper bound axiom.