
Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack
HW #6

Questions from Rudin: Chapter 2: 8

Solution: #8: Yes, every point of an open set U of R2 is a limit point of U . To see this, take x ∈ U . Then
since U is open, there exists r > 0 such that Nr(x) ⊆ U . Now to see that x is a limit point, we need to take
an arbitrary s > 0 and check that Ns(x) ∩ U contains some point other than x. But, if t = min{r, s}, then
Ns(x) ∩ U = Nt(x) which clearly contains infinitely many points of U other than x.

The corresponding statement for closed sets is false. Indeed, a set made up of a single point is closed but
has no limit points.

Additional questions:

1. If X is a metric space, and A ⊆ X is bounded, show that A is bounded.

Solution: Since A is bounded we know that there is some r > 0 and x ∈ X such that A ⊆ Nr(x).
Thus, A ⊆ Nr(x). Since Nr(x) is a closed set, we have A ⊆ Nr(x) (Rudin Thm 2.27c). Since Nr(x)
is clearly contained in Nr+1(x), we have A ⊆ Nr+1(x), and thus A is bounded.

2. Let X = R2 under the standard metric. Let U = N1((0, 0)) which is the open unit ball of radius 1 and
let F = N1((0, 0)) which is the closed unit ball of radius 1.

(a) Give an example of an open cover of U which has no finite subcover.

Solution: Let Un = N1−1/n((0, 0)). This is an open cover since any x ∈ U has distance to the
origin strictly less than 1 (and thus is in Un for large enough n). However, any finite union of the
Un equals UN for some N which is clearly not equal to all U .

(b) Give an example of an open cover of U which has a finite subcover.

Solution: Simply take an open cover with one set: U1 = U . This cover of course has a finite
subcover, namely itself.

(c) By adding more open sets, extend your answer to part (a) to an open cover of F . Exhibit a finite
subcover of this open cover (which must exist since F is compact).

Solution: Define an annulus

U0 = {x ∈ R2 : 1/2 < ||x|| < 3/2}

which is clearly an open set. Then the cover {Un} from (a) together with U0 is an open cover of
F . A finite subcover of this open cover is U3 and U0 since U3 includes all points of length less
than 2/3 while U0 contains vectors of length greater than 1/2.

3. We make the following important definition: a sequence {sn} is called a Cauchy sequence if for every
ε > 0 there is an integer N such that whenever n,m > N we have d(sn, sm) < ε.

(a) Prove {1/n} is a Cauchy sequence.

Solution: Fix ε > 0 and let N = 1/ε. Then take arbitrary m,n > N and without loss of generality
assume that n > m. (This means that it is fair to assume n > m because the case n ≤ m is
exactly the same.) Then ∣∣∣∣ 1
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as desired.

(b) If {sn} and {tn} are Cauchy sequences in R, prove that {sn + tn} is also a Cauchy sequence.

Solution: Fix ε > 0. Then there exists N1 such that m,n > N1 implies d(sn, sm) < ε/2. Likewise,
there exists N2 such that m,n > N1 implies d(tn, tm) < ε/2. Set N = max{N1, N2}. Then for
m,n > N , we have

||(sn + tn)− (sm + tm)|| = ||(sn − sm) + (tn − tm)|| ≤ ||sn − sm||+ ||tn − tm|| <
ε

2
+

ε

2
= ε.

Thus, {sn + tn} is a Cauchy sequence.



(c) We will see in class that every Cauchy sequence is automatically a convergent sequence. Can
you find an example of a metric space and a Cauchy sequence in that metric space that is not
convergent?

Solution: There are many possible solutions. Here is one: take X = R − {0} with the standard
metric. Then {1/n} is a Cauchy sequence but is not convergent as its limit is 0 which is not in
the space.

4. (a) Let {sn} and {tn} be two Cauchy sequences in Q. We define a relation on such Cauchy sequences
as follows

{sn} ∼ {tn} ⇐⇒ {sn − tn} converges to 0.

Prove that ∼ is an equivalence relation.

Solution:
Reflexive: Since {sn − sn} = {0} is just the constant sequence 0 which clearly converges to 0, we
have {sn} ∼ {sn}.

Symmetric: if {sn} ∼ {tn}, then {sn − tn} converges to 0. By a limit law, {(−1)(sn − tn)}
converges to 0. Hence, {tn − sn} converges to 0 and {tn} ∼ {sn}.

Transitive: if {sn} ∼ {tn} and {tn} ∼ {un}, then {sn − tn} and {tn − un} both converge to 0.
Hence (by a limit law), the sum {sn− tn + tn−un} converges to 0. But this means that {sn−un}
converges to 0 or {sn} ∼ {un}.

(b) Give an example of two Cauchy sequences {sn} and {tn} in Q such that {sn} 6= {tn} but {sn} ∼
{tn}.
Solution: Take sn = 1

n and tn = 1
n2 . Then {sn} ∼ {tn} since lim 1

n −
1
n2 = 0, but clearly these

sequences are distinct.


