Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack HW #7

Questions from Rudin: Chapter 3: 6(a,b), 9, 10, 23, 24(a,b)

Additional questions:

1. Let $f: X \to Y$ be a function between two sets. For a subset $A \subseteq X$, we define

 $f(A) = \{b \in B \text{ such that } b = f(a) \text{ for some } a \in A\},\$

and for a subset $B \subseteq Y$, we define

$$f^{-1}(B) = \{a \in A \text{ such that } f(a) \in B\}.$$

In each of the following pairs of sets, the two sets are related by either $=, \subset \text{ or } \supset$. Determine which is the correct relation and prove your answer. If you answer $\subset \text{ or } \supset$, give an explicit example where the reverse inclusion does not hold.

- (a) $f(A_1 \cup A_2) \longleftrightarrow f(A_1) \cup f(A_2)$ (b) $f(A_1 \cap A_2) \longleftrightarrow f(A_1) \cap f(A_2)$ (c) $f^{-1}(B_1 \cup B_2) \longleftrightarrow f^{-1}(B_1) \cup f^{-1}(B_2)$ (d) $f^{-1}(B_1 \cap B_2) \longleftrightarrow f^{-1}(B_1) \cap f^{-1}(B_2)$ (e) $f(f^{-1}(B)) \longleftrightarrow B$ (f) $f^{-1}(f(A)) \longleftrightarrow A$
- 2. Let $\{a_n\}$ be a convergent sequence in \mathbb{R} . Prove that

 $\limsup\{a_n\} = \liminf\{a_n\} = \lim\{a_n\}.$

3. (Optional challenge problems) Rudin: Chapter 3: 24(c,d,e)