Questions from Rudin: Chapter 3: 6(a,b), 9, 10, 23, 24(a,b)
Solution: \#6(a) - We have

$$
s_{n}=\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} \sqrt{i+1}-\sqrt{i}=\sqrt{n+1}-\sqrt{1}
$$

Since s_{n} is unbounded, this sequence must be divergent, and thus $\sum a_{n}$ is divergent.
Solution: $\# 6(\mathrm{~b})-$ We have

$$
a_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{n(\sqrt{n+1}+\sqrt{n})}=\frac{1}{n(\sqrt{n+1}+\sqrt{n})}
$$

Thus

$$
a_{n}<\frac{1}{n \sqrt{n}}=\frac{1}{n^{3 / 2}}
$$

Since $\sum_{n} \frac{1}{n^{3 / 2}}$ converges, we have that $\sum a_{n}$ converges by the comparison test.
Solution: $\# 10$ - Assume that $\lim \sup \left|a_{n}\right|^{\frac{1}{n}}<1$. Then by Rudin 3.17(b) (lemma proven in class), for all but finitely many n, we have that $\left|a_{n}\right|^{\frac{1}{n}}<1$. Thus $\left|a_{n}\right|<1$ for all but finitely many n. Since $a_{n} \in \mathbb{Z}$, this mean that $a_{n}=0$ for all but finitely many n. But in the question it is assumed that a_{n} is non-zero for infinitely many n. Thus $\lim \sup \left|a_{n}\right|^{\frac{1}{n}} \geq 1$ and hence the radius of convergence $R=\left(\limsup \left|a_{n}\right|^{\frac{1}{n}}\right)^{-1}$ is less than or equal to 1 .

Solution: For all n, we have

$$
d\left(p_{n}, q_{n}\right) \leq d\left(p_{n}, p_{m}\right)+d\left(p_{m}, q_{m}\right)+d\left(q_{m}, q_{n}\right)
$$

and thus

$$
d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right) \leq d\left(p_{n}, p_{m}\right)+d\left(q_{m}, q_{n}\right) .
$$

Reversing the roles of m and n gives

$$
d\left(p_{m}, q_{m}\right)-d\left(p_{n}, q_{n}\right) \leq d\left(p_{m}, p_{n}\right)+d\left(q_{n}, q_{m}\right)
$$

and thus

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right| \leq d\left(p_{n}, p_{m}\right)+d\left(q_{m}, q_{n}\right)
$$

To prove $\left\{d\left(p_{n}, q_{n}\right)\right\}$ is a convergent sequence in \mathbb{R}, it suffices to see that $\left\{d\left(p_{n}, q_{n}\right)\right\}$ is a Cauchy sequence (since Cauchy implies convergent in \mathbb{R}^{k}). To this end, fix $\varepsilon>0$. Since $\left\{p_{n}\right\}$ is Cauchy, there is some N_{1} such that $m, n>N_{1}$ implies $d\left(p_{n}, p_{m}\right)<\varepsilon / 2$. Similarly, since $\left\{q_{n}\right\}$ is Cauchy, there is some N_{2} such that $m, n>N_{2}$ implies $d\left(q_{n}, q_{m}\right)<\varepsilon / 2$. Set $N=\max \left\{N_{1}, N_{2}\right\}$. Then

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right| \leq d\left(p_{n}, p_{m}\right)+d\left(q_{m}, q_{n}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Hence, $\left\{d\left(p_{n}, q_{n}\right)\right\}$ is a Cauchy sequence and thus a convergent sequence.
Solution: \#24(a) - Let $\left\{p_{n}\right\}$ be a Cauchy sequence. Since $d\left(p_{n}, p_{n}\right)=0$ for all n, we have that $\lim _{n} d\left(p_{n}, p_{n}\right)=$ 0 and thus the relation is reflexive.

Now let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be two Cauchy sequence such that $\lim _{n} d\left(p_{n}, q_{n}\right)=0$. Since $d\left(p_{n}, q_{n}\right)=d\left(q_{n}, p_{n}\right)$, we have

$$
\lim _{n} d\left(q_{n}, p_{n}\right)=\lim _{n} d\left(q_{n}, p_{n}\right)=0
$$

and thus the relation is symmetric.
Now let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{r_{n}\right\}$ be three Cauchy sequence such that $\lim _{n} d\left(p_{n}, q_{n}\right)=0$ and $\lim _{n} d\left(q_{n}, r_{n}\right)=0$. By the triangle inequality, we have $0 \leq d\left(p_{n}, r_{n}\right) \leq d\left(p_{n}, q_{n}\right)+d\left(q_{n}, r_{n}\right)$ and thus

$$
0 \leq \lim _{n} d\left(p_{n}, r_{n}\right) \leq \lim _{n} d\left(p_{n}, q_{n}\right)+d\left(q_{n}, r_{n}\right)=\lim _{n} d\left(p_{n}, q_{n}\right)+\lim _{n} d\left(q_{n}, r_{n}\right)=0+0=0 .
$$

Hence $\lim _{n} d\left(p_{n}, r_{n}\right)=0$, and the relation is transitive.
Solution: $\# 24(\mathrm{~b})-$ We must check that if $\left\{p_{n}\right\},\left\{p_{n}^{\prime}\right\},\left\{q_{n}\right\},\left\{q_{n}^{\prime}\right\}$ are Cauchy sequences such that

$$
\lim _{n} d\left(p_{n}, p_{n}^{\prime}\right)=0 \text { and } \lim _{n} d\left(q_{n}, q_{n}^{\prime}\right)=0
$$

then

$$
\lim _{n} d\left(p_{n}, q_{n}\right)=\lim _{n} d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)
$$

or equivalently that

$$
\lim _{n} d\left(p_{n}, q_{n}\right)-d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)=0 .
$$

We have

$$
d\left(p_{n}, q_{n}\right) \leq d\left(p_{n}, p_{n}^{\prime}\right)+d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)+d\left(q_{n}^{\prime}, q_{n}\right)
$$

and thus

$$
d\left(p_{n}, q_{n}\right)-d\left(p_{n}^{\prime}, q_{n}^{\prime}\right) \leq d\left(p_{n}, p_{n}^{\prime}\right)+d\left(q_{n}^{\prime}, q_{n}\right) .
$$

Also,

$$
d\left(p_{n}^{\prime}, q_{n}^{\prime}\right) \leq d\left(p_{n}^{\prime}, p_{n}\right)+d\left(p_{n}, q_{n}\right)+d\left(q_{n}, q_{n}^{\prime}\right)
$$

and thus

$$
d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)-d\left(p_{n}, q_{n}\right) \leq d\left(p_{n}^{\prime}, p_{n}\right)+d\left(q_{n}, q_{n}^{\prime}\right) .
$$

Hence,

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)\right| \leq d\left(p_{n}, p_{n}^{\prime}\right)+d\left(q_{n}, q_{n}^{\prime}\right) .
$$

Now fix $\varepsilon>0$. Then there is some N_{1} such $n>N_{1}$ implies $d\left(p_{n}, p_{n}^{\prime}\right)<\varepsilon / 2$. Also, there is some N_{2} such $n>N_{2}$ implies $d\left(q_{n}, q_{n}^{\prime}\right)<\varepsilon / 2$. Set $N=\max \left\{N_{1}, N_{2}\right\}$. Then for $n>N$, we have

$$
\left|d\left(p_{n}, q_{n}\right)-d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)\right| \leq d\left(p_{n}, p_{n}^{\prime}\right)+d\left(q_{n}, q_{n}^{\prime}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

and thus $\lim _{n} d\left(p_{n}, q_{n}\right)-d\left(p_{n}^{\prime}, q_{n}^{\prime}\right)=0$ as desired. Thus, $\Delta(P, Q)$ is well-defined.
We must also check that Δ satisfies the axioms of a metric space.
Clearly $\Delta(P, P)=0$. Conversely, let $P, Q \in X^{*}$ such that $\Delta(P, Q)=0$. Let $\left\{p_{n}\right\}$ be a representative Cauchy sequence from P and $\left\{q_{n}\right\}$ a representative Cauchy sequence from Q. Then $\lim _{n} d\left(p_{n}, q_{n}\right)=0$. Thus by definition $\left\{p_{n}\right\}$ is equivalent to $\left\{q_{n}\right\}$, and again by definition this means that $P=Q$ in X^{*}.

Now we check $\Delta(P, Q)=\Delta(Q, P)$. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be representatives of P and Q respectively. Then

$$
\Delta(P, Q)=\lim _{n} d\left(p_{n}, q_{n}\right)=\lim _{n} d\left(q_{n}, p_{n}\right)=\Delta(Q, P)
$$

as desired.
Now we must check the triangle inequality. So let $P, Q, R \in X^{*}$ with representatives $\left\{p_{n}\right\},\left\{q_{n}\right\}$, and $\left\{r_{n}\right\}$. Then

$$
\Delta(P, R)=\lim _{n} d\left(p_{n}, r_{n}\right) \leq \lim _{n} d\left(p_{n}, q_{n}\right)+d\left(q_{n}, r_{n}\right)=\lim _{n} d\left(p_{n}, q_{n}\right)+\lim _{n} d\left(q_{n}, r_{n}\right)=\Delta(P, Q)+\Delta(Q, R)
$$

as desired.

Additional questions:

1. Let $f: X \rightarrow Y$ be a function between two sets. For a subset $A \subseteq X$, we define

$$
f(A)=\{b \in B \text { such that } b=f(a) \text { for some } a \in A\},
$$

and for a subset $B \subseteq Y$, we define

$$
f^{-1}(B)=\{a \in A \text { such that } f(a) \in B\}
$$

In each of the following pairs of sets, the two sets are related by either $=, \subset$ or \supset. Determine which is the correct relation and prove your answer. If you answer \subset or \supset, give an explicit example where the reverse inclusion does not hold.
(a) $f\left(A_{1} \cup A_{2}\right) \longleftrightarrow f\left(A_{1}\right) \cup f\left(A_{2}\right)$

Solution: We have $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$. Indeed

$$
\begin{aligned}
x \in f\left(A_{1} \cup A_{2}\right) & \Longleftrightarrow x=f(a) \text { for some } a \in A_{1} \cup A_{2} \\
& \Longleftrightarrow x=f(a) \text { for some } a \in A_{1} \text { or } a \in A_{2} \\
& \Longleftrightarrow x \in f\left(A_{1}\right) \text { or } x \in f\left(A_{2}\right) \\
& \Longleftrightarrow x \in f\left(A_{1}\right) \cup f\left(A_{2}\right)
\end{aligned}
$$

(b) $f\left(A_{1} \cap A_{2}\right) \longleftrightarrow f\left(A_{1}\right) \cap f\left(A_{2}\right)$

Solution: We have $f\left(A_{1} \cap A_{2}\right) \subseteq f\left(A_{1}\right) \cup f\left(A_{2}\right)$. Indeed

$$
\begin{aligned}
x \in f\left(A_{1} \cap A_{2}\right) & \Longrightarrow x=f(a) \text { for some } a \in A_{1} \cap A_{2} \\
& \Longrightarrow x=f(a) \text { for some } a \in A_{1} \text { and } a \in A_{2} \\
& \Longrightarrow x \in f\left(A_{1}\right) \text { and } x \in f\left(A_{2}\right) \\
& \Longrightarrow x \in f\left(A_{1}\right) \cap f\left(A_{2}\right) .
\end{aligned}
$$

The inclusion \supseteq is not true in general. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$. Then take $A_{1}=(-1,0), A_{2}=(0,1)$. Then $A_{1} \cap A_{2}$ is empty and so $f\left(A_{1} \cap A_{2}\right)$ is empty. However, $f\left(A_{1}\right)=(0,1)=f\left(A_{2}\right)$ and thus $f\left(A_{1}\right) \cap f\left(A_{2}\right)=(0,1)$.
(c) $f^{-1}\left(B_{1} \cup B_{2}\right) \longleftrightarrow f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$

Solution: We have $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$. Indeed

$$
\begin{aligned}
x \in f^{-1}\left(B_{1} \cup B_{2}\right) & \Longleftrightarrow f(x) \in B_{1} \cup B_{2} \\
& \Longleftrightarrow f(x) \in B_{1} \text { or } f(x) \in B_{2} \\
& \Longleftrightarrow x \in f^{-1}\left(B_{1}\right) \text { or } x \in f^{-1}\left(B_{2}\right) \\
& \Longleftrightarrow x \in f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)
\end{aligned}
$$

(d) $f^{-1}\left(B_{1} \cap B_{2}\right) \longleftrightarrow f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$

Solution: We have $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$. Indeed

$$
\begin{aligned}
x \in f^{-1}\left(B_{1} \cap B_{2}\right) & \Longleftrightarrow f(x) \in B_{1} \cap B_{2} \\
& \Longleftrightarrow f(x) \in B_{1} \text { and } f(x) \in B_{2} \\
& \Longleftrightarrow x \in f^{-1}\left(B_{1}\right) \text { and } x \in f^{-1}\left(B_{2}\right) \\
& \Longleftrightarrow x \in f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)
\end{aligned}
$$

(e) $f\left(f^{-1}(B)\right) \longleftrightarrow B$

Solution: We have $f\left(f^{-1}(B)\right) \subseteq B$. Indeed, $x \in f\left(f^{-1}(B)\right)$ implies that $x=f(a)$ for some $a \in f^{-1}(B)$. But then by definition $f(a) \in B$ and thus $x \in B$.
The reverse inclusion need not hold. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ and take $B=\mathbb{R}$. Then $f^{-1}(B)=f^{-1}(\mathbb{R})=\mathbb{R}$, and thus $f\left(f^{-1}(B)\right)=f(\mathbb{R})=\mathbb{R}^{\geq 0}$ as x^{2} is always non-negative.
(f) $f^{-1}(f(A)) \longleftrightarrow A$

Solution: We have $f^{-1}(f(A)) \supseteq A$. Indeed, for $x \in A$, we have $f(x) \in f(A)$ and thus $x \in$ $f^{-1}(f(A))$.
The reverse inclusion need not hold. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ and take $A=\mathbb{R} \geq 0$. Then $f(A)=\mathbb{R}^{\geq 0}$, and thus $f^{-1}(f(A))=f^{-1}\left(\mathbb{R}^{\geq 0}\right)=\mathbb{R}$ as $f(x)=x^{2}$ is always non-negative.
2. Let $\left\{a_{n}\right\}$ be a convergent sequence in \mathbb{R}. Prove that

$$
\limsup \left\{a_{n}\right\}=\liminf \left\{a_{n}\right\}=\lim \left\{a_{n}\right\} .
$$

Solution: We start with a lemma.
Lemma 0.1. Let $\left\{s_{n}\right\}$ denote a convergent sequence in \mathbb{R} with $\left\{s_{n}\right\} \rightarrow s$. Then any subsequence of $\left\{s_{n}\right\}$ also converges to s.

Proof. Let $\left\{s_{n_{j}}\right\}$ denote a subsequence. Fix $\varepsilon>0$. Then there exists N such that $n>N$ implies $\left|s_{n}-s\right|<\varepsilon$. Then for $j>N$, we have $n_{j}>N$ as $n_{j} \geq j$. Thus $\left|s_{n_{j}}-s\right|<\varepsilon$ and we deduce that $\left\{s_{n_{j}}\right\} \rightarrow s$.

Returning to the question at hand. Let $\left\{a_{n}\right\} \rightarrow a$. Then if E denotes the subset of \mathbb{R} consisting of limits of subsequences of $\left\{a_{n}\right\}$, by the lemma, $E=\{a\}$. Thus

$$
\lim \sup \left\{a_{n}\right\}=\sup E=a=\lim \left\{a_{n}\right\}
$$

and

$$
\liminf \left\{a_{n}\right\}=\inf E=a=\lim \left\{a_{n}\right\} .
$$

