Introduction to Analysis – MA 511 – Fall 2011 – R. Pollack HW #7 Solutions

Questions from Rudin: Chapter 3: 6(a,b), 9, 10, 23, 24(a,b)

Solution: #6(a) - We have

$$s_n = \sum_{i=1}^n a_i = \sum_{i=1}^n \sqrt{i+1} - \sqrt{i} = \sqrt{n+1} - \sqrt{1}.$$

Since s_n is unbounded, this sequence must be divergent, and thus $\sum a_n$ is divergent.

Solution: #6(b) - We have

$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n} = \frac{\sqrt{n+1} - \sqrt{n}}{n} \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{n(\sqrt{n+1} + \sqrt{n})} = \frac{1}{n(\sqrt{n+1} + \sqrt{n})}$$

Thus

$$a_n < \frac{1}{n\sqrt{n}} = \frac{1}{n^{3/2}}$$

Since $\sum_{n} \frac{1}{n^{3/2}}$ converges, we have that $\sum a_n$ converges by the comparison test.

Solution: #10 – Assume that $\limsup |a_n|^{\frac{1}{n}} < 1$. Then by Rudin 3.17(b) (lemma proven in class), for all but finitely many n, we have that $|a_n|^{\frac{1}{n}} < 1$. Thus $|a_n| < 1$ for all but finitely many n. Since $a_n \in \mathbb{Z}$, this mean that $a_n = 0$ for all but finitely many n. But in the question it is assumed that a_n is non-zero for infinitely many n. Thus $\limsup |a_n|^{\frac{1}{n}} \ge 1$ and hence the radius of convergence $R = (\limsup |a_n|^{\frac{1}{n}})^{-1}$ is less than or equal to 1.

Solution: For all n, we have

$$d(p_n, q_n) \le d(p_n, p_m) + d(p_m, q_m) + d(q_m, q_n)$$

and thus

$$d(p_n, q_n) - d(p_m, q_m) \le d(p_n, p_m) + d(q_m, q_n)$$

Reversing the roles of m and n gives

$$d(p_m, q_m) - d(p_n, q_n) \le d(p_m, p_n) + d(q_n, q_m)$$

and thus

$$|d(p_n, q_n) - d(p_m, q_m)| \le d(p_n, p_m) + d(q_m, q_n)$$

To prove $\{d(p_n, q_n)\}$ is a convergent sequence in \mathbb{R} , it suffices to see that $\{d(p_n, q_n)\}$ is a Cauchy sequence (since Cauchy implies convergent in \mathbb{R}^k). To this end, fix $\varepsilon > 0$. Since $\{p_n\}$ is Cauchy, there is some N_1 such that $m, n > N_1$ implies $d(p_n, p_m) < \varepsilon/2$. Similarly, since $\{q_n\}$ is Cauchy, there is some N_2 such that $m, n > N_2$ implies $d(q_n, q_m) < \varepsilon/2$. Set $N = \max\{N_1, N_2\}$. Then

$$|d(p_n, q_n) - d(p_m, q_m)| \le d(p_n, p_m) + d(q_m, q_n) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Hence, $\{d(p_n, q_n)\}$ is a Cauchy sequence and thus a convergent sequence.

Solution: #24(a) – Let $\{p_n\}$ be a Cauchy sequence. Since $d(p_n, p_n) = 0$ for all n, we have that $\lim_n d(p_n, p_n) = 0$ and thus the relation is reflexive.

Now let $\{p_n\}$ and $\{q_n\}$ be two Cauchy sequence such that $\lim_n d(p_n, q_n) = 0$. Since $d(p_n, q_n) = d(q_n, p_n)$, we have

$$\lim_{n} d(q_n, p_n) = \lim_{n} d(q_n, p_n) = 0$$

and thus the relation is symmetric.

Now let $\{p_n\}$, $\{q_n\}$ and $\{r_n\}$ be three Cauchy sequence such that $\lim_n d(p_n, q_n) = 0$ and $\lim_n d(q_n, r_n) = 0$. By the triangle inequality, we have $0 \le d(p_n, r_n) \le d(p_n, q_n) + d(q_n, r_n)$ and thus

$$0 \le \lim_{n} d(p_n, r_n) \le \lim_{n} d(p_n, q_n) + d(q_n, r_n) = \lim_{n} d(p_n, q_n) + \lim_{n} d(q_n, r_n) = 0 + 0 = 0.$$

Hence $\lim_{n \to \infty} d(p_n, r_n) = 0$, and the relation is transitive.

Solution: #24(b) – We must check that if $\{p_n\}, \{p'_n\}, \{q_n\}, \{q'_n\}$ are Cauchy sequences such that

$$\lim_{n} d(p_n, p'_n) = 0 \text{ and } \lim_{n} d(q_n, q'_n) = 0$$

then

$$\lim_{n} d(p_n, q_n) = \lim_{n} d(p'_n, q'_n)$$

or equivalently that

$$\lim_{n} d(p_n, q_n) - d(p'_n, q'_n) = 0.$$

We have

$$d(p_n, q_n) \le d(p_n, p'_n) + d(p'_n, q'_n) + d(q'_n, q_n)$$

and thus

$$d(p_n, q_n) - d(p'_n, q'_n) \le d(p_n, p'_n) + d(q'_n, q_n)$$

Also,

$$d(p'_n, q'_n) \le d(p'_n, p_n) + d(p_n, q_n) + d(q_n, q'_n)$$

and thus

$$d(p'_n, q'_n) - d(p_n, q_n) \le d(p'_n, p_n) + d(q_n, q'_n)$$

Hence,

$$|d(p_n, q_n) - d(p'_n, q'_n)| \le d(p_n, p'_n) + d(q_n, q'_n).$$

Now fix $\varepsilon > 0$. Then there is some N_1 such $n > N_1$ implies $d(p_n, p'_n) < \varepsilon/2$. Also, there is some N_2 such $n > N_2$ implies $d(q_n, q'_n) < \varepsilon/2$. Set $N = \max\{N_1, N_2\}$. Then for n > N, we have

$$|d(p_n, q_n) - d(p'_n, q'_n)| \le d(p_n, p'_n) + d(q_n, q'_n) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

and thus $\lim_{n \to \infty} d(p_n, q_n) - d(p'_n, q'_n) = 0$ as desired. Thus, $\Delta(P, Q)$ is well-defined.

We must also check that Δ satisfies the axioms of a metric space.

Clearly $\Delta(P, P) = 0$. Conversely, let $P, Q \in X^*$ such that $\Delta(P, Q) = 0$. Let $\{p_n\}$ be a representative Cauchy sequence from P and $\{q_n\}$ a representative Cauchy sequence from Q. Then $\lim_n d(p_n, q_n) = 0$. Thus by definition $\{p_n\}$ is equivalent to $\{q_n\}$, and again by definition this means that P = Q in X^* .

Now we check $\Delta(P,Q) = \Delta(Q,P)$. Let $\{p_n\}$ and $\{q_n\}$ be representatives of P and Q respectively. Then

$$\Delta(P,Q) = \lim_{n} d(p_n,q_n) = \lim_{n} d(q_n,p_n) = \Delta(Q,P)$$

as desired.

Now we must check the triangle inequality. So let $P, Q, R \in X^*$ with representatives $\{p_n\}, \{q_n\}$, and $\{r_n\}$. Then

$$\Delta(P,R) = \lim_{n} d(p_n, r_n) \le \lim_{n} d(p_n, q_n) + d(q_n, r_n) = \lim_{n} d(p_n, q_n) + \lim_{n} d(q_n, r_n) = \Delta(P,Q) + \Delta(Q,R)$$

as desired.

Additional questions:

1. Let $f: X \to Y$ be a function between two sets. For a subset $A \subseteq X$, we define

$$f(A) = \{b \in B \text{ such that } b = f(a) \text{ for some } a \in A\},\$$

and for a subset $B \subseteq Y$, we define

$$f^{-1}(B) = \{a \in A \text{ such that } f(a) \in B\}.$$

In each of the following pairs of sets, the two sets are related by either $=, \subset \text{ or } \supset$. Determine which is the correct relation and prove your answer. If you answer $\subset \text{ or } \supset$, give an explicit example where the reverse inclusion does not hold.

(a) $f(A_1 \cup A_2) \longleftrightarrow f(A_1) \cup f(A_2)$ Solution: We have $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$. Indeed

$$x \in f(A_1 \cup A_2) \iff x = f(a) \text{ for some } a \in A_1 \cup A_2$$
$$\iff x = f(a) \text{ for some } a \in A_1 \text{ or } a \in A_2$$
$$\iff x \in f(A_1) \text{ or } x \in f(A_2)$$
$$\iff x \in f(A_1) \cup f(A_2)$$

(b)
$$f(A_1 \cap A_2) \longleftrightarrow f(A_1) \cap f(A_2)$$

Solution: We have $f(A_1 \cap A_2) \subseteq f(A_1) \cup f(A_2)$. Indeed

$$x \in f(A_1 \cap A_2) \implies x = f(a) \text{ for some } a \in A_1 \cap A_2$$
$$\implies x = f(a) \text{ for some } a \in A_1 \text{ and } a \in A_2$$
$$\implies x \in f(A_1) \text{ and } x \in f(A_2)$$
$$\implies x \in f(A_1) \cap f(A_2).$$

The inclusion \supseteq is not true in general. Consider $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Then take $A_1 = (-1,0), A_2 = (0,1)$. Then $A_1 \cap A_2$ is empty and so $f(A_1 \cap A_2)$ is empty. However, $f(A_1) = (0,1) = f(A_2)$ and thus $f(A_1) \cap f(A_2) = (0,1)$.

(c) $f^{-1}(B_1 \cup B_2) \longleftrightarrow f^{-1}(B_1) \cup f^{-1}(B_2)$ Solution: We have $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$. Indeed

$$x \in f^{-1}(B_1 \cup B_2) \iff f(x) \in B_1 \cup B_2$$
$$\iff f(x) \in B_1 \text{ or } f(x) \in B_2$$
$$\iff x \in f^{-1}(B_1) \text{ or } x \in f^{-1}(B_2)$$
$$\iff x \in f^{-1}(B_1) \cup f^{-1}(B_2)$$

(d) $f^{-1}(B_1 \cap B_2) \longleftrightarrow f^{-1}(B_1) \cap f^{-1}(B_2)$ Solution: We have $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$. Indeed

$$x \in f^{-1}(B_1 \cap B_2) \iff f(x) \in B_1 \cap B_2$$
$$\iff f(x) \in B_1 \text{ and } f(x) \in B_2$$
$$\iff x \in f^{-1}(B_1) \text{ and } x \in f^{-1}(B_2)$$
$$\iff x \in f^{-1}(B_1) \cap f^{-1}(B_2)$$

(e) $f(f^{-1}(B)) \longleftrightarrow B$

Solution: We have $f(f^{-1}(B)) \subseteq B$. Indeed, $x \in f(f^{-1}(B))$ implies that x = f(a) for some $a \in f^{-1}(B)$. But then by definition $f(a) \in B$ and thus $x \in B$. The reverse inclusion need not hold. Consider $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ and take $B = \mathbb{R}$. Then $f^{-1}(B) = f^{-1}(\mathbb{R}) = \mathbb{R}$, and thus $f(f^{-1}(B)) = f(\mathbb{R}) = \mathbb{R}^{\geq 0}$ as x^2 is always non-negative.

- (f) f⁻¹(f(A)) ↔ A
 Solution: We have f⁻¹(f(A)) ⊇ A. Indeed, for x ∈ A, we have f(x) ∈ f(A) and thus x ∈ f⁻¹(f(A)).
 The reverse inclusion need not hold. Consider f : ℝ → ℝ given by f(x) = x² and take A = ℝ^{≥0}. Then f(A) = ℝ^{≥0}, and thus f⁻¹(f(A)) = f⁻¹(ℝ^{≥0}) = ℝ as f(x) = x² is always non-negative.
- 2. Let $\{a_n\}$ be a convergent sequence in \mathbb{R} . Prove that

$$\limsup\{a_n\} = \liminf\{a_n\} = \lim\{a_n\}.$$

Solution: We start with a lemma.

Lemma 0.1. Let $\{s_n\}$ denote a convergent sequence in \mathbb{R} with $\{s_n\} \to s$. Then any subsequence of $\{s_n\}$ also converges to s.

Proof. Let $\{s_{n_j}\}$ denote a subsequence. Fix $\varepsilon > 0$. Then there exists N such that n > N implies $|s_n - s| < \varepsilon$. Then for j > N, we have $n_j > N$ as $n_j \ge j$. Thus $|s_{n_j} - s| < \varepsilon$ and we deduce that $\{s_{n_j}\} \to s$.

Returning to the question at hand. Let $\{a_n\} \to a$. Then if E denotes the subset of \mathbb{R} consisting of limits of subsequences of $\{a_n\}$, by the lemma, $E = \{a\}$. Thus

$$\limsup\{a_n\} = \sup E = a = \lim\{a_n\}$$

and

$$\liminf\{a_n\} = \inf E = a = \lim\{a_n\}.$$