```
Introduction to Analysis - MA 511 - Fall 2018 - R. Pollack
    HW #8
```

Determine if each of the below statements are true or false. For the true statements give a proof of why the statement is true. For the false statements, give an explicit counter-example.

You will need to know the following facts which were not proven, but only discussed, in class. (Both are standard second semester calculus facts.)

- Fact: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges iff $p>1$.
- Fact: If $a_{n}>0$ for each n and $a_{n}>a_{n+1}$, then $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.

In the below questions, $\left\{a_{n}\right\}$ denotes a sequence of real numbers. The notation $\sum a_{n}$ means $\sum_{n=1}^{\infty} a_{n}$.

TRUE/FALSE

1. If $\left\{a_{n}\right\}$ is convergent, then $\sum a_{n}$ is convergent.
2. If $\sum a_{n}$ is convergent, then $\left\{a_{n}\right\}$ is convergent.
3. If $\sum a_{n}$ converges, then $\sum a_{n}^{2}$ converges,
4. If $\sum a_{n}$ diverges, then $\sum a_{n}^{2}$ diverges,
5. If each $a_{n} \geq 0$ and $\sum a_{n}$ converges, then $\sum a_{n}^{2}$ converges,
6. If each $a_{n} \geq 0$ and $\sum a_{n}$ diverges, then $\sum a_{n}^{2}$ diverges,
7. If $\sum a_{n}$ converges and $\sum b_{n}$ converges, then $\sum a_{n}+b_{n}$ converges.
8. If $\sum a_{n}$ converges and $\sum b_{n}$ converges, then $\sum a_{n} \cdot b_{n}$ converges.
9. If r is an irrational number (i.e. r is in \mathbb{R} but not \mathbb{Q}), then $\sum_{n=0}^{\infty} r^{n}$ is never in \mathbb{Q}.
10. (Challenge - ungraded) If for every convergent series $\sum b_{n}$ we have $\sum a_{n} b_{n}$ converges, then $\sum a_{n}$ converges.
11. If $\lim \sup a_{n}=\alpha$, then for every $\varepsilon>0$, there exists infinitely many a_{n} such that $\alpha-\varepsilon<a_{n}<\alpha$. $n \rightarrow \infty$
12. For two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, we have $\limsup _{n \rightarrow \infty} a_{n}+b_{n}=\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}$.
13. Let $\left\{a_{n}\right\}$ be some sequence with $\limsup _{n \rightarrow \infty} a_{n}=5$. Define a sequence $\left\{b_{n}\right\}$ by $b_{n}=\left\{\begin{array}{ll}10 & n \text { is even } \\ a_{n} & n \text { is odd }\end{array}\right.$. Then $\limsup _{n \rightarrow \infty} b_{n}=10$.
14. Let $\left\{a_{n}\right\}$ be some sequence with $\limsup _{n \rightarrow \infty} a_{n}=5$. Define a sequence $\left\{b_{n}\right\}$ by $b_{n}=\left\{\begin{array}{ll}3 & n \text { is even } \\ a_{n} & n \text { is odd }\end{array}\right.$. Then $\limsup _{n \rightarrow \infty} b_{n}=5$.

$$
n \rightarrow \infty
$$

