```
Introduction to Analysis - MA 511 - Fall 2018 - R. Pollack
    HW #8
```

Determine if each of the below statements are true or false. For the true statements give a proof of why the statement is true. For the false statements, give an explicit counter-example.

You will need to know the following facts which were not proven, but only discussed, in class. (Both are standard second semester calculus facts.)

- Fact: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges iff $p>1$.
- Fact: If $a_{n}>0$ for each $n, a_{n}>a_{n+1}$, and $\left\{a_{n}\right\} \rightarrow 0$, then $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.

In the below questions, $\left\{a_{n}\right\}$ denotes a sequence of real numbers. The notation $\sum a_{n}$ means $\sum_{n=1}^{\infty} a_{n}$.

## TRUE/FALSE

1. If $\left\{a_{n}\right\}$ is convergent, then $\sum a_{n}$ is convergent.

Solution: False! Consider $a_{n}=1$ for all $n$. Then $\left\{a_{n}\right\}$ is clearly convergent, but the partial sum $s_{n}=\sum_{k=1}^{n} 1=n$ which does not converge.
2. If $\sum a_{n}$ is convergent, then $\left\{a_{n}\right\}$ is convergent.

Solution: True! If $\sum a_{n}$ converges, then $\left\{a_{n}\right\} \rightarrow 0$ as proven in class.
3. If $\sum a_{n}$ converges, then $\sum a_{n}^{2}$ converges,

Solution: False! Consider $a_{n}=(-1)^{n} \frac{1}{n}$. Then $\sum a_{n}=\sum(-1)^{n} \frac{1}{n}$ is convergent (alternating series), but $\sum a_{n}^{2}=\sum \frac{1}{n^{2}}$ which is convergent.
4. If $\sum a_{n}$ diverges, then $\sum a_{n}^{2}$ diverges,

Solution: False! Consider $a_{n}=\frac{1}{n}$. Then $\sum a_{n}=\sum \frac{1}{n}$ diverges, but $\sum a_{n}=\sum \frac{1}{n^{2}}$ converges.
5. If each $a_{n} \geq 0$ and $\sum a_{n}$ converges, then $\sum a_{n}^{2}$ converges,

Solution: True! Since $\sum a_{n}$ converges, we have $\left\{a_{n}\right\} \rightarrow 0$. In particular, for $n$ large enough, $a_{n}<1$. (Formally, there exists an $N$ such that $n \geq N$ implies $a_{n}<1$ which comes from the definition of the limit $\left\{a_{n}\right\} \rightarrow 0$.). Thus, $a_{n}^{2}<a_{n}$ for $n$ large enough. (Here we are using that $a_{n}>0$.) Thus, by the comparison test, if $\sum a_{n}$ converges we must have that $\sum a_{n}^{2}$ converges.
6. If each $a_{n} \geq 0$ and $\sum a_{n}$ diverges, then $\sum a_{n}^{2}$ diverges,

Solution: False! The counter-example in \#4 works here as well.
7. If $\sum a_{n}$ converges and $\sum b_{n}$ converges, then $\sum a_{n}+b_{n}$ converges.

Solution: True! Let $\left\{s_{n}\right\}$ denote the partial sums associated to the $\left\{a_{n}\right\}$. That is, $s_{n}=a_{1}+\cdots+a_{n}$. Likewise let $\left\{t_{n}\right\}$ denote the partial sums associated to the $\left\{b_{n}\right\}$. That is, $t_{n}=b_{1}+\cdots+b_{n}$. Note then that

$$
s_{n}+t_{n}=a_{1}+\cdots+a_{n}+b_{1}+\cdots+b_{n}=a_{1}+b_{1}+\cdots+a_{n}+b_{n}
$$

and thus $\left\{s_{n}+t_{n}\right\}$ is the sequence of partial sums attached to $\left\{a_{n}+b_{n}\right\}$. Thus, to determine is $\sum a_{n}+b_{n}$ converges we need to see that $\left\{s_{n}+t_{n}\right\}$ converges.
Since $\sum a_{n}$ converges, by definition $\left\{s_{n}\right\}$ converges. Since $\sum b_{n}$ converges, by definition $\left\{t_{n}\right\}$ converges. Then, as proven in class, $\left\{s_{n}+t_{n}\right\}$ converges. Thus $\sum a_{n}+b_{n}$ converges which completes the proof.
8. If $\sum a_{n}$ converges and $\sum b_{n}$ converges, then $\sum a_{n} \cdot b_{n}$ converges.

Solution: False! Take $a_{n}=b_{n}=(-1)^{n} \frac{1}{\sqrt{n}}$. Then $\sum a_{n}$ and $\sum b_{n}$ both converge (alternating series), but $\sum a_{n} b_{n}=\sum \frac{1}{n}$ which diverges.
9. If $r$ is an irrational number (i.e. $r$ is in $\mathbb{R}$ but not $\mathbb{Q}$ ), then $\sum_{n=0}^{\infty} r^{n}$ is never in $\mathbb{Q}$.

Solution: True! Write $\alpha=\sum_{n=0}^{\infty} r^{n}$ so that $\alpha=\frac{1}{1-r}$. Thus, $r=1-\frac{1}{\alpha}$. In particular, $\alpha$ is rational, then $r$ must be rational as well. This is the contrapositive of the statement and so we are done.
10. (Challenge - ungraded) If for every convergent series $\sum b_{n}$ we have $\sum a_{n} b_{n}$ converges, then $\sum a_{n}$ converges.

Solution: This one turned out to be easy. It is false. Consider $a_{n}=1$. Let $b_{n}$ be any convergent sequence. Then clearly $\sum a_{n} b_{n}=\sum b_{n}$ converges. However, $\sum a_{n}=\sum 1$ diverges.
11. If $\limsup _{n \rightarrow \infty} a_{n}=\alpha$, then for every $\varepsilon>0$, there exists infinitely many $a_{n}$ such that $\alpha-\varepsilon \leq a_{n} \leq \alpha$.

Solution: False! Take $a_{n}=1+\frac{1}{n}$. Then $\limsup _{n \rightarrow \infty} a_{n}=1$ but $a_{n}$ is never less than 1.
12. For two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, we have $\limsup _{n \rightarrow \infty} a_{n}+b_{n}=\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}$.

Solution: False! Take $a_{n}=(-1)^{n}$ and $b_{n}=(-1)^{n+1}$. Then $\lim \sup _{n \rightarrow \infty} a_{n}=\lim \sup _{n \rightarrow \infty} b_{n}=1$. However, $a_{n}+b_{n}=(-1)^{n}+(-1)^{n+1}=0$ and thus $\limsup _{n \rightarrow \infty} a_{n}+b_{n}=0$.
13. Let $\left\{a_{n}\right\}$ be some sequence with $\limsup _{n \rightarrow \infty} a_{n}=5$. Define a sequence $\left\{b_{n}\right\}$ by $b_{n}=\left\{\begin{array}{ll}10 & n \text { is even } \\ a_{n} & n \text { is odd }\end{array}\right.$. Then $\limsup _{n \rightarrow \infty} b_{n}=10$.

Solution: True! For $\varepsilon=1$, there is some $N$ such that if $n>N$ then $\left|a_{n}-5\right|<1$. Thus, for $n>N$, we have $\left|a_{n}\right|<6$. From this it is clear that $\limsup _{n \rightarrow \infty} b_{n}=10$ as the $a_{n}$ 's do not affect this limsup as each $a_{n}$ is no more than 6 .
14. Let $\left\{a_{n}\right\}$ be some sequence with $\limsup _{n \rightarrow \infty} a_{n}=5$. Define a sequence $\left\{b_{n}\right\}$ by $b_{n}=\left\{\begin{array}{ll}3 & n \text { is even } \\ a_{n} & n \text { is odd }\end{array}\right.$. Then $\limsup _{n \rightarrow \infty} b_{n}=5$.

Solution: False! Take $a_{n}=\left\{\begin{array}{ll}5 & n \text { is even } \\ 0 & n \text { is odd }\end{array}\right.$. Then $\limsup _{n \rightarrow \infty} a_{n}=5$ while $\limsup _{n \rightarrow \infty} b_{n}=3$.

