Introduction to Analysis – MA 511 – Fall 2018 – R. Pollack HW #9

Questions from Rudin:

Chapter 4: 3,4,18 (replace "has a simple discontinuity" with "is not continuous")

Additional questions:

1. Define a function $f : \mathbb{R} \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$$

Prove that f is not continuous at any point $p \in \mathbb{R}$.

- 2. Prove that $f : \mathbb{R}^{>0} \to \mathbb{R}^{>0}$ given by $f(x) = \sqrt{x}$ is continuous at all p > 0. Hint: $(\sqrt{x} - \sqrt{p})(\sqrt{x} + \sqrt{p}) = x - p$.
- 3. Let $f : X \to Y$ be a continuous function between two metric spaces. For each of the following statements, either prove the statement or give some explicit counter-example.
 - (a) If $F \subseteq X$ is closed, then f(F) is closed.
 - (b) If $U \subseteq X$ is open, then f(U) is open.
 - (c) If $B \subseteq X$ is bounded, then f(B) is bounded.
- 4. Let $f : X \to Y$ be a continuous function between two metric spaces. For each of the following statements, either prove the statement or give some explicit counter-example.
 - (a) If $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed.
 - (b) If $B \subseteq Y$ is bounded, then $f^{-1}(B)$ is bounded.
 - (c) If $K \subseteq Y$ is compact, then $f^{-1}(K)$ is compact.

(Hint: Show that $(\inf I, \sup I) \subseteq I$ and then take cases on whether or not $\inf I$ and $\sup I$ are actually in I.)

5. Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x \sin(1/x) & x \neq 0\\ 0 & x = 0 \end{cases}$$

Prove that f(x) is continuous at x = 0.

(Hint: You may assume that $|\sin(y)| \le 1$ for all $y \in \mathbb{R}$.)