Questions from Rudin:

Chapter 4: $3,4,18$ (replace "has a simple discontinuity" with "is not continuous")

Solution: \#3: We have $Z(f)=f^{-1}(\{0\})$. Since $\{0\}$ is closed we have $f^{-1}(\{0\})$ and thus $Z(f)$ is closed by 4 (a) below. (Slick, no?)

One could also argue directly: namely, show that $Z(f)$ is closed by showing that $Z(f)^{c}$ is open. Note that $Z(f)^{c}=\{x \in X: f(x) \neq 0\}$. Take $x \in Z(f)^{c}$ and we must find a ball around x completely contained in $Z(f)^{c}$. That is, we must show that if a function does not vanish at a point, then it does not vanish in a neighborhood around that point. To this end, let $\varepsilon=\frac{|f(x)|}{2}$ which is positive as $f(x) \neq 0$. Then by the continuity of f, we know that there is some $\delta>0$ such that $y \in N_{\delta}(x)$ implies $|f(y)-f(x)|<\varepsilon=\frac{|f(x)|}{2}$. But then $|f(y)|>\frac{|f(x)|}{2}$ and, in particular, $f(y) \neq 0$. Thus, $y \in Z(f)^{c}$ and $N_{\delta}(x) \subseteq Z(f)^{c}$. Hence, $Z(f)^{c}$ is open and $Z(f)$ is closed.

Solution: \#4: To prove that $f(E)$ is dense in $f(X)$ we must prove that $f(X) \subseteq \overline{f(E)}$. To this end, take $y \in f(X)$ and we will show that $y \in \overline{f(E)}$. Write $y=f(x)$ for $x \in X$. Take some open set U such that $f(x) \in U$. Then $x \in f^{-1}(U)$ which is an open set since f is continuous. Since E is dense in X we know that $\bar{E}=X$. In particular, $x \in \bar{E}$ and thus either $x \in E$ or x is a limit point of E. If $x \in E$, then $y=f(x) \in f(E)$ and we are done since we have shown that $y \in \overline{f(E)}$.

If x is a limit point of E, since $x \in f^{-1}(U)$, there must exist a point $e \in E \cap f^{-1}(U)$ different from x. Then $f(e) \in f(E) \cap U$. If $f(e)=y$, then $y \in f(E)$ and we are done. Otherwise, we have found a point U different from y which is also in $f(E)$. Thus, y is a limit point of $f(E)$ and we are again done.

For the second part, consider the continuous function $h=f-g$. Then $h(p)=0$ for all $p \in E$. By the first part, $h(X) \subseteq \overline{h(E)}$. But since $h(E)=\{0\}$, we have $h(X) \subseteq \overline{\{0\}}=\{0\}$. Thus $h(x)=0$ for all $x \in X$ which implies $f(x)=g(x)$ for all $x \in X$.

Additional questions:

1. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

Prove that f is not continuous at any point $p \in \mathbb{R}$.
Solution: Fix $p \in \mathbb{R}$ and assume that p is in \mathbb{Q}. Then fix $\varepsilon=1 / 2$ and consider any $\delta>0$. Since the irrationals are dense in \mathbb{R}, there is some irrational x satisfying $|x-p|<\delta$. Then $f(x)=0$ while $f(p)=1$. Thus $|f(x)-f(p)|=1>1 / 2=\varepsilon$. Hence, $f(x)$ is not continuous at p. Analogously, if p is not in \mathbb{Q}, then the same argument works as \mathbb{Q} is also dense in \mathbb{R}.
2. Prove that $f: \mathbb{R}^{>0} \rightarrow \mathbb{R}^{>0}$ given by $f(x)=\sqrt{x}$ is continuous at all $p>0$.

Hint: $(\sqrt{x}-\sqrt{p})(\sqrt{x}+\sqrt{p})=x-p$.
Solution: Fix $\varepsilon>0$ and set $\delta=\varepsilon / \sqrt{p}$. Then, for $|x-p|<\delta=\varepsilon \cdot \sqrt{p}$, we have

$$
|f(x)-f(p)|=|\sqrt{x}-\sqrt{p}|=\frac{|x-p|}{\sqrt{x}+\sqrt{p}}<\frac{|x-p|}{\sqrt{p}}<\frac{\varepsilon \sqrt{p}}{\sqrt{p}}=\varepsilon
$$

Thus $f(x)$ is continuous at p.
3. Let $f: X \rightarrow Y$ be a continuous function between two metric spaces. For each of the following statements, either prove the statement or give some explicit counter-example.
(a) If $F \subseteq X$ is closed, then $f(F)$ is closed.

Solution: False. Take $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=\arctan (x)$ and $F=\mathbb{R}$. Then F is closed, but $f(F)=(-\pi / 2, \pi / 2)$ is not closed. Alternatively, take $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x$ and take F equal to the graph of $y=1 / x$. Then F is closed, but $f(F)=\mathbb{R}-\{0\}$ which is not closed.
(b) If $U \subseteq X$ is open, then $f(U)$ is open.

Solution: False. Take $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ and $U=(-1,1)$. Then U is open, but $f(U)=[0,1)$ is not open.
(c) If $B \subseteq X$ is bounded, then $f(B)$ is bounded.

Solution: False. Take $f:(0,1) \rightarrow R$ given by $f(x)=1 / x$ and $B=(0,1)$. Then B is bounded, but $f(B)=(1, \infty)$ is unbounded.
4. Let $f: X \rightarrow Y$ be a continuous function between two metric spaces. For each of the following statements, either prove the statement or give some explicit counter-example.
(a) If $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed.

Solution: True. We have $f^{-1}(F)^{c}=f^{-1}\left(F^{c}\right)$ (check this!). Since F is closed, F^{c} is open, and since f is continuous $f^{-1}\left(F^{c}\right)$ is open. Thus $f^{-1}(F)^{c}$ is open which tells us that $f^{-1}(F)$ is closed.
(b) If $B \subseteq Y$ is bounded, then $f^{-1}(B)$ is bounded.

Solution: False. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=0$ and take $B=\{0\}$. Then B is bounded, but $f^{-1}(B)=\mathbb{R}$ is unbounded.
(c) If $K \subseteq Y$ is compact, then $f^{-1}(K)$ is compact.

Solution: False. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=0$ and take $K=\{0\}$. Then K is compact (being a single point), but $f^{-1}(K)=\mathbb{R}$ which is not compact as it is not bounded.
5. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{ll}
x \sin (1 / x) & x \neq 0 \\
0 & x=0
\end{array} .\right.
$$

Prove that $f(x)$ is continuous at $x=0$.
(Hint: You may assume that $|\sin (y)| \leq 1$ for all $y \in \mathbb{R}$.)
Solution: Fix $\varepsilon>0$ and set $\delta=\varepsilon$. Then for $0<|x|<\delta=\varepsilon$, we have

$$
|f(x)-f(0)|=|f(x)|=|x \sin (1 / x)|=|x| \cdot|\sin (1 / x)| \leq|x|<\varepsilon
$$

and thus $f(x)$ is continuous at 0 .

