
Math 541
Solutions to HW #3

1. Gallian Chapter 2: 3,5

• #3 Show that (a) {1, 2, 3} under multiplication modulo 4 is not a group, but that (b) {1, 2, 3, 4}
under multiplication modulo 5 is a group.

(a) This is not a group, since it is not closed. Consider that 2 · 2 ≡ 0 (mod 4), and that 0 is not
in the set.

(b) This is a group. A quick multiplication table shows that the operation is binary. By associa-
tivity of multiplication in the integers, (a · b) · c = a · (b · c), so the operation is associative.
Consider any element a ∈ Z5 − {0}. Then 1 · a = a · 1 = a, so there is an identity, namely
1. Consider any element a ∈ Z5 − {0}. Then a has an inverse. The justification follows:
1 · 1 = 1 ≡ 1 (mod 5); 2 · 3 = 6 ≡ 1 (mod 5); 3 · 2 = 6 ≡ 1 (mod 5); 4 · 4 = 16 ≡ 1 (mod 5).

• #5 Find the inverse of the matrix
[
2 6
3 5

]
in GL(2,Z11).

We have [
2 6
3 5

]−1

=
1

2 · 5− 3 · 6

[
5 −6
−3 2

]
=

1
3

[
5 5
8 2

]
= 4

[
5 5
8 2

]
=

[
9 9
10 8

]
.

2. Compute 22047423023 (mod 11).

• Fermat’s Little Theorem tells us that ap ≡ a (mod p), where p is a prime. Or, if a and p are
coprime, then ap−1 ≡ 1 (mod p).
Since 2 and 11 are coprime, we make use of the second part of Fermat’s Little Theorem, which tells
us that 210 ≡ 1 (mod 11). This also means that 220 = 210 ·210 ≡ 1 ·1 = 1 (mod 11), and in general
that 210b ≡ 1 (mod 11), where b is any positive integer. Thus, 22047423023 = 22047423020 · 23 ≡
1 · 23 = 8 (mod 11).

3. Find the multiplicative inverse of 7 in Z11. Find the multiplicative inverse of 7 in Z101.

• In Z11, the multiplicative inverse of 7 is 8, since 7 · 8 = 56 ≡ 1 (mod 11).

• In Z101, the multiplicative inverse of 7 is 29, since 7 · 29 = 203 ≡ 1 (mod 101).

4. For integers a and b, we say a | b (read as a divides b) if there exists an integer k such that ak = b.
For each of the following statements either prove them or give a counter-example.

(a) For all a in Z, we have a | a.

• This is true. For all a in Z, we have a · 1 = a. This fits the above definition with k = 1.

(b) For all a, b, c in Z, if a | b and b | c, then a | c.
• This is true. We have ak1 = b and bk2 = c. This gives (ak1)k2 = c, or a(k1k2) = c. This fits

the above definition with k1k2 = k.

(c) For all a, b in Z, if a | b, then b | a.

• This is not true. Consider that 2 · 2 = 4, but that there is no integer k such that 4k = 2.

(d) For all a, b, c in Z, if a | b and a | c, then a | b+ c.

• This is true. We have ak1 = b and ak2 = c. Therefore, b+ c = ak1 + ak2 = a(k1 + k2), which
fits the above definition with k1 + k2 = k.

(e) For all a, b, c in Z, if a | b and c | b, then a+ c | b.
• This is not true. Consider that 2 · 3 = 6 and 3 · 2 = 6 (i.e. 2 and 3 both divide 6), but that

there is no integer k such that (2 + 3)k = 5k = 6.
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(f) For all a, b in Z, if a | b, then a | bc.
• This is true. We have ak1 = b. Therefore bc = (ak1)c = a(k1c), so a | bc, where k1c = k in

the above definition.

(g) For all a, b in Z, if a | bc, then a | b and a | c.
• This is not true. Consider that 2 | 2 · 3 = 6, but 2 - 3 since there is no integer k such that

2k = 3.

5. Find all m such that U(m) has size 6. How do the multiplication tables of the groups you found
compare? Do the same but now find U(m) of size 7.

• All m’s such that U(m) has size 6 include 7, 9, 14, and 18.

• To see that this is the entire list, we use the Euler phi function, φ(n), which gives us the number
of integers less than n that are coprime with n. Some properties of this function include φ(mn) =
φ(m)φ(n), where m and n are coprime, and φ(pk) = (p − 1)pk−1, where p is a prime, and
k is a positive integer. Combining these two facts we conclude that φ(n) = φ(pk1

1 p
k2
2 ...p

km
m ) =

(p1−1)pk1−1
1 (p2−1)pk2−1

2 ...(pm−1)pkm−1
m , where each pi is prime. The statement n = pk1

1 p
k2
2 ...p

km
m ,

with each pi prime, comes from the Fundamental Theorem of Arithmetic.

• Since U(m) contains only elements coprime with m, we are looking for all m such that φ(m) = 6.
From HW 2, we know that U(9) has six elements. In fact, φ(9) = φ(32) = (3 − 1)31 = (2)3 = 6,
which confirms this result. Also, U(7) has six elements, because the primality of 7 tells us that
φ(7) = (7−1)70 = (6)1 = 6. Similarly, U(14) has six elements, since φ(14) = φ(2 ·7) = φ(2)φ(7) =
(2 − 1)(7 − 1) = (1)(6) = 6, and U(18) has six elements, since φ(18) = φ(2 · 32) = φ(2)φ(32) =
(1)(6) = 6.

• It can be shown using multiple cases that no such m besides 7, 9, 14, and 18 exists.

• The multiplication tables for U(7),U(9),U(14),U(18) follow:

– U(7) =

· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

– U(9) =

· 1 2 4 5 7 8
1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

– U(14) =

· 1 3 5 9 11 13
1 1 3 5 9 11 13
3 3 9 1 13 5 11
5 5 1 11 3 13 9
9 9 13 3 11 1 5
11 11 5 13 1 9 3
13 13 11 9 5 3 1
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– U(18) =

· 1 5 7 11 13 17
1 1 5 7 11 13 17
5 5 7 17 1 11 13
7 7 17 13 5 1 11
11 11 1 5 13 17 7
13 13 11 1 17 7 5
17 17 13 11 7 5 1

• These tables are all equivalent to U(6) under the following identities:
– U(6) to U(9):

1↔ 1
2↔ 4
3↔ 2
4↔ 7
5↔ 5
6↔ 1

– U(6) to U(14):

1↔ 1
2↔ 3
3↔ 5
4↔ 9
5↔ 11
6↔ 13

– U(6) to U(18):

1↔ 1
2↔ 7
3↔ 5
4↔ 13
5↔ 11
6↔ 17

• For the second part of this question, we seek a contradiction. Suppose that there is some n such
that φ(n) = 7. Note that each integer n can be written n = pk1

1 p
k2
2 ...p

km
m , with each pi a distinct

prime, and each k a positive integer. Thus, φ(n) = (p1−1)pk1−1
1 (p2−1)pk2−1

2 ...(pm−1)pkm−1
m = 7.

Therefore, (pi − 1) divides 7 for all 1 ≤ i ≤ m. But, for all pi > 2, pi − 1 is even, so pi − 1 =
2b for some integer b, which implies that 2 | 7, a contradiction. Thus, for any integer n that is a
multiple of primes greater than 2, φ(n) 6= 7. This leaves us with the case when pk

i = 2k for some
positive integer k. Well, φ(23) = 4 < 7 < φ(24) = 8. Since φ(2k) > 7 for all k > 4, we conclude
that there is no integer n such that φ(n) = 7.
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6. Find all distinct multiplication tables for groups of size 5. (Here ”distinct” means, as in class, up to
relabeling of the elements.)

7. (Challenge question) Do the same but for groups of size 6!

4


