Definitions:

- Let E / F be a field extension. We say $\alpha \in E$ is algebraic over F if there exists a non-zero polynomial $f(x) \in F[x]$ such that $f(\alpha)=0$. We say $\alpha \in E$ is transcendental over F if α is not algebraic over F.
- Let E / F be a field extension and let $\alpha \in E$ be algebraic over F. The following are the two equivalent definitions of the minimum polynomial that I gave in class:
- The minimum polynomial of α over F is the monic polynomial of smallest degree in $F[x]$ which has α as a zero.
- The minimum polynomial of α over F is the monic generator of the ideal:

$$
I=\{f(x) \in F[x]: f(\alpha)=0\}
$$

We write $\operatorname{irr}(\alpha, F)$ for this polynomial.

- Let E / F be a field extension and let $\alpha \in E$. The degree of α over F is the degree of the minimum polynomial of α.
- A set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ in a vector space V are linearly independent if whenever

$$
c_{1} v_{1}+\cdots+c_{n} v_{n}=0
$$

for scalars c_{1}, \ldots, c_{n}, then $c_{i}=0$ for all i.

- A basis of a vector space V is a set of vectors that are linearly independent and span V.
- An extension of fields E / F is an algebraic extension if every $\alpha \in E$ is algebraic over F.
- An extension of fields E / F is a finite extension if E is finite-dimensional as an F-vector space.
- The degree of a finite extension E / F of fields is the dimension of E as an F-vector space. We write this degree as $[E: F]$.
- A field F is algebraically closed if every non-constant polynomial $f(x) \in F[x]$ has a zero in F.
- For a field K, an automorphism of K is an isomorphism of K with itself, that is, a bijective ring homomorphism $\varphi: K \rightarrow K$.
- For K / F a field extension and $\varphi: K \rightarrow K$ an automophism, we say that φ fixes F is for every $\alpha \in F$, we have that $\varphi(\alpha)=\alpha$.
- A field E is an algebraic closure of a field F if (1) E / F is an algebraic extension and (2) E is algebraically closed.
- Let $\left\{f_{i}\right\}$ be a collection of polynomials in $F[x]$. Then the splitting field of the $\left\{f_{i}\right\}$ over F is the smallest subfield of \bar{F} which contains F and every root of each f_{i}.
- Let $f(x) \in F[x]$. Then α is a zero of multiplicity e if $f(x)=(x-\alpha)^{e} g(x)$ with $g(\alpha) \neq 0$.
- Let K and L be fields. We say that $\sigma: K \rightarrow L$ is an embedding if σ is a non-zero ring homomorphism.
- Let K and L be fields each containing a subfield F. We say that $\sigma: K \rightarrow L$ is an embedding over F if σ is a non-zero ring homomorphism which fixes F (i.e. $\sigma(x)=x$ for all $x \in F$).
- An algebraic extension K / F is normal if any of the equivalent definitions hold: (you pick which one you want to answer with!)

1. K is a splitting field over F;
2. if $\tau: K \rightarrow \bar{F}$ is an embedding over F, then $\tau(K) \subseteq K$;
3. whenever $p(x)$ is a polynomial in $F[x]$ which has a zero in K, then $p(x)$ splits into linear factors in $K[x]$.

- An algebraic extension K / F is separable if for every $\alpha \in K$, we have $\operatorname{irr}(\alpha, F)$ has no multiple roots.
- A finite extension K / F is Galois if it is both normal and separable.

Theorems:

- Let E / F be an extension of fields and let $\alpha \in E$ be algebraic over F. Then the minimum polynomial $\operatorname{irr}(\alpha, F)$ is irreducible.

Proof: Assume $\operatorname{irr}(\alpha, F)=f(x) g(x)$. Since α is a zero of $\operatorname{irr}(\alpha, F)$, we have that $f(\alpha) g(\alpha)=0$ and thus either $f(\alpha)=0$ and $g(\alpha)=0$. Without loss of generality, let's assume that $f(\alpha)=0$. Then, by the definition of minimum polynomial, we have $\operatorname{deg}(f) \geq \operatorname{deg}(\operatorname{irr}(\alpha, F))$. But this implies that $g(x)$ is a constant and hence $\operatorname{irr}(\alpha, F)$ is irreducible.

- $F(\alpha) \cong F[x] /\langle\operatorname{irr}(\alpha, F)\rangle$.

Proof: Consider the ring homomorphism:

$$
\begin{aligned}
\varphi: F[x] & \longrightarrow F(\alpha) \\
f(x) & \mapsto f(\alpha) .
\end{aligned}
$$

The kernel of this map equals

$$
\{f(x) \in F[x]: f(\alpha)=0\}
$$

which by definition of minimum polynomial is simply $\langle\operatorname{irr}(\alpha, F)\rangle$. Thus by the first isomorphism theorem (Theorem 26.17), we have an injective map

$$
\bar{\varphi}: F[x] /\langle\operatorname{irr}(\alpha, F)\rangle \longrightarrow F(\alpha)
$$

which sends $x+\langle\operatorname{irr}(\alpha, F)\rangle$ to α. Our job is to show that this map is surjective.
So take any element $\beta \in F(\alpha)$. By definition of $F(\alpha)$, we know that

$$
\beta=\frac{a_{0}+a_{1} \alpha+\ldots a_{n} \alpha^{n}}{b_{0}+b_{1} \alpha+\ldots b_{m} \alpha^{m}}
$$

for $a_{i}, b_{i} \in F$ with non-zero denominator.
Since $\operatorname{irr}(\alpha, F)$ is irreducible, we know that $\langle\operatorname{irr}(\alpha, F)\rangle$ is a maximal ideal and thus $F[x] /\langle\operatorname{irr}(\alpha, F)\rangle$ is a field. Thus, we can form the element

$$
\left(a_{0}+a_{1} x+\ldots a_{n} x^{n}+\langle\operatorname{irr}(\alpha, F)\rangle\right) \cdot\left(b_{0}+b_{1} \alpha+\ldots b_{m} \alpha^{m}+\langle\operatorname{irr}(\alpha, F)\rangle\right)^{-1}
$$

in $F[x] /\langle\operatorname{irr}(\alpha, F)\rangle$ and this element clearly maps to β under $\bar{\varphi}$. Hence φ is surjective and thus an isomorphism as desired.

- If E / F is a finite extension, then E / F is an algebraic extension.

Proof: Let $\alpha \in E$ and consider $\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n}\right\}$ where $n=[E: F]$ which is finite by assumption. Since these are $n+1$ elements of E which is an n-dimension vector space, we must have that these elements are linearly dependent. Thus, there exists $c_{0}, \ldots, c_{n} \in F$ with at least 1 non-zero such that

$$
c_{0}+c_{1} \alpha+\ldots c_{n} \alpha^{n}=0
$$

Hence $c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ is a non-zero polynomial in $F[x]$ with α as a zero. This proves that α is algebraic over F and thus E / F is an algebraic extension.

- Let K / \mathbb{Q} be a field extension and φ an automorphism of K. Then φ fixes \mathbb{Q}.

Proof: First note that $\varphi(1)=1$ (as φ is surjective; Lemma from class). Then for $n \geq 0$, we have

$$
\begin{aligned}
\varphi(n) & =\varphi(1+\cdots+1) \quad(\mathrm{n} \text { times }) \\
& =\varphi(1)+\cdots+\varphi(1) \quad(\mathrm{n} \text { times }) \\
& =1+\cdots+1 \quad(\mathrm{n} \text { times }) \\
& =n .
\end{aligned}
$$

Then for $n<0$, we have $\varphi(n)=-\varphi(-n)=-(-n)=n$ as $-n>0$. Thus, $\varphi(n)=n$ for all $n \in \mathbb{Z}$. Lastly, for any $r / s \in \mathbb{Q}$, we have $\varphi(r / s)=\varphi(r) / \varphi(s)=r / s$ as desired.

- Let K / F be an algebraic extension and let φ be an automorphism of K that fixes F. Then for every $\alpha \in K$, we have that $\varphi(\alpha)$ is a zero of $\operatorname{irr}(\alpha, F)$.
Proof: Set

$$
\operatorname{irr}(\alpha, F)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with each $a_{i} \in F$. Since α is a root of its own minimum polynomial, we have

$$
\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0 .
$$

Applying φ to this equation gives

$$
\begin{aligned}
0=\varphi(0) & =\varphi\left(\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0\right) \\
& =\varphi(\alpha)^{n}+\varphi\left(a_{n-1}\right) \varphi(\alpha)^{n-1}+\cdots+\varphi\left(a_{1}\right) \varphi(\alpha)+\varphi\left(a_{0}\right) \\
& =\varphi(\alpha)^{n}+a_{n-1} \varphi(\alpha)^{n-1}+\cdots+a_{1} \varphi(\alpha)+a_{0}
\end{aligned}
$$

Here we are using both the ring homomorphism properties of φ and the fact that φ fixes F. This last equation proves that $\varphi(\alpha)$ is a root of $\operatorname{irr}(\alpha, F)$ as desired.

- Let F be a field of characteristic 0 . Let $f(x) \in F[x]$ and let α be a zero of $f(x)$ of multiplicity e. Then α is a zero of $f^{\prime}(x)$ with multiplicity $e-1$.
Proof: Since $f(x)=(x-\alpha)^{e} g(x)$ with $g(\alpha) \neq 0$, differentiating gives

$$
f^{\prime}(x)=e(x-\alpha)^{e-1} g(x)+(x-\alpha)^{e} g^{\prime}(x)=(x-\alpha)^{e-1} \cdot\left(e g(x)+(x-\alpha) g^{\prime}(x)\right)
$$

Note that setting $x=\alpha$ in $e g(x)+(x-\alpha) g^{\prime}(x)$ gives $e g(\alpha)+(\alpha-\alpha) g^{\prime}(\alpha)=e g(\alpha)$. By assumption $g(\alpha) \neq 0$ and since F has characteristic $0, e \neq 0$. Thus $e g(x)+(x-\alpha) g^{\prime}(x)$ does not vanish at α and hence α is a zero of $f^{\prime}(x)$ with multiplicity $e-1$.

- Let K be a splitting field over F. Then if $\tau: K \rightarrow \bar{F}$ is an embedding fixing F, we have $\tau(K) \subseteq K$.

Proof: Let K be the splitting field of $\left\{f_{j}\right\}$ with each $f_{j} \in F[x]$. Set R equal to the collection of all zeroes of all of the f_{j} in \bar{F}. Then $K=F\left(\{\alpha\}_{\alpha \in R}\right)$. To show that $\tau(K) \subseteq K$ we thus only need to check that $\tau(\alpha) \in K$ for each $\alpha \in R$ as τ fixes F. To this end, take α in R and write f_{j} for the polynomial in our collection for which α is a root. Then $\tau(\alpha)$ is again a zero of f_{j} as $f_{j} \in F[x]$ and τ fixes F. Hence $\tau(\alpha) \in R$ which implies $\tau(\alpha) \in K$. Thus $\tau(K) \subseteq K$.

- If $L / K / F$ is a tower of fields and L / F is separable, then L / K and K / F are separable.

Proof: We first check that L / K is separable. To this end, let $\alpha \in L$ and we must check that $\operatorname{irr}(\alpha, K)$ has no repeated roots. But we know that

$$
\operatorname{irr}(\alpha, K) \text { divides } \operatorname{irr}(\alpha, F)
$$

as $\operatorname{irr}(\alpha, F)$ has α as a root and has coefficients in K (and $\operatorname{irr}(\alpha, K)$ divides every polynomial in $K[x]$ which has α as a root). Since $\operatorname{irr}(\alpha, F)$ has no repeated roots, we deduce that $\operatorname{irr}(\alpha, K)$ has no repeated roots. Hence L / K is separable.
Now we check K / F is separable. To this end, let $\alpha \in K$ and we must check that $\operatorname{irr}(\alpha, F)$ has no multiple roots. But since $K \subseteq L$ and L / F is separable, we deduce that $\operatorname{irr}(\alpha, F)$ has no multiple roots as desired. Thus, K / F is separable.

- Let K / F be Galois and let E be a subfield. Then $E=K^{\operatorname{Gal}(K / E)}$.

Proof: See Theorem 2.4 in Galois theory notes.

