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Definitions:

• Let E/F be a field extension. We say α ∈ E is algebraic over F if there exists a non-zero polynomial
f(x) ∈ F [x] such that f(α) = 0. We say α ∈ E is transcendental over F if α is not algebraic over F .

• Let E/F be a field extension and let α ∈ E be algebraic over F . The following are the two equivalent
definitions of the minimum polynomial that I gave in class:

– The minimum polynomial of α over F is the monic polynomial of smallest degree in F [x] which
has α as a zero.

– The minimum polynomial of α over F is the monic generator of the ideal:

I = {f(x) ∈ F [x] : f(α) = 0}.

We write irr(α, F ) for this polynomial.

• Let E/F be a field extension and let α ∈ E. The degree of α over F is the degree of the minimum
polynomial of α.

• A set of vectors {v1, . . . , vn} in a vector space V are linearly independent if whenever

c1v1 + · · ·+ cnvn = 0

for scalars c1, . . . , cn, then ci = 0 for all i.

• A basis of a vector space V is a set of vectors that are linearly independent and span V .

• An extension of fields E/F is an algebraic extension if every α ∈ E is algebraic over F .

• An extension of fields E/F is a finite extension if E is finite-dimensional as an F -vector space.

• The degree of a finite extension E/F of fields is the dimension of E as an F -vector space. We write
this degree as [E : F ].

• A field F is algebraically closed if every non-constant polynomial f(x) ∈ F [x] has a zero in F .

• For a field K, an automorphism of K is an isomorphism of K with itself, that is, a bijective ring
homomorphism ϕ : K → K.

• For K/F a field extension and ϕ : K → K an automophism, we say that ϕ fixes F is for every α ∈ F ,
we have that ϕ(α) = α.

• A field E is an algebraic closure of a field F if (1) E/F is an algebraic extension and (2) E is algebraically
closed.

• Let {fi} be a collection of polynomials in F [x]. Then the splitting field of the {fi} over F is the smallest
subfield of F which contains F and every root of each fi.

• Let f(x) ∈ F [x]. Then α is a zero of multiplicity e if f(x) = (x− α)eg(x) with g(α) 6= 0.

• Let K and L be fields. We say that σ : K → L is an embedding if σ is a non-zero ring homomorphism.

• Let K and L be fields each containing a subfield F . We say that σ : K → L is an embedding over F if
σ is a non-zero ring homomorphism which fixes F (i.e. σ(x) = x for all x ∈ F ).

• An algebraic extension K/F is normal if any of the equivalent definitions hold: (you pick which one
you want to answer with!)



1. K is a splitting field over F ;

2. if τ : K → F is an embedding over F , then τ(K) ⊆ K;

3. whenever p(x) is a polynomial in F [x] which has a zero in K, then p(x) splits into linear factors
in K[x].

• An algebraic extension K/F is separable if for every α ∈ K, we have irr(α, F ) has no multiple roots.

• A finite extension K/F is Galois if it is both normal and separable.



Theorems:

• Let E/F be an extension of fields and let α ∈ E be algebraic over F . Then the minimum polynomial
irr(α, F ) is irreducible.

Proof: Assume irr(α, F ) = f(x)g(x). Since α is a zero of irr(α, F ), we have that f(α)g(α) = 0 and
thus either f(α) = 0 and g(α) = 0. Without loss of generality, let’s assume that f(α) = 0. Then, by
the definition of minimum polynomial, we have deg(f) ≥ deg(irr(α, F )). But this implies that g(x) is
a constant and hence irr(α, F ) is irreducible.

• F (α) ∼= F [x]/〈irr(α, F )〉.
Proof: Consider the ring homomorphism:

ϕ : F [x] −→ F (α)

f(x) 7→ f(α).

The kernel of this map equals
{f(x) ∈ F [x] : f(α) = 0}

which by definition of minimum polynomial is simply 〈irr(α, F )〉. Thus by the first isomorphism
theorem (Theorem 26.17), we have an injective map

ϕ : F [x]/〈irr(α, F )〉 −→ F (α)

which sends x+ 〈irr(α, F )〉 to α. Our job is to show that this map is surjective.

So take any element β ∈ F (α). By definition of F (α), we know that

β =
a0 + a1α+ . . . anα

n

b0 + b1α+ . . . bmαm

for ai, bi ∈ F with non-zero denominator.

Since irr(α, F ) is irreducible, we know that 〈irr(α, F )〉 is a maximal ideal and thus F [x]/〈irr(α, F )〉 is
a field. Thus, we can form the element

(a0 + a1x+ . . . anx
n + 〈irr(α, F )〉) · (b0 + b1α+ . . . bmα

m + 〈irr(α, F )〉)−1

in F [x]/〈irr(α, F )〉 and this element clearly maps to β under ϕ. Hence ϕ is surjective and thus an
isomorphism as desired.

• If E/F is a finite extension, then E/F is an algebraic extension.

Proof: Let α ∈ E and consider {1, α, α2, . . . , αn} where n = [E : F ] which is finite by assumption.
Since these are n + 1 elements of E which is an n-dimension vector space, we must have that these
elements are linearly dependent. Thus, there exists c0, . . . , cn ∈ F with at least 1 non-zero such that

c0 + c1α+ . . . cnα
n = 0.

Hence c0 + c1x + · · · + cnx
n is a non-zero polynomial in F [x] with α as a zero. This proves that α is

algebraic over F and thus E/F is an algebraic extension.

• Let K/Q be a field extension and ϕ an automorphism of K. Then ϕ fixes Q.

Proof: First note that ϕ(1) = 1 (as ϕ is surjective; Lemma from class). Then for n ≥ 0, we have

ϕ(n) = ϕ(1 + · · ·+ 1) (n times)

= ϕ(1) + · · ·+ ϕ(1) (n times)

= 1 + · · ·+ 1 (n times)

= n.

Then for n < 0, we have ϕ(n) = −ϕ(−n) = −(−n) = n as −n > 0. Thus, ϕ(n) = n for all n ∈ Z.
Lastly, for any r/s ∈ Q, we have ϕ(r/s) = ϕ(r)/ϕ(s) = r/s as desired.



• Let K/F be an algebraic extension and let ϕ be an automorphism of K that fixes F . Then for every
α ∈ K, we have that ϕ(α) is a zero of irr(α, F ).

Proof: Set
irr(α, F ) = xn + an−1x

n−1 + · · ·+ a1x+ a0

with each ai ∈ F . Since α is a root of its own minimum polynomial, we have

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0.

Applying ϕ to this equation gives

0 = ϕ(0) = ϕ(αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0)

= ϕ(α)n + ϕ(an−1)ϕ(α)n−1 + · · ·+ ϕ(a1)ϕ(α) + ϕ(a0)

= ϕ(α)n + an−1ϕ(α)n−1 + · · ·+ a1ϕ(α) + a0.

Here we are using both the ring homomorphism properties of ϕ and the fact that ϕ fixes F . This last
equation proves that ϕ(α) is a root of irr(α, F ) as desired.

• Let F be a field of characteristic 0. Let f(x) ∈ F [x] and let α be a zero of f(x) of multiplicity e. Then
α is a zero of f ′(x) with multiplicity e− 1.

Proof: Since f(x) = (x− α)eg(x) with g(α) 6= 0, differentiating gives

f ′(x) = e(x− α)e−1g(x) + (x− α)eg′(x) = (x− α)e−1 · (eg(x) + (x− α)g′(x)).

Note that setting x = α in eg(x) + (x − α)g′(x) gives eg(α) + (α − α)g′(α) = eg(α). By assumption
g(α) 6= 0 and since F has characteristic 0, e 6= 0. Thus eg(x) + (x− α)g′(x) does not vanish at α and
hence α is a zero of f ′(x) with multiplicity e− 1.

• Let K be a splitting field over F . Then if τ : K → F is an embedding fixing F , we have τ(K) ⊆ K.

Proof: Let K be the splitting field of {fj} with each fj ∈ F [x]. Set R equal to the collection of all
zeroes of all of the fj in F . Then K = F ({α}α∈R). To show that τ(K) ⊆ K we thus only need to check
that τ(α) ∈ K for each α ∈ R as τ fixes F . To this end, take α in R and write fj for the polynomial in
our collection for which α is a root. Then τ(α) is again a zero of fj as fj ∈ F [x] and τ fixes F . Hence
τ(α) ∈ R which implies τ(α) ∈ K. Thus τ(K) ⊆ K.

• If L/K/F is a tower of fields and L/F is separable, then L/K and K/F are separable.

Proof: We first check that L/K is separable. To this end, let α ∈ L and we must check that irr(α,K)
has no repeated roots. But we know that

irr(α,K) divides irr(α, F )

as irr(α, F ) has α as a root and has coefficients in K (and irr(α,K) divides every polynomial in K[x]
which has α as a root). Since irr(α, F ) has no repeated roots, we deduce that irr(α,K) has no repeated
roots. Hence L/K is separable.

Now we check K/F is separable. To this end, let α ∈ K and we must check that irr(α, F ) has no
multiple roots. But since K ⊆ L and L/F is separable, we deduce that irr(α, F ) has no multiple roots
as desired. Thus, K/F is separable.

• Let K/F be Galois and let E be a subfield. Then E = KGal(K/E).

Proof: See Theorem 2.4 in Galois theory notes.


