Introduction to Analysis – MA 542 – Fall 2019 – R. Pollack Review sheet for final

Definitions:

- Let E/F be a field extension. We say $\alpha \in E$ is algebraic over F if there exists a non-zero polynomial $f(x) \in F[x]$ such that $f(\alpha) = 0$. We say $\alpha \in E$ is transcendental over F if α is not algebraic over F.
- Let E/F be a field extension and let $\alpha \in E$ be algebraic over F. The following are the two equivalent definitions of the minimum polynomial that I gave in class:
 - The minimum polynomial of α over F is the monic polynomial of smallest degree in F[x] which has α as a zero.
 - The minimum polynomial of α over F is the monic generator of the ideal:

$$I = \{ f(x) \in F[x] : f(\alpha) = 0 \}.$$

We write $irr(\alpha, F)$ for this polynomial.

- Let E/F be a field extension and let $\alpha \in E$. The *degree* of α over F is the degree of the minimum polynomial of α .
- A set of vectors $\{v_1, \ldots, v_n\}$ in a vector space V are *linearly independent* if whenever

$$c_1v_1 + \dots + c_nv_n = 0$$

for scalars c_1, \ldots, c_n , then $c_i = 0$ for all *i*.

- A basis of a vector space V is a set of vectors that are linearly independent and span V.
- An extension of fields E/F is an algebraic extension if every $\alpha \in E$ is algebraic over F.
- An extension of fields E/F is a *finite extension* if E is finite-dimensional as an F-vector space.
- The *degree* of a finite extension E/F of fields is the dimension of E as an F-vector space. We write this degree as [E:F].
- A field F is algebraically closed if every non-constant polynomial $f(x) \in F[x]$ has a zero in F.
- For a field K, an *automorphism of* K is an isomorphism of K with itself, that is, a bijective ring homomorphism $\varphi: K \to K$.
- For K/F a field extension and $\varphi: K \to K$ an automorphism, we say that φ fixes F is for every $\alpha \in F$, we have that $\varphi(\alpha) = \alpha$.
- A field E is an *algebraic closure* of a field F if (1) E/F is an algebraic extension and (2) E is algebraically closed.
- Let $\{f_i\}$ be a collection of polynomials in F[x]. Then the *splitting field* of the $\{f_i\}$ over F is the smallest subfield of \overline{F} which contains F and every root of each f_i .
- Let $f(x) \in F[x]$. Then α is a zero of multiplicity e if $f(x) = (x \alpha)^e g(x)$ with $g(\alpha) \neq 0$.
- Let K and L be fields. We say that $\sigma: K \to L$ is an *embedding* if σ is a non-zero ring homomorphism.
- Let K and L be fields each containing a subfield F. We say that $\sigma : K \to L$ is an *embedding over* F if σ is a non-zero ring homomorphism which fixes F (i.e. $\sigma(x) = x$ for all $x \in F$).
- An algebraic extension K/F is *normal* if any of the equivalent definitions hold: (you pick which one you want to answer with!)

- 1. K is a splitting field over F;
- 2. if $\tau: K \to \overline{F}$ is an embedding over F, then $\tau(K) \subseteq K$;
- 3. whenever p(x) is a polynomial in F[x] which has a zero in K, then p(x) splits into linear factors in K[x].
- An algebraic extension K/F is *separable* if for every $\alpha \in K$, we have $irr(\alpha, F)$ has no multiple roots.
- A finite extension K/F is *Galois* if it is both normal and separable.

Theorems:

• Let E/F be an extension of fields and let $\alpha \in E$ be algebraic over F. Then the minimum polynomial $irr(\alpha, F)$ is irreducible.

Proof: Assume $\operatorname{irr}(\alpha, F) = f(x)g(x)$. Since α is a zero of $\operatorname{irr}(\alpha, F)$, we have that $f(\alpha)g(\alpha) = 0$ and thus either $f(\alpha) = 0$ and $g(\alpha) = 0$. Without loss of generality, let's assume that $f(\alpha) = 0$. Then, by the definition of minimum polynomial, we have $\deg(f) \ge \deg(\operatorname{irr}(\alpha, F))$. But this implies that g(x) is a constant and hence $\operatorname{irr}(\alpha, F)$ is irreducible.

• $F(\alpha) \cong F[x]/\langle \operatorname{irr}(\alpha, F) \rangle.$

Proof: Consider the ring homomorphism:

$$\varphi: F[x] \longrightarrow F(\alpha)$$
$$f(x) \mapsto f(\alpha).$$

The kernel of this map equals

$$\{f(x) \in F[x] : f(\alpha) = 0\}$$

which by definition of minimum polynomial is simply $\langle \operatorname{irr}(\alpha, F) \rangle$. Thus by the first isomorphism theorem (Theorem 26.17), we have an injective map

$$\overline{\varphi}: F[x]/\langle \operatorname{irr}(\alpha, F) \rangle \longrightarrow F(\alpha)$$

which sends $x + \langle \operatorname{irr}(\alpha, F) \rangle$ to α . Our job is to show that this map is surjective. So take any element $\beta \in F(\alpha)$. By definition of $F(\alpha)$, we know that

$$\beta = \frac{a_0 + a_1 \alpha + \dots + a_n \alpha^n}{b_0 + b_1 \alpha + \dots + b_m \alpha^m}$$

for $a_i, b_i \in F$ with non-zero denominator.

Since $\operatorname{irr}(\alpha, F)$ is irreducible, we know that $\langle \operatorname{irr}(\alpha, F) \rangle$ is a maximal ideal and thus $F[x]/\langle \operatorname{irr}(\alpha, F) \rangle$ is a field. Thus, we can form the element

$$(a_0 + a_1 x + \dots + a_n x^n + \langle \operatorname{irr}(\alpha, F) \rangle) \cdot (b_0 + b_1 \alpha + \dots + b_m \alpha^m + \langle \operatorname{irr}(\alpha, F) \rangle)^{-1}$$

in $F[x]/\langle \operatorname{irr}(\alpha, F) \rangle$ and this element clearly maps to β under $\overline{\varphi}$. Hence φ is surjective and thus an isomorphism as desired.

• If E/F is a finite extension, then E/F is an algebraic extension.

Proof: Let $\alpha \in E$ and consider $\{1, \alpha, \alpha^2, \ldots, \alpha^n\}$ where n = [E : F] which is finite by assumption. Since these are n + 1 elements of E which is an *n*-dimension vector space, we must have that these elements are linearly dependent. Thus, there exists $c_0, \ldots, c_n \in F$ with at least 1 non-zero such that

$$c_0 + c_1 \alpha + \dots c_n \alpha^n = 0$$

Hence $c_0 + c_1 x + \cdots + c_n x^n$ is a non-zero polynomial in F[x] with α as a zero. This proves that α is algebraic over F and thus E/F is an algebraic extension.

• Let K/\mathbb{Q} be a field extension and φ an automorphism of K. Then φ fixes \mathbb{Q} .

/ ``

1.

Proof: First note that $\varphi(1) = 1$ (as φ is surjective; Lemma from class). Then for $n \ge 0$, we have

$$\varphi(n) = \varphi(1 + \dots + 1) \quad \text{(n times)}$$
$$= \varphi(1) + \dots + \varphi(1) \quad \text{(n times)}$$
$$= 1 + \dots + 1 \quad \text{(n times)}$$
$$= n.$$

Then for n < 0, we have $\varphi(n) = -\varphi(-n) = -(-n) = n$ as -n > 0. Thus, $\varphi(n) = n$ for all $n \in \mathbb{Z}$. Lastly, for any $r/s \in \mathbb{Q}$, we have $\varphi(r/s) = \varphi(r)/\varphi(s) = r/s$ as desired.

- Let K/F be an algebraic extension and let φ be an automorphism of K that fixes F. Then for every $\alpha \in K$, we have that $\varphi(\alpha)$ is a zero of $irr(\alpha, F)$.
 - Proof: Set

$$\operatorname{irr}(\alpha, F) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$$

with each $a_i \in F$. Since α is a root of its own minimum polynomial, we have

$$\alpha^{n} + a_{n-1}\alpha^{n-1} + \dots + a_{1}\alpha + a_{0} = 0$$

Applying φ to this equation gives

$$0 = \varphi(0) = \varphi(\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0 = 0)$$

= $\varphi(\alpha)^n + \varphi(a_{n-1})\varphi(\alpha)^{n-1} + \dots + \varphi(a_1)\varphi(\alpha) + \varphi(a_0)$
= $\varphi(\alpha)^n + a_{n-1}\varphi(\alpha)^{n-1} + \dots + a_1\varphi(\alpha) + a_0.$

Here we are using both the ring homomorphism properties of φ and the fact that φ fixes F. This last equation proves that $\varphi(\alpha)$ is a root of $irr(\alpha, F)$ as desired.

• Let F be a field of characteristic 0. Let $f(x) \in F[x]$ and let α be a zero of f(x) of multiplicity e. Then α is a zero of f'(x) with multiplicity e - 1.

Proof: Since $f(x) = (x - \alpha)^e g(x)$ with $g(\alpha) \neq 0$, differentiating gives

$$f'(x) = e(x - \alpha)^{e-1}g(x) + (x - \alpha)^e g'(x) = (x - \alpha)^{e-1} \cdot (eg(x) + (x - \alpha)g'(x)).$$

Note that setting $x = \alpha$ in $eg(x) + (x - \alpha)g'(x)$ gives $eg(\alpha) + (\alpha - \alpha)g'(\alpha) = eg(\alpha)$. By assumption $g(\alpha) \neq 0$ and since F has characteristic $0, e \neq 0$. Thus $eg(x) + (x - \alpha)g'(x)$ does not vanish at α and hence α is a zero of f'(x) with multiplicity e - 1.

• Let K be a splitting field over F. Then if $\tau: K \to \overline{F}$ is an embedding fixing F, we have $\tau(K) \subseteq K$.

Proof: Let K be the splitting field of $\{f_j\}$ with each $f_j \in F[x]$. Set R equal to the collection of all zeroes of all of the f_j in \overline{F} . Then $K = F(\{\alpha\}_{\alpha \in R})$. To show that $\tau(K) \subseteq K$ we thus only need to check that $\tau(\alpha) \in K$ for each $\alpha \in R$ as τ fixes F. To this end, take α in R and write f_j for the polynomial in our collection for which α is a root. Then $\tau(\alpha)$ is again a zero of f_j as $f_j \in F[x]$ and τ fixes F. Hence $\tau(\alpha) \in R$ which implies $\tau(\alpha) \in K$. Thus $\tau(K) \subseteq K$.

• If L/K/F is a tower of fields and L/F is separable, then L/K and K/F are separable.

Proof: We first check that L/K is separable. To this end, let $\alpha \in L$ and we must check that $irr(\alpha, K)$ has no repeated roots. But we know that

$$\operatorname{irr}(\alpha, K)$$
 divides $\operatorname{irr}(\alpha, F)$

as $\operatorname{irr}(\alpha, F)$ has α as a root and has coefficients in K (and $\operatorname{irr}(\alpha, K)$ divides every polynomial in K[x] which has α as a root). Since $\operatorname{irr}(\alpha, F)$ has no repeated roots, we deduce that $\operatorname{irr}(\alpha, K)$ has no repeated roots. Hence L/K is separable.

Now we check K/F is separable. To this end, let $\alpha \in K$ and we must check that $irr(\alpha, F)$ has no multiple roots. But since $K \subseteq L$ and L/F is separable, we deduce that $irr(\alpha, F)$ has no multiple roots as desired. Thus, K/F is separable.

• Let K/F be Galois and let E be a subfield. Then $E = K^{\operatorname{Gal}(K/E)}$. Proof: See Theorem 2.4 in Galois theory notes.