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Definitions:

e Let E/F be a field extension. We say « € FE is algebraic over F if there exists a non-zero polynomial
f(z) € Flz] such that f(a) =0. We say a € E is transcendental over F' if « is not algebraic over F.

e Let E/F be a field extension and let o € E be algebraic over F. The following are the two equivalent
definitions of the minimum polynomial that I gave in class:

— The minimum polynomial of o over F' is the monic polynomial of smallest degree in F[z] which
has « as a zero.

— The minimum polynomial of o over F' is the monic generator of the ideal:
I'={f(z) € Flz] : f(e) =0}.
We write irr(«, F') for this polynomial.

e Let E/F be a field extension and let o € E. The degree of o over F is the degree of the minimum
polynomial of a.

e A set of vectors {vy,...,v,} in a vector space V are linearly independent if whenever
v+ -+ cpv, =0
for scalars cy,...,cy, then ¢; = 0 for all 4.
e A basis of a vector space V is a set of vectors that are linearly independent and span V.
e An extension of fields E/F is an algebraic extension if every o € E is algebraic over F.
e An extension of fields E/F is a finite extension if E is finite-dimensional as an F-vector space.

e The degree of a finite extension E/F of fields is the dimension of E as an F-vector space. We write
this degree as [E : F).

e A field F is algebraically closed if every non-constant polynomial f(z) € F[z] has a zero in F.

e For a field K, an automorphism of K is an isomorphism of K with itself, that is, a bijective ring
homomorphism ¢ : K = K.

e For K/F a field extension and ¢ : K — K an automophism, we say that ¢ fixes F is for every a € F,
we have that p(a) = a.

e A field E is an algebraic closure of a field F' if (1) E/F is an algebraic extension and (2) E is algebraically
closed.

e Let {f;} be a collection of polynomials in F'[x]. Then the splitting field of the { f;} over F is the smallest
subfield of F' which contains F' and every root of each f;.

e Let f(x) € Flz]. Then « is a zero of multiplicity e if f(x) = (z — a)°g(x) with g(a) # 0.
e Let K and L be fields. We say that o : K — L is an embedding if o is a non-zero ring homomorphism.

e Let K and L be fields each containing a subfield F. We say that ¢ : K — L is an embedding over F' if
o is a non-zero ring homomorphism which fixes F' (i.e. o(x) = x for all x € F').

e An algebraic extension K/F' is normal if any of the equivalent definitions hold: (you pick which one
you want to answer with!)



1. K is a splitting field over F;
2. if 7: K — F is an embedding over F, then 7(K) C K;

3. whenever p(x) is a polynomial in F'[z] which has a zero in K, then p(x) splits into linear factors
in K[z].

e An algebraic extension K/F is separable if for every o € K, we have irr(«, F') has no multiple roots.

e A finite extension K/F is Galois if it is both normal and separable.



Theorems:

e Let E/F be an extension of fields and let o € E be algebraic over F. Then the minimum polynomial
irr(a, F') is irreducible.

Proof: Assume irr(o, F) = f(z)g(z). Since « is a zero of irr(«, F), we have that f(a)g(a) = 0 and
thus either f(a) = 0 and g(a) = 0. Without loss of generality, let’s assume that f(a) = 0. Then, by
the definition of minimum polynomial, we have deg(f) > deg(irr(«, F')). But this implies that g(x) is
a constant and hence irr(a, F') is irreducible.

e F(a) > Flz]/{irr(a, F)).
Proof: Consider the ring homomorphism:
p: Flz] — F(«)
f(@) = f(a).
The kernel of this map equals
{f(z) € Fla] : f(e) =0}

which by definition of minimum polynomial is simply (irr(e, F)). Thus by the first isomorphism
theorem (Theorem 26.17), we have an injective map

@ Flz]/(irr(a, F)) — F(«)
which sends x + (irr(e, F)) to a. Our job is to show that this map is surjective.
So take any element § € F(«). By definition of F(«), we know that

5= ap+ a1+ ...ana"
_b0+b1a+...bmam

for a;,b; € F with non-zero denominator.

Since irr(a, F) is irreducible, we know that (irr(«, F')) is a maximal ideal and thus F[z]/{irr(«, F)) is
a field. Thus, we can form the element
(ao + a1z + ... anz" + (irr(o, F))) - (bo + bra + ... by™ + (irr(a, F))) !

in F[z]/(irr(c, F)) and this element clearly maps to 8 under . Hence ¢ is surjective and thus an
isomorphism as desired.

e If E/F is a finite extension, then E/F is an algebraic extension.
Proof: Let a € E and consider {1,a,a?,...,a"} where n = [E : F] which is finite by assumption.
Since these are n + 1 elements of £ which is an n-dimension vector space, we must have that these
elements are linearly dependent. Thus, there exists cg,...,c, € F with at least 1 non-zero such that
co+ecia+...cpa™ =0.
Hence ¢ + c12 + -+ - + ¢,2™ is a non-zero polynomial in F[z] with « as a zero. This proves that « is
algebraic over F' and thus E/F is an algebraic extension.
e Let K/Q be a field extension and ¢ an automorphism of K. Then ¢ fixes Q.
Proof: First note that ¢(1) =1 (as ¢ is surjective; Lemma from class). Then for n > 0, we have
pn)=p(l+---+1) (n times)
=@(1)+ -+ ¢(1) (n times)
=14---4+1 (n times)
=n.

Then for n < 0, we have p(n) = —p(—n) = —(—n) = n as —n > 0. Thus, p(n) = n for all n € Z.
Lastly, for any r/s € Q, we have ¢(r/s) = ¢(r)/¢(s) = r/s as desired.



e Let K/F be an algebraic extension and let ¢ be an automorphism of K that fixes F.. Then for every
a € K, we have that ¢(a) is a zero of irr(«, F).

Proof: Set
irr(a, F) = a™ + an_12" '+ -+ a1z + ag

with each a; € F. Since « is a root of its own minimum polynomial, we have
Q" 4 ap_1a" P4+ aja+ag = 0.

Applying ¢ to this equation gives

0=p(0)=p(@" +a, 1" +---+aja+ay =0)
P(@)" + p(an—1)p(@)" "+ + p(ar) (@) + ¢(ao)
¥

(@)™ 4 an_10(a)" !+ -+ arpo() + ag.

Here we are using both the ring homomorphism properties of ¢ and the fact that ¢ fixes F'. This last
equation proves that p(«) is a root of irr(«, F') as desired.

e Let F be a field of characteristic 0. Let f(x) € F[z] and let a be a zero of f(z) of multiplicity e. Then
« is a zero of f/(x) with multiplicity e — 1.

Proof: Since f(x) = (z — a)%g(x) with g(a) # 0, differentiating gives
fl(@) = ez —a)lg(@) + (z = a)®g'(z) = (z — )" - (eg(2) + (z — a)g'(2)).

Note that setting x = « in eg(x) + (z — a)g¢’(z) gives eg(a) + (o — a)g'(a) = eg(a). By assumption
g(a) # 0 and since F has characteristic 0, e # 0. Thus eg(z) + (r — «)g’(x) does not vanish at « and
hence « is a zero of f’(x) with multiplicity e — 1.

e Let K be a splitting field over F. Then if 7 : K — F is an embedding fixing F, we have 7(K) C K.

Proof: Let K be the splitting field of {f;} with each f; € F[z]. Set R equal to the collection of all
zeroes of all of the f; in F. Then K = F({a}aecr). To show that 7(K) C K we thus only need to check
that 7(a) € K for each o € R as 7 fixes F'. To this end, take o in R and write f; for the polynomial in
our collection for which « is a root. Then 7(«) is again a zero of f; as f; € F[z] and 7 fixes F. Hence
7(a) € R which implies 7(a) € K. Thus 7(K) C K.

e If L/K/F is a tower of fields and L/F is separable, then L/K and K/F are separable.

Proof: We first check that L/K is separable. To this end, let o € L and we must check that irr(«, K)
has no repeated roots. But we know that

irr(a, K) divides irr(a, F)

as irr(a, F') has « as a root and has coefficients in K (and irr(«, K) divides every polynomial in K[x]
which has « as a root). Since irr(«, F') has no repeated roots, we deduce that irr(a, K) has no repeated
roots. Hence L/K is separable.

Now we check K/F is separable. To this end, let @ € K and we must check that irr(«, F') has no
multiple roots. But since K C L and L/F is separable, we deduce that irr(«, F') has no multiple roots
as desired. Thus, K/F is separable.

e Let K/F be Galois and let F be a subfield. Then F = KG2l(K/E),

Proof: See Theorem 2.4 in Galois theory notes.



