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1 Field theory preliminaries

The following proposition will be key in the future to actually build automorphisms.

Proposition 1.1. Let K/F be an algebraic field extension and let α and β in K be conjugate (i.e. α and
β have the same minimum polynomial). Then there exists a unique isomorphism F (α) ∼= F (β) which fixes
F and maps α to β.

Proof. If such an isomorphism exists, it must be unique as any map on F (α) is determined by what it does
to F and what it does to α.

To see that the map exists, we use the fact that we have isomorphisms

F (α)
ϕ−→ F [x]/〈irr(α, F )〉

and

F (β)
ψ−→ F [x]/〈irr(β, F )〉

such that F is fixed and both α and β are sent to the equivalence class of x. But since irr(α, F ) = irr(β, F ),
the map ψ−1 ◦ ϕ gives an isomorphism from F (α) to F (β) fixing F and sending α to β.

The following is also a key technical results that lets one extends maps built from the previous proposition
to larger fields.

Theorem 1.1 (Extension theorem). Let K/F be an algebraic extension and let E be an algebraic closed
field. Let σ : F → E be an embedding. Then there exists an embedding τ : K → E lifting σ. That is,
τ(x) = σ(x) for all x ∈ F .

Proof. I won’t recall the proof here, but just remind you that this is the proposition that required the use
of Zorn’s lemma.

Theorem 1.2 (Equivalent notions of normal). Let K/F be an algebraic extension. Then the following are
equivalent (TFAE)

1. K is a splitting field over F ;

2. whenever τ : K → F is an embedding then τ(K) ⊆ K;

3. if p(x) ∈ F [x] is an irreducible polynomial with a zero in K, then p(x) splits into linear factors in K[x].

Proof. (1) =⇒ (2): Let K be the splitting field of {fj} with each fj ∈ F [x]. Set R equal to the collection
of all zeroes of all of the fj in F . Then K = F ({α}α∈R). To show that τ(K) ⊆ K we thus only need to
check that τ(α) ∈ K for each α ∈ R as τ fixes F . To this end, take α in R and write fj for the polynomial
in our collection for which α is a root. Then τ(α) is again a zero of fj as fj ∈ F [x] and τ fixes F . Hence
τ(α) ∈ R which implies τ(α) ∈ K. Thus τ(K) ⊆ K.

(2) =⇒ (3): Let p(x) be an irreducible polynomial in F [x] with a zero α in K. Let β be another zero of
p(x) in F . Then consider the map

σ : F (α) ∼= F (β) ↪→ F .

Here the first map is given by Proposition 1.1 and the second is just the identity map. By Theorem 1.1, σ
can be extended to a map τ : K → F . But then by (2) we know that τ(K) ⊆ K. Since τ(α) = β we deduce
β ∈ K as desired.

(3) =⇒ (1): For every α ∈ K, let pα(x) = irr(α, F ). By (3) each pα(x) splits into linear factors in K
as pα(x) has α ∈ K as a root. But this implies that K is the splitting field of the family of polynomials
{pα(x)}α∈K .



Recall that an algebraic extension K/F is called normal if any of the parts of Theorem 1.2 hold.
The following lemma shows that in part (3) above we actually have τ(K) = K if K/F is finite.

Lemma 1.1. If K/F is finite and τ is an embedding from K to K over F , then τ is an automorphism.

Proof. We just need to check that τ is surjective. To this end, note that τ is an F -linear map. Indeed for
c ∈ F and x ∈ K, we have τ(cx) = τ(c)τ(x) = cτ(x) as τ fixes F . Thus, τ(K) is isomorphic to K as an
F -vector space. In particular, dimF (K) = dimF (τ(K)). Since τ(K) ⊆ K, we deduce τ(K) = K and τ is
surjective.

An algebraic extension K/F is called separable if for all α ∈ K, we have irr(α,K) has no repeated roots.

Theorem 1.3 (Primitive element theorem). If K/F is a finite separable extension then there is some γ
such that K = F (γ).

Proof. I won’t recall the proof here — the statement is much more important than the proof.

One more lemma which will be important in the Galois correspondence.

Lemma 1.2. Let K/E/F be a tower fields. If K/F is normal, then K/E is normal. If K/F is separable,
then K/E is separable.

Proof. Let K/F be normal. By Theorem 1.2, K is a splitting field over F . But then the same collection of
polynomials shows that K is a splitting field over E and is thus normal. Now let K/F be separable. Let
α ∈ K and we need to check that irr(α,E) has no multiple roots. But irr(α,E) divides irr(α, F ) and we
know this latter polynomial has no repeated roots as K/F is separable.

2 Galois theory

Definition 2.1. A finite extension K/F is called Galois if the extension is both normal and separable. In
this case, we write Gal(K/F ) for Aut(K/F ) so that

Gal(K/F ) = {σ : K → K | σ is an automorphism which fixes F}.

Theorem 2.2 (Galois extensions have the right number of automorphisms). If K/F is a Galois extension,
then the size of Gal(K/F ) equals [K : F ].

Proof. By the Primitive Element theorem (Theorem 1.3), we can write K = F (γ) for γ ∈ K. Then [K : F ]
equals the degree of irr(γ, F ). Since any automorphism of K which fixes F is determined by what it does to
γ and γ must map to another root of irr(γ, F ), we see that there can be at most [K : F ] automorphisms of
K fixing F .

We now check that there are exactly [K : F ] automorphisms. First note that since K/F is separable,
irr(γ, F ) has exactly [K : F ] roots. Let β be one of these roots. We have a map

σ : K = F (γ) ∼= F (β) ↪→ F .

Here the first map is given by Proposition 1.1 and the second is just the identity map. Since K/F is normal,
we then have τ(K) ⊆ K. But then Lemma 1.1 gives that τ is an automorphism.

Let K/F be a Galois extension. The fundamental theorem of Galois theory relates the subfields of K/F
to the subgroups of Gal(K/F ). How can we make such a correspondence? Well, in one direction we need to
take a subfield E of K/F and build a subgroup of Gal(K/F ). To do this first note that K/E is Galois as it
is both normal and separable by Lemma 1.2. Thus in makes sense to consider Gal(K/E) which is clearly a
subgroup of Gal(K/F ) as any automorphism that fixes E automatically fixes F since E ⊇ F .

For the other direction, we need to take a subgroup H of Gal(K/F ) and build a subfield of K. To do
this, define

KH = {α ∈ K | σ(α) = α for all σ ∈ H}.
That is KH is the fixed field of H, the set of all elements of K that are fixed by H. It is easy to see that
this is a field and KH certainly contains F as F is fixed by all of Gal(K/F ).

We now state the main theorem.



Theorem 2.3. Let K/F be a Galois extension. There is an inclusion reversing bijection between

{subfields of K/F} and {subgroups of Gal(K/F )} .

The bijection is given by a subfield E maps to Gal(K/E) while a subgroup H maps to KH .

The “inclusion reversing” part of the theorem is explained in the following lemma.

Lemma 2.1. Let K/F be a Galois extension.

1. If E1 ⊆ E2 are subfields of K/F , then Gal(K/E1) ⊇ Gal(K/E2).

2. If H1 ⊆ H2 are subgroups of Gal(K/F ), then KH1 ⊇ KH2 .

Proof. Both parts are clear. Indeed, for the first part, for σ ∈ Gal(K/E2), we have that σ fixes E2 and
thus σ fixes E1 as E1 ⊆ E2. Thus σ ∈ Gal(K/E1). For the second part, for α ∈ KH2 , by definition, α is
fixed by everything in H2. But since H1 ⊆ H2, we then have that α is fixed by everything in H1 and hence
α ∈ KH1 .

To prove Theorem 2.3, we need to check that this correspondence is a bijection. And we do this by
checking that the two maps are inverses of each other. That is, if we start with a field E and form the
corresponding subgroup Gal(K/E) and then form the corresponding field KGal(K/E) we should get back E.
Likewise, if we start with a subgroup H and form the corresponding field KH and then the corresponding
subgroup Gal(K/KH) we should recover H. So we need the two facts

E = KGal(K/E)

and
H = Gal(K/KH).

We first note that in each case the inclusion ⊆ is clear if you think about. In the first case, to check
E ⊆ KGal(K/E) we need to check that E is fixed by Gal(K/E). But of course it is because that’s the
definition of Gal(K/E)! In the second case, to check H ⊆ Gal(K/KH), we need to check that H fixes KH .
Again this is just the definition! But it is the other directions that require real work.

Theorem 2.4. Let K/F be Galois and let E be a subfield. Then

E = KGal(K/E).

Proof. As described above we know the inclusion ⊆. To prove the converse, let M = KGal(K/E). We then
have a tower of fields K/M/E. Note that by Lemma 1.2, we have that K/M and K/E are Galois extensions.
We claim that Gal(K/M) = Gal(K/E). To see this, note that the inclusion ⊆ follows from Lemma 2.1 as
E ⊆ M . For the reverse inclusion, for σ ∈ Gal(K/E) to see that σ is in Gal(K/M) we must check that
σ fixes M . But that is the definition of M . Thus we have shown that Gal(K/M) = Gal(K/E). Then by
Theorem 2.2, we deduce that [K : M ] = [K : E] which implies E = M as desired.

Theorem 2.5. Let K/F be Galois and let H be a subgroup of Gal(K/F ). Then

H = Gal(K/KH).

Proof. We have already seen that H ⊆ Gal(K/KH). Thus #H ≤ # Gal(K/KH) = [K : KH ] where the last
equality is Theorem 2.2. It suffices to see then that [K : KH ] ≤ #H.

To this end, write K = KH(α) for α ∈ K by the Primitive Element theorem (Theorem 1.3). It then
suffices to see that α satisfies a polynomial in KH [x] with degree less than or equal to #H. Indeed, if α
satisfied such a polynomial, then irr(α,KH) would have degree less than or equal to #H which implies
[K : KH ] = [KH(α) : KH ] ≤ #H.

We now build such a polynomial. Set

h(x) =
∏
σ∈H

x− σα.



Note that α is a root of h(x) since when σ is the identity, we get a factor of x − α in h(x). Next we claim
h(x) ∈ KH [x]. To see this take τ ∈ H and apply it to all of the coefficients of H. We get

(τh)(x) =
∏
σ∈H

x− τσα =
∏
σ∈H

x− σα = h(x).

Here the middle equality follows because multiplicity by τ on H simply permutes around the elements of H.
Since τh = h, all of the coefficients of h are fixed by H and hence h(x) ∈ KH [x]. This completes the proof
since [K : KH ] = deg(irr(α,KH)) ≤ deg(h) = #H.


