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Galois theory

1 Field theory preliminaries

The following proposition will be key in the future to actually build automorphisms.

Proposition 1.1. Let K/F be an algebraic field extension and let « and B in K be conjugate (i.e. o and
B have the same minimum polynomial). Then there exists a unique isomorphism F(a) = F(f3) which fizes
F and maps o to (.

Proof. If such an isomorphism exists, it must be unique as any map on F(«) is determined by what it does
to F' and what it does to a.
To see that the map exists, we use the fact that we have isomorphisms

F(a) LN Flz]/(irr(c, F))

and
F(8) % Flz]/(ire(8, F))

such that F is fixed and both « and S are sent to the equivalence class of z. But since irr(a, F') = irr(3, F),
the map ¥ ~! o ¢ gives an isomorphism from F(«a) to F(B) fixing F' and sending o to f3. O

The following is also a key technical results that lets one extends maps built from the previous proposition
to larger fields.

Theorem 1.1 (Extension theorem). Let K/F be an algebraic extension and let E be an algebraic closed
field. Let o : F — E be an embedding. Then there exists an embedding 7 : K — E lifting 0. That is,
T(z) = 0o(x) for allz € F.

Proof. T won’t recall the proof here, but just remind you that this is the proposition that required the use
of Zorn’s lemma. O

Theorem 1.2 (Equivalent notions of normal). Let K/F be an algebraic extension. Then the following are
equivalent (TFAE)

1. K is a splitting field over F';
2. whenever 7 : K — F is an embedding then 7(K) C K;
3. if p(x) € F[x] is an irreducible polynomial with a zero in K, then p(x) splits into linear factors in K|x].

Proof. (1) = (2): Let K be the splitting field of {f;} with each f; € F[z]. Set R equal to the collection
of all zeroes of all of the f; in F. Then K = F({a}acr). To show that 7(K) C K we thus only need to
check that 7(a) € K for each o € R as 7 fixes F. To this end, take « in R and write f; for the polynomial
in our collection for which « is a root. Then 7(c) is again a zero of f; as f; € F[z] and 7 fixes F'. Hence
7(a) € R which implies 7(a) € K. Thus 7(K) C K.

(2) = (3): Let p(z) be an irreducible polynomial in F[z] with a zero a in K. Let 3 be another zero of
p(z) in F. Then consider the map B

o:F(a) @2 F(B) — F.
Here the first map is given by Proposition 1.1 and the second is just the identity map. By Theorem 1.1, o

can be extended to a map 7 : K — F. But then by (2) we know that 7(K) C K. Since 7(a) = 3 we deduce
B € K as desired.

(3) = (1): For every a € K, let po(x) = irr(a, F). By (3) each p,(x) splits into linear factors in K
as po(x) has @ € K as a root. But this implies that K is the splitting field of the family of polynomials
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Recall that an algebraic extension K/F is called normal if any of the parts of Theorem 1.2 hold.
The following lemma shows that in part (3) above we actually have 7(K) = K if K/F is finite.

Lemma 1.1. If K/F is finite and T is an embedding from K to K over F, then T is an automorphism.

Proof. We just need to check that 7 is surjective. To this end, note that 7 is an F-linear map. Indeed for
¢ € Fand z € K, we have 7(cz) = 7(c)7(x) = er(z) as 7 fixes F. Thus, 7(K) is isomorphic to K as an
F-vector space. In particular, dimp(K) = dimp(7(K)). Since 7(K) C K, we deduce 7(K) = K and 7 is
surjective. [

An algebraic extension K/F' is called separable if for all a € K, we have irr(«, K) has no repeated roots.

Theorem 1.3 (Primitive element theorem). If K/F is a finite separable extension then there is some
such that K = F(7).

Proof. T won’t recall the proof here — the statement is much more important than the proof. O

One more lemma which will be important in the Galois correspondence.

Lemma 1.2. Let K/E/F be a tower fields. If K/F is normal, then K/E is normal. If K/F is separable,
then K/E is separable.

Proof. Let K/F be normal. By Theorem 1.2, K is a splitting field over F. But then the same collection of
polynomials shows that K is a splitting field over E and is thus normal. Now let K/F be separable. Let
a € K and we need to check that irr(e, E) has no multiple roots. But irr(«, E) divides irr(«, F) and we
know this latter polynomial has no repeated roots as K/F is separable. O

2 Galois theory

Definition 2.1. A finite extension K/F is called Galois if the extension is both normal and separable. In
this case, we write Gal(K/F') for Aut(K/F) so that

Gal(K/F)={o: K — K | ¢ is an automorphism which fixes F'}.

Theorem 2.2 (Galois extensions have the right number of automorphisms). If K/F is a Galois extension,
then the size of Gal(K/F) equals [K : F.

Proof. By the Primitive Element theorem (Theorem 1.3), we can write K = F(y) for v € K. Then [K : F]
equals the degree of irr(y, F'). Since any automorphism of K which fixes F' is determined by what it does to
~ and v must map to another root of irr(y, F'), we see that there can be at most [K : F] automorphisms of
K fixing F.

We now check that there are exactly [K : F| automorphisms. First note that since K/F is separable,
irr(7y, F') has exactly [K : F] roots. Let § be one of these roots. We have a map

oc:K=F(y)2F()—F.

Here the first map is given by Proposition 1.1 and the second is just the identity map. Since K/F is normal,
we then have 7(K) C K. But then Lemma 1.1 gives that 7 is an automorphism. O

Let K/F be a Galois extension. The fundamental theorem of Galois theory relates the subfields of K/F
to the subgroups of Gal(K/F). How can we make such a correspondence? Well, in one direction we need to
take a subfield E of K/F and build a subgroup of Gal(K/F'). To do this first note that K/FE is Galois as it
is both normal and separable by Lemma 1.2. Thus in makes sense to consider Gal(K/FE) which is clearly a
subgroup of Gal(K/F) as any automorphism that fixes E automatically fixes F' since E D F.

For the other direction, we need to take a subgroup H of Gal(K/F) and build a subfield of K. To do
this, define

K7 ={aec K |o(a)=aforall o € H}.

That is K is the fixed field of H, the set of all elements of K that are fixed by H. It is easy to see that
this is a field and K* certainly contains F as F is fixed by all of Gal(K/F).
We now state the main theorem.



Theorem 2.3. Let K/F be a Galois extension. There is an inclusion reversing bijection between
{subfields of K/F} and {subgroups of Gal(K/F)}.
The bijection is given by a subfield E maps to Gal(K/E) while a subgroup H maps to K.
The “inclusion reversing” part of the theorem is explained in the following lemma.
Lemma 2.1. Let K/F be a Galois extension.
1. If By C Ey are subfields of K/F, then Gal(K/E;) D Gal(K/E3).
2. If Hy C Hy are subgroups of Gal(K/F), then K+ O KHz2,

Proof. Both parts are clear. Indeed, for the first part, for o € Gal(K/E>), we have that o fixes Fy and
thus o fixes Ey as By C Fy. Thus o € Gal(K/E;). For the second part, for a € K2, by definition, « is
fixed by everything in Hs. But since H; C Hs, we then have that « is fixed by everything in H; and hence
a € K O

To prove Theorem 2.3, we need to check that this correspondence is a bijection. And we do this by
checking that the two maps are inverses of each other. That is, if we start with a field F and form the
corresponding subgroup Gal(K/FE) and then form the corresponding field K Gal(K/E) we should get back E.
Likewise, if we start with a subgroup H and form the corresponding field K and then the corresponding
subgroup Gal(K/K*™) we should recover H. So we need the two facts

E = KGal(K/E)

and
H = Gal(K/K*H).

We first note that in each case the inclusion C is clear if you think about. In the first case, to check
E C KGa(K/E) we need to check that F is fixed by Gal(K/E). But of course it is because that’s the
definition of Gal(K/E)! In the second case, to check H C Gal(K/K*), we need to check that H fixes K.
Again this is just the definition! But it is the other directions that require real work.

Theorem 2.4. Let K/F be Galois and let E be a subfield. Then
E — gGal(K/B)

Proof. As described above we know the inclusion C. To prove the converse, let M = KG2(K/E) We then
have a tower of fields K/M/E. Note that by Lemma 1.2, we have that K/M and K/FE are Galois extensions.
We claim that Gal(K/M) = Gal(K/E). To see this, note that the inclusion C follows from Lemma 2.1 as
E C M. For the reverse inclusion, for ¢ € Gal(K/E) to see that ¢ is in Gal(K /M) we must check that
o fixes M. But that is the definition of M. Thus we have shown that Gal(K/M) = Gal(K/E). Then by
Theorem 2.2, we deduce that [K : M| = [K : E] which implies E = M as desired. O

Theorem 2.5. Let K/F be Galois and let H be a subgroup of Gal(K/F). Then
H = Gal(K/K*H).

Proof. We have already seen that H C Gal(K/K*). Thus #H < # Gal(K/K™) = [K : K] where the last
equality is Theorem 2.2. It suffices to see then that [K : K] < #H.

To this end, write K = K (a) for @ € K by the Primitive Element theorem (Theorem 1.3). It then
suffices to see that « satisfies a polynomial in K [x] with degree less than or equal to #H. Indeed, if
satisfied such a polynomial, then irr(c, K*) would have degree less than or equal to #H which implies
[K: KH) = [KH(a): KH] < #H.

We now build such a polynomial. Set

h(z) = H T —oa.



Note that « is a root of h(z) since when o is the identity, we get a factor of © — « in h(z). Next we claim
h(z) € KH[z]. To see this take 7 € H and apply it to all of the coefficients of H. We get

(th)(z) = H T —Toa = H x —oa = h(z).

oceEH oceH

Here the middle equality follows because multiplicity by 7 on H simply permutes around the elements of H.
Since 7h = h, all of the coefficients of h are fixed by H and hence h(z) € K*[z]. This completes the proof
since [K : K] = deg(irr(a, K)) < deg(h) = #H. O



