Modern Algebra 2 – MA 542 – Spring 2019 – R. Pollack HW #10

- 1. Find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$.
- 2. Find all non-zero homomorphisms from $\mathbb{Q}(\sqrt[3]{2})$ to $\overline{\mathbb{Q}}$. How does the number of maps you found compare to $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]$?
- 3. Let $\zeta = e^{2\pi i/3}$ so that ζ has order 3 in \mathbb{C}^{\times} . Prove that the size of $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}, \zeta)/\mathbb{Q})$ is no more than 6.
- 4. Recall that the splitting field of f(x) ∈ Q[x] is simply the field Q(α₁,..., α_n) where α₁,..., α_n are the roots of f(x).
 Let K denote the splitting field of x⁴ − 1. Compute [K : Q]. Prove that the size of Aut(K) is no more than [K : Q].
- 5. Let K denote the splitting field of $x^6 1$. Compute $[K : \mathbb{Q}]$. Prove that the size of Aut(K) is no more than $[K : \mathbb{Q}]$.
- 6. Let K denote the splitting field of $x^3 5$. Compute $[K : \mathbb{Q}]$. Prove that the size of Aut(K) is no more than $[K : \mathbb{Q}]$.
- 7. In the previous question, the size of Aut(K) is exactly equal to $[K : \mathbb{Q}]$. Determine up to isomorphism which group this is!
- 8. Find all of the subfields of $\mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$. (Hint: There are 6 in all counting \mathbb{Q} and $\mathbb{Q}(\sqrt[3]{2}, e^{2\pi i/3})$.)
- 9. Find as many subfields of $\mathbb{Q}(i, \sqrt[4]{2})$ as you can! (Find at least 5.)
- 10. Is the field $\mathbb{Q}(i)$ a splitting field over \mathbb{Q} ? Explain why or why not.
- 11. Is the field $\mathbb{Q}(\sqrt{2},\sqrt{3})$ a splitting field over \mathbb{Q} ? Explain why or why not.
- 12. Is the field $\mathbb{Q}(\sqrt[3]{5})$ a splitting field over \mathbb{Q} ? Explain why or why not.
- 13. Is the field $\mathbb{Q}(e^{2\pi i/11})$ a splitting field over \mathbb{Q} ? Explain why or why not.
- 14. Is the field $\mathbb{Q}(\alpha)$ a splitting field over \mathbb{Q} where α is the unique real root of $x^3 + x + 1$? Explain why or why not.