$$
\begin{gathered}
\text { Modern Algebra } 2 \text { - MA } 542 \text { - Spring } 2019 \text { - R. Pollack } \\
\text { HW \#10 }
\end{gathered}
$$

1. Find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$.
2. Find all non-zero homomorphisms from $\mathbb{Q}(\sqrt[3]{2})$ to $\overline{\mathbb{Q}}$. How does the number of maps you found compare to $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]$?
3. Let $\zeta=e^{2 \pi i / 3}$ so that ζ has order 3 in \mathbb{C}^{\times}. Prove that the size of $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q})$ is no more than 6 .
4. Recall that the splitting field of $f(x) \in \mathbb{Q}[x]$ is simply the field $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of $f(x)$.
Let K denote the splitting field of $x^{4}-1$. Compute $[K: \mathbb{Q}]$. Prove that the size of $\operatorname{Aut}(K)$ is no more than $[K: \mathbb{Q}]$.
5. Let K denote the splitting field of $x^{6}-1$. Compute $[K: \mathbb{Q}]$. Prove that the size of $\operatorname{Aut}(K)$ is no more than $[K: \mathbb{Q}]$.
6. Let K denote the splitting field of $x^{3}-5$. Compute $[K: \mathbb{Q}]$. Prove that the size of $\operatorname{Aut}(K)$ is no more than $[K: \mathbb{Q}]$.
7. In the previous question, the size of $\operatorname{Aut}(K)$ is exactly equal to $[K: \mathbb{Q}]$. Determine up to isomorphism which group this is!
8. Find all of the subfields of $\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$. (Hint: There are 6 in all counting \mathbb{Q} and $\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$.)
9. Find as many subfields of $\mathbb{Q}(i, \sqrt[4]{2})$ as you can! (Find at least 5.)
10. Is the field $\mathbb{Q}(i)$ a splitting field over \mathbb{Q} ? Explain why or why not.
11. Is the field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ a splitting field over \mathbb{Q} ? Explain why or why not.
12. Is the field $\mathbb{Q}(\sqrt[3]{5})$ a splitting field over \mathbb{Q} ? Explain why or why not.
13. Is the field $\mathbb{Q}\left(e^{2 \pi i / 11}\right)$ a splitting field over \mathbb{Q} ? Explain why or why not.
14. Is the field $\mathbb{Q}(\alpha)$ a splitting field over \mathbb{Q} where α is the unique real root of $x^{3}+x+1$? Explain why or why not.
