Modern Algebra 2 — MA 542 — Spring 2019 — R. Pollack
HW #10 solutions

. Find all automorphisms of Q(+/2).

Solution: Any automorphisms of Q(+/2) must send /2 to another root of 3 —2, its minimal polynomial
over Q. But the other two roots of this polynomial are not in R and thus not in Q(+/2). Hence the
only automorphism of Q(+/2) is the identity.

. Find all non-zero homomorphisms from Q(+4/2) to Q. How does the number of maps you found compare

to [Q(V/2) : QJ?

Solution: An embedding (i.e. a non-zero homomorphism) from Q(+/2) to Q must send /2 to one of
the three roots of 2 — 2. Any of these three roots are possible and thus there are 3 such maps. Note

also that [Q(+/2) : Q] = 3.

. Let ¢ = €2™/3 50 that ¢ has order 3 in C*. Prove that the size of Aut(Q(+/2,¢)/Q) is no more than 6.

Solution: If ¢ is such an automorphism then o(4/2) must again be a root of 3 — 2 and o(¢) must
again be a root of 22+ + 1, its minimal polynomial. Thus, there are at most 3 choices for 0(\3/5) and
2 choices for o(¢) making a total of 6 possible automorphisms as any automorphism is determined by
its values on /2 and on (.

. Recall that the splitting field of f(z) € Q[x] is simply the field Q(ay, ..., a,) where a1, ..., a,, are the
roots of f(x).

Let K denote the splitting field of 2% — 1. Compute [K : Q]. Prove that the size of Aut(K) is no more
than [K : Q).

Solution: The roots of z* — 1 are 41,44 and thus K = Q(41,44) = Q(i). Hence [K : Q] = 2. Any
automorphism of Q(7) is determined by its value on ¢ and ¢ must be mapped to i or —i proving that
there are at most 2 automorphisms.

. Let K denote the splitting field of 2% — 1. Compute [K : Q]. Prove that the size of Aut(K) is no more
than [K : Q).

Solution: We have 26 —1 = (23—1)(23+1) = (z—1)(z+1)(2®+2x+1)(22—2+1). Thus the roots of 2°—1
are £1, (—1 + v/=3)/2, (1 + v/=3)/2. and thus K = Q(+1, (=1 = v=3)/2, (1 + v=3)/2) = Q(v=3).
Hence [K : Q] = 2. Any automorphism of Q(v/—3) is determined by its value on v/—3 and /—3 must
be mapped to /=3 or —+/—3 proving that there are at most 2 automorphisms.

. Let K denote the splitting field of 23 —5. Compute [K : Q]. Prove that the size of Aut(K) is no more
than [K : Q).

Solution: The roots of 2% — 5 are ¥/5, /5, (2¥/5 where ¢ = ¢*™/? and thus K = Q(/5,(V/5,(2¥/5) =
Q(¥/5,¢). To determine [K : Q], note that [K : Q] = [K : Q(+/5)][Q(+/5) : Q]. Computing [Q(+/5) : Q
is easy as 2° — 5 is irreducible over Q by the Eisenstein criteria with p = 5. To compute [K : Q(+v/5)]
we note that 2 + z + 1 is the minimal polynomial of ¢ over @(\3/5) Indeed, this polynomial has no
roots in Q(+¥/5) as both roots are not in R and Q({/5) € R. Thus [K : Q(+/5)] = 2 and [K : Q] = 6.
Lastly, any automorphism of K is determined by its value on v/5 and on (. We have that /5 has at
most 3 possible images and ¢ has at most 2 possible imagines. Thus the size of this automorphism
group is at most 6.
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In the previous question, the size of Aut(K) is exactly equal to [K : Q]. Determine up to isomorphism
which group this is!

Solution: We have that Aut(K) is a group of size 6. We will check that this group is non-abelian which
forces it to be isomophic to S3, the only non-abelian group of size 6. To this end, let o be defined by
o(/5) = ¢¥/5 and o(¢) = ¢ and let 7 be defined by 7(v/5) = ¥/5 and 7(¢) = ¢. Then

o(1(V5)) = a(V5) = (V5

while

7(0(V5)) = 7(CV/5) = T(Qr(V5) = (3¢5 = 5.

Find all of the subfields of Q(+/2, €27"/3). (Hint: There are 6 in all counting Q and Q(+/2, e?7%/3).)

Solution: The subfields of Q(¥/2,e?™/3) are Q, Q(+/2), Q(e*7/3), Q(/2e2™/3), Q(¥/2¢*"/3) and
Q(\B/i eQTI’i/3).

Find as many subfields of Q(i, v/2) as you can! (Find at least 5.)

Solution: The “easy to find” subfields of Q(i, v/2) are: Q, Q(i), Q(v/2), Q(v/2i) and Q(i, v/2). There

is also Q(v/2) as V2 = %2. And thus we also have Q(1/2i) as a subfield as well as Q(i, v/2). There
are two more as well, but they are a little harder to find...

Is the field Q(4) a splitting field over Q? Explain why or why not.

Solution: Yes! It is the splitting field of =2 + 1.

Is the field Q(v/2,v/3) a splitting field over Q? Explain why or why not.

Solution: Yes! It is the splitting field of (2% — 2)(2? — 3).

Is the field Q(+/5) a splitting field over Q? Explain why or why not.

Solution: No. The polynomial 23 — 5 has only one root in this field as the other roots are not in R
and Q(+/5) is contained in R. Hence the field is not normal and thus cannot be a splitting field. (This
follows from the TFAE theorem in class with 3 parts.)

Is the field Q(e*™/11) a splitting field over Q? Explain why or why not.

Solution: Yes! It is the splitting field of #'' — 1. Indeed, the roots of this polynomial are all of the
form e27/11 for k= 1,...,11 and thus they are all powers of e27#/11,

Is the field Q(a) a splitting field over Q where « is the unique real root of 2% + x + 1?7 Explain why or
why not.

Solution: No. The polynomial 23 + x + 1 has only 1 root in Q(«) as Q(«) is contained in R and the
other 2 roots are not in R. Thus Q(«) is not a normal extension of Q and hence not a splitting field
over Q (as in question 12).



