1. Find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$.

Solution: Any automorphisms of $\mathbb{Q}(\sqrt[3]{2})$ must send $\sqrt[3]{2}$ to another root of $x^{3}-2$, its minimal polynomial over \mathbb{Q}. But the other two roots of this polynomial are not in \mathbb{R} and thus not in $\mathbb{Q}(\sqrt[3]{2})$. Hence the only automorphism of $\mathbb{Q}(\sqrt[3]{2})$ is the identity.
2. Find all non-zero homomorphisms from $\mathbb{Q}(\sqrt[3]{2})$ to $\overline{\mathbb{Q}}$. How does the number of maps you found compare to $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]$?

Solution: An embedding (i.e. a non-zero homomorphism) from $\mathbb{Q}(\sqrt[3]{2})$ to $\overline{\mathbb{Q}}$ must send $\sqrt[3]{2}$ to one of the three roots of $x^{3}-2$. Any of these three roots are possible and thus there are 3 such maps. Note also that $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$.
3. Let $\zeta=e^{2 \pi i / 3}$ so that ζ has order 3 in \mathbb{C}^{\times}. Prove that the size of $\operatorname{Aut}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q})$ is no more than 6 .

Solution: If σ is such an automorphism then $\sigma(\sqrt[3]{2})$ must again be a root of $x^{3}-2$ and $\sigma(\zeta)$ must again be a root of $x^{2}+x+1$, its minimal polynomial. Thus, there are at most 3 choices for $\sigma(\sqrt[3]{2})$ and 2 choices for $\sigma(\zeta)$ making a total of 6 possible automorphisms as any automorphism is determined by its values on $\sqrt[3]{2}$ and on ζ.
4. Recall that the splitting field of $f(x) \in \mathbb{Q}[x]$ is simply the field $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of $f(x)$.
Let K denote the splitting field of $x^{4}-1$. Compute $[K: \mathbb{Q}]$. Prove that the size of $\operatorname{Aut}(K)$ is no more than $[K: \mathbb{Q}]$.

Solution: The roots of $x^{4}-1$ are $\pm 1, \pm i$ and thus $K=\mathbb{Q}(\pm 1, \pm i)=\mathbb{Q}(i)$. Hence $[K: \mathbb{Q}]=2$. Any automorphism of $\mathbb{Q}(i)$ is determined by its value on i and i must be mapped to i or $-i$ proving that there are at most 2 automorphisms.
5. Let K denote the splitting field of $x^{6}-1$. Compute $[K: \mathbb{Q}]$. Prove that the size of $\operatorname{Aut}(K)$ is no more than $[K: \mathbb{Q}]$.

Solution: We have $x^{6}-1=\left(x^{3}-1\right)\left(x^{3}+1\right)=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$. Thus the roots of $x^{6}-1$ are $\pm 1,(-1 \pm \sqrt{-3}) / 2,(1 \pm \sqrt{-3}) / 2$. and thus $K=\mathbb{Q}(\pm 1,(-1 \pm \sqrt{-3}) / 2,(1 \pm \sqrt{-3}) / 2)=\mathbb{Q}(\sqrt{-3})$. Hence $[K: \mathbb{Q}]=2$. Any automorphism of $\mathbb{Q}(\sqrt{-3})$ is determined by its value on $\sqrt{-3}$ and $\sqrt{-3}$ must be mapped to $\sqrt{-3}$ or $-\sqrt{-3}$ proving that there are at most 2 automorphisms.
6. Let K denote the splitting field of $x^{3}-5$. Compute $[K: \mathbb{Q}]$. Prove that the size of $\operatorname{Aut}(K)$ is no more than $[K: \mathbb{Q}]$.

Solution: The roots of $x^{3}-5$ are $\sqrt[3]{5}, \zeta \sqrt[3]{5}, \zeta^{2} \sqrt[3]{5}$ where $\zeta=e^{2 \pi / 3}$ and thus $K=\mathbb{Q}\left(\sqrt[3]{5}, \zeta \sqrt[3]{5}, \zeta^{2} \sqrt[3]{5}\right)=$ $\mathbb{Q}(\sqrt[3]{5}, \zeta)$. To determine $[K: \mathbb{Q}]$, note that $[K: \mathbb{Q}]=[K: \mathbb{Q}(\sqrt[3]{5})][\mathbb{Q}(\sqrt[3]{5}): \mathbb{Q}]$. Computing $[\mathbb{Q}(\sqrt[3]{5}): \mathbb{Q}$ is easy as $x^{3}-5$ is irreducible over \mathbb{Q} by the Eisenstein criteria with $p=5$. To compute $[K: \mathbb{Q}(\sqrt[3]{5})]$ we note that $x^{2}+x+1$ is the minimal polynomial of ζ over $\mathbb{Q}(\sqrt[3]{5})$. Indeed, this polynomial has no roots in $\mathbb{Q}(\sqrt[3]{5})$ as both roots are not in \mathbb{R} and $\mathbb{Q}(\sqrt[3]{5}) \subseteq \mathbb{R}$. Thus $[K: \mathbb{Q}(\sqrt[3]{5})]=2$ and $[K: \mathbb{Q}]=6$. Lastly, any automorphism of K is determined by its value on $\sqrt[3]{5}$ and on ζ. We have that $\sqrt[3]{5}$ has at most 3 possible images and ζ has at most 2 possible imagines. Thus the size of this automorphism group is at most 6 .
7. In the previous question, the size of $\operatorname{Aut}(K)$ is exactly equal to $[K: \mathbb{Q}]$. Determine up to isomorphism which group this is!

Solution: We have that $\operatorname{Aut}(K)$ is a group of size 6 . We will check that this group is non-abelian which forces it to be isomophic to S_{3}, the only non-abelian group of size 6 . To this end, let σ be defined by $\sigma(\sqrt[3]{5})=\zeta \sqrt[3]{5}$ and $\sigma(\zeta)=\zeta$ and let τ be defined by $\tau(\sqrt[3]{5})=\sqrt[3]{5}$ and $\tau(\zeta)=\zeta^{2}$. Then

$$
\sigma(\tau(\sqrt[3]{5}))=\sigma(\sqrt[3]{5})=\zeta \sqrt[3]{5}
$$

while

$$
\tau(\sigma(\sqrt[3]{5}))=\tau(\zeta \sqrt[3]{5})=\tau(\zeta) \tau(\sqrt[3]{5})=\zeta^{2} \zeta \sqrt[3]{5}=\sqrt[3]{5}
$$

8. Find all of the subfields of $\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$. (Hint: There are 6 in all counting \mathbb{Q} and $\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$.)

Solution: The subfields of $\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$ are $\mathbb{Q}, \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}\left(e^{2 \pi / 3}\right), \mathbb{Q}\left(\sqrt[3]{2} e^{2 \pi / 3}\right), \mathbb{Q}\left(\sqrt[3]{2} e^{4 \pi / 3}\right)$ and $\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$.
9. Find as many subfields of $\mathbb{Q}(i, \sqrt[4]{2})$ as you can! (Find at least 5.)

Solution: The "easy to find" subfields of $\mathbb{Q}(i, \sqrt[4]{2})$ are: $\mathbb{Q}, \mathbb{Q}(i), \mathbb{Q}(\sqrt[4]{2}), \mathbb{Q}(\sqrt[4]{2} i)$ and $\mathbb{Q}(i, \sqrt[4]{2})$. There is also $\mathbb{Q}(\sqrt{2})$ as $\sqrt{2}=\sqrt[4]{2}^{2}$. And thus we also have $\mathbb{Q}(\sqrt{2} i)$ as a subfield as well as $\mathbb{Q}(i, \sqrt{2})$. There are two more as well, but they are a little harder to find...
10. Is the field $\mathbb{Q}(i)$ a splitting field over \mathbb{Q} ? Explain why or why not.

Solution: Yes! It is the splitting field of $x^{2}+1$.
11. Is the field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ a splitting field over \mathbb{Q} ? Explain why or why not.

Solution: Yes! It is the splitting field of $\left(x^{2}-2\right)\left(x^{2}-3\right)$.
12. Is the field $\mathbb{Q}(\sqrt[3]{5})$ a splitting field over \mathbb{Q} ? Explain why or why not.

Solution: No. The polynomial $x^{3}-5$ has only one root in this field as the other roots are not in \mathbb{R} and $\mathbb{Q}(\sqrt[3]{5})$ is contained in \mathbb{R}. Hence the field is not normal and thus cannot be a splitting field. (This follows from the TFAE theorem in class with 3 parts.)
13. Is the field $\mathbb{Q}\left(e^{2 \pi i / 11}\right)$ a splitting field over \mathbb{Q} ? Explain why or why not.

Solution: Yes! It is the splitting field of $x^{11}-1$. Indeed, the roots of this polynomial are all of the form $e^{2 k \pi i / 11}$ for $k=1, \ldots, 11$ and thus they are all powers of $e^{2 \pi i / 11}$.
14. Is the field $\mathbb{Q}(\alpha)$ a splitting field over \mathbb{Q} where α is the unique real root of $x^{3}+x+1$? Explain why or why not.

Solution: No. The polynomial $x^{3}+x+1$ has only 1 root in $\mathbb{Q}(\alpha)$ as $\mathbb{Q}(\alpha)$ is contained in \mathbb{R} and the other 2 roots are not in \mathbb{R}. Thus $\mathbb{Q}(\alpha)$ is not a normal extension of \mathbb{Q} and hence not a splitting field over \mathbb{Q} (as in question 12).

