
Modern Algebra 2 – MA 542 – Spring 2019 – R. Pollack
HW #10 solutions

1. Find all automorphisms of Q( 3
√

2).

Solution: Any automorphisms of Q( 3
√

2) must send 3
√

2 to another root of x3−2, its minimal polynomial
over Q. But the other two roots of this polynomial are not in R and thus not in Q( 3

√
2). Hence the

only automorphism of Q( 3
√

2) is the identity.

2. Find all non-zero homomorphisms from Q( 3
√

2) to Q. How does the number of maps you found compare
to [Q( 3

√
2) : Q]?

Solution: An embedding (i.e. a non-zero homomorphism) from Q( 3
√

2) to Q must send 3
√

2 to one of
the three roots of x3 − 2. Any of these three roots are possible and thus there are 3 such maps. Note
also that [Q( 3

√
2) : Q] = 3.

3. Let ζ = e2πi/3 so that ζ has order 3 in C×. Prove that the size of Aut(Q( 3
√

2, ζ)/Q) is no more than 6.

Solution: If σ is such an automorphism then σ( 3
√

2) must again be a root of x3 − 2 and σ(ζ) must
again be a root of x2 +x+ 1, its minimal polynomial. Thus, there are at most 3 choices for σ( 3

√
2) and

2 choices for σ(ζ) making a total of 6 possible automorphisms as any automorphism is determined by
its values on 3

√
2 and on ζ.

4. Recall that the splitting field of f(x) ∈ Q[x] is simply the field Q(α1, . . . , αn) where α1, . . . , αn are the
roots of f(x).

Let K denote the splitting field of x4− 1. Compute [K : Q]. Prove that the size of Aut(K) is no more
than [K : Q].

Solution: The roots of x4 − 1 are ±1,±i and thus K = Q(±1,±i) = Q(i). Hence [K : Q] = 2. Any
automorphism of Q(i) is determined by its value on i and i must be mapped to i or −i proving that
there are at most 2 automorphisms.

5. Let K denote the splitting field of x6− 1. Compute [K : Q]. Prove that the size of Aut(K) is no more
than [K : Q].

Solution: We have x6−1 = (x3−1)(x3+1) = (x−1)(x+1)(x2+x+1)(x2−x+1). Thus the roots of x6−1
are ±1, (−1 ±

√
−3)/2, (1 ±

√
−3)/2. and thus K = Q(±1, (−1 ±

√
−3)/2, (1 ±

√
−3)/2) = Q(

√
−3).

Hence [K : Q] = 2. Any automorphism of Q(
√
−3) is determined by its value on

√
−3 and

√
−3 must

be mapped to
√
−3 or −

√
−3 proving that there are at most 2 automorphisms.

6. Let K denote the splitting field of x3− 5. Compute [K : Q]. Prove that the size of Aut(K) is no more
than [K : Q].

Solution: The roots of x3 − 5 are 3
√

5, ζ 3
√

5, ζ2 3
√

5 where ζ = e2π/3 and thus K = Q( 3
√

5, ζ 3
√

5, ζ2 3
√

5) =
Q( 3
√

5, ζ). To determine [K : Q], note that [K : Q] = [K : Q( 3
√

5)][Q( 3
√

5) : Q]. Computing [Q( 3
√

5) : Q
is easy as x3 − 5 is irreducible over Q by the Eisenstein criteria with p = 5. To compute [K : Q( 3

√
5)]

we note that x2 + x + 1 is the minimal polynomial of ζ over Q( 3
√

5). Indeed, this polynomial has no
roots in Q( 3

√
5) as both roots are not in R and Q( 3

√
5) ⊆ R. Thus [K : Q( 3

√
5)] = 2 and [K : Q] = 6.

Lastly, any automorphism of K is determined by its value on 3
√

5 and on ζ. We have that 3
√

5 has at
most 3 possible images and ζ has at most 2 possible imagines. Thus the size of this automorphism
group is at most 6.



7. In the previous question, the size of Aut(K) is exactly equal to [K : Q]. Determine up to isomorphism
which group this is!

Solution: We have that Aut(K) is a group of size 6. We will check that this group is non-abelian which
forces it to be isomophic to S3, the only non-abelian group of size 6. To this end, let σ be defined by
σ( 3
√

5) = ζ 3
√

5 and σ(ζ) = ζ and let τ be defined by τ( 3
√

5) = 3
√

5 and τ(ζ) = ζ2. Then

σ(τ(
3
√

5)) = σ(
3
√

5) = ζ
3
√

5

while
τ(σ(

3
√

5)) = τ(ζ
3
√

5) = τ(ζ)τ(
3
√

5) = ζ2ζ
3
√

5 =
3
√

5.

8. Find all of the subfields of Q( 3
√

2, e2πi/3). (Hint: There are 6 in all counting Q and Q( 3
√

2, e2πi/3).)

Solution: The subfields of Q( 3
√

2, e2πi/3) are Q, Q( 3
√

2), Q(e2π/3), Q( 3
√

2e2π/3), Q( 3
√

2e4π/3) and
Q( 3
√

2, e2πi/3).

9. Find as many subfields of Q(i, 4
√

2) as you can! (Find at least 5.)

Solution: The “easy to find” subfields of Q(i, 4
√

2) are: Q, Q(i), Q( 4
√

2), Q( 4
√

2i) and Q(i, 4
√

2). There

is also Q(
√

2) as
√

2 = 4
√

2
2
. And thus we also have Q(

√
2i) as a subfield as well as Q(i,

√
2). There

are two more as well, but they are a little harder to find...

10. Is the field Q(i) a splitting field over Q? Explain why or why not.

Solution: Yes! It is the splitting field of x2 + 1.

11. Is the field Q(
√

2,
√

3) a splitting field over Q? Explain why or why not.

Solution: Yes! It is the splitting field of (x2 − 2)(x2 − 3).

12. Is the field Q( 3
√

5) a splitting field over Q? Explain why or why not.

Solution: No. The polynomial x3 − 5 has only one root in this field as the other roots are not in R
and Q( 3

√
5) is contained in R. Hence the field is not normal and thus cannot be a splitting field. (This

follows from the TFAE theorem in class with 3 parts.)

13. Is the field Q(e2πi/11) a splitting field over Q? Explain why or why not.

Solution: Yes! It is the splitting field of x11 − 1. Indeed, the roots of this polynomial are all of the
form e2kπi/11 for k = 1, . . . , 11 and thus they are all powers of e2πi/11.

14. Is the field Q(α) a splitting field over Q where α is the unique real root of x3 + x+ 1? Explain why or
why not.

Solution: No. The polynomial x3 + x + 1 has only 1 root in Q(α) as Q(α) is contained in R and the
other 2 roots are not in R. Thus Q(α) is not a normal extension of Q and hence not a splitting field
over Q (as in question 12).


