Modern Algebra 2 – MA 542 – Spring 2019 – R. Pollack HW #11

- 1. Let K denote the splitting field of $(x^2 5)(x^2 7)$ over \mathbb{Q} .
 - (a) Compute $[K : \mathbb{Q}]$.
 - (b) Write down generators of $\operatorname{Gal}(K/\mathbb{Q})$ and write down all elements of this group in terms of these generators.
 - (c) Form a multiplication table for $\operatorname{Gal}(K/\mathbb{Q})$.
 - (d) Which group is $\operatorname{Gal}(K/\mathbb{Q})$ isomorphic to?
 - (e) Find all subgroups of $\operatorname{Gal}(K/\mathbb{Q})$.
 - (f) How many subfields are there between K and \mathbb{Q} (inclusive)? What are their degrees? Extra credit: find these subfields explicitly and match them up with the subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ via the Galois correspondence theorem.
- 2. Let K denote the splitting field of $x^7 1$ over \mathbb{Q} . Complete all parts of the previous question for this field K.
- 3. This question will lead you to a proof of the fact that all algebraic extensions of \mathbb{Z}_p are separable.
 - (a) Let f(x) be a polynomial in Z_p[x]. If f'(x) = 0, prove that there is some polynomial g(x) ∈ Z_p[x] such that f(x) = g(x)^p.
 [Hint: First proof that if f(x) = ∑_{i=0}ⁿ c_ixⁱ, then c_i ≠ 0 iff i is a multiple of p. Then use the fact that a^p = a for all a ∈ Z_p and the fact that (a + b)^p = a^p + b^p in Z_p.]
 - (b) Let F be a field and let α be a root of $f(x) \in F[x]$ with multiplicity e. Show that α is a root of f'(x) with multiplicity at least e 1. (We showed in class that the multiplicity was exactly e 1 if F has characteristic 0 the same proof works here with the weaker conclusion.)
 - (c) Prove that if p(x) is an irreducible polynomial in $\mathbb{Z}_p[x]$, then p(x) has no repeated roots. [Hint: If p(x) has a repeated root, use part (b) to see that p'(x) and p(x) are not relatively prime. Since p(x) is irreducible, this would force p'(x) = 0. Now apply part (a) to deduce that p(x) is not irreducible.]
 - (d) Deduce that every algebraic extension of \mathbb{Z}_p is separable.
- 4. (a) Let K be any finite field of characteristic p. Show that the map $\varphi(x) = x^p$ is an automorphism of K. (This is called the *Frobenius* automorphism.)
 - (b) Let $K = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ be a field with 4 elements. Show that K/\mathbb{Z}_2 is a Galois extension. [Hint: Show that K is the splitting field of $x^3 - 1$ over \mathbb{Z}_2 .]
 - (c) Show that $\operatorname{Gal}(K/\mathbb{Z}_2)$ is a cyclic group of size 2 generated by the Frobenius automorphism.