Modern Algebra 2 – MA 542 – Spring 2019 – R. Pollack HW #11 Solutions

- 1. Let K denote the splitting field of $(x^2 5)(x^2 7)$ over \mathbb{Q} .
 - (a) Compute $[K : \mathbb{Q}]$.

Solution: We have $K = \mathbb{Q}(\sqrt{5}, \sqrt{7})$. Clearly $[\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2$ as $x^2 - 5 = \operatorname{irr}(\sqrt{5}, \mathbb{Q})$. We now need to compute $[K : \mathbb{Q}(\sqrt{5})]$ and thus we need to compute $\operatorname{irr}(\sqrt{7}, \mathbb{Q}(\sqrt{5}))$. We thus need to check that $x^2 - 7$ is irreducible over $\mathbb{Q}(\sqrt{5})$ for which it suffices to see that it has no roots in $\mathbb{Q}(\sqrt{5})$. To this end, assume $(a + b\sqrt{5})^2 = 7$. Then $a^2 + 5b^2 + 2ab\sqrt{5} = 7$ and hence $a^2 + 5b^2 = 7$ and 2ab = 0. Thus a = 0 or b = 0. If a = 0 then $5b^2 = 7$ which is not solvable in \mathbb{Q} , and if b = 0 then $a^2 = 7$ which again is not solvable in \mathbb{Q} . Thus $x^2 - 7$ is irreducible over $\mathbb{Q}(\sqrt{5})$ which implies $[K : \mathbb{Q}(\sqrt{5})] = 2$. Hence $[K : \mathbb{Q}] = [K : \mathbb{Q}(\sqrt{5})] \cdot [\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2 \cdot 2 = 4$.

(b) Write down generators of $\operatorname{Gal}(K/\mathbb{Q})$ and write down all elements of this group in terms of these generators.

Solution: Let ϕ be an element of $\operatorname{Gal}(K/\mathbb{Q})$. Then ϕ is determined by what it does to $\sqrt{5}$ and to $\sqrt{7}$. Moreover $\phi(\sqrt{5}) \in {\sqrt{5}, -\sqrt{5}}$ and $\phi(\sqrt{7}) \in {\sqrt{7}, -\sqrt{7}}$ as each element must be sent to a root of its minimal polynomial. We see then that the size of $\operatorname{Gal}(K/\mathbb{Q})$ is at most 4 and since this is a Galois extension the size is exactly $4 = [K : \mathbb{Q}]$. Thus, everything possibility for ϕ works. To write down generators, let σ_5 be defined by $\sigma_5(\sqrt{5}) = -\sqrt{5}$ and $\sigma_5(\sqrt{7}) = \sqrt{7}$, and let σ_7 be defined by $\sigma_7(\sqrt{5}) = \sqrt{5}$ and $\sigma_7(\sqrt{7}) = -\sqrt{7}$. Note that $\sigma_5^2 = \sigma_7^2 = \mathbf{1}$ where $\mathbf{1}$ is the identity map and $\sigma_5\sigma_7 = \sigma_7\sigma_5$. Then the elements of $\operatorname{Gal}(K/\mathbb{Q})$ are the $\mathbf{1}, \sigma_5, \sigma_7$ and $\sigma_5\sigma_7$.

(c) Which group is $\operatorname{Gal}(K/\mathbb{Q})$ isomorphic to?

Solution: This group is $C_2 \times C_2$ as it has size 4 and every element has order 2.

(d) Find all subgroups of $\operatorname{Gal}(K/\mathbb{Q})$.

Solution: The subgroups are $\{1\}$, $\{1, \sigma_5\}$, $\{1, \sigma_7\}$, $\{1, \sigma_5\sigma_7\}$ and $\operatorname{Gal}(K/\mathbb{Q})$.

(e) How many subfields are there between K and \mathbb{Q} (inclusive)? What are their degrees? Extra credit: find these subfields explicitly and match them up with the subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ via the Galois correspondence theorem.

Solution: Since there are 5 subgroups, there are 5 subfields. The degrees of these fields are 1, 2, 2, 2, and 4.

Extra credit: The fixed field of $\{1\}$ is K. The fixed field of $\{1, \sigma_5\}$ is $\mathbb{Q}(\sqrt{7})$. The fixed field of $\{1, \sigma_7\}$ is $\mathbb{Q}(\sqrt{5})$. The fixed field of $\{1, \sigma_5\sigma_7\}$ is $\mathbb{Q}(\sqrt{35})$. The fixed field of $\operatorname{Gal}(K/\mathbb{Q})$ is \mathbb{Q} .

- 2. Let K denote the splitting field of $x^7 1$ over \mathbb{Q} . Complete all parts of the previous question for this field K.
 - (a) Compute $[K : \mathbb{Q}]$.

Solution: We have $K = \mathbb{Q}(\zeta)$ where $\zeta = e^{2\pi i/7}$ as the roots of $x^7 - 1$ are all of the form $e^{2\pi ik/7}$ where $k = 1, \ldots, 7$. We thus need to find the minimum polynomial of ζ . Note that $x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$ and since $\zeta \neq 1$ is a root of $x^7 - 1$ it must be a root of $f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. To see that f(x) is irreducible, we replace x by x + 1 and get

$$f(x+1) = \frac{(x+1)^7 - 1}{x+1-1} = \frac{x^7 + \binom{7}{6}x^6 + \binom{7}{5}x^5 + \binom{7}{4}x^4 + \binom{7}{3}x^3 + \binom{7}{2}x^2 + \binom{7}{1}x}{x}$$
$$= x^6 + \binom{7}{6}x^5 + \binom{7}{5}x^4 + \binom{7}{4}x^3 + \binom{7}{3}x^2 + \binom{7}{2}x + \binom{7}{1}.$$

Since $\binom{7}{i}$ is divisible by 7 for i = 1, ..., 6, we have that f(x + 1) is Eisenstein for p = 7 and thus irreducible. Thus, f(x) is irreducible and $[K : \mathbb{Q}] = 6$. (This is the same trick we used for p = 5 earlier in the semester — it works for all primes.)

(b) Write down generators of $\operatorname{Gal}(K/\mathbb{Q})$ and write down all elements of this group in terms of these generators.

Solution: For $\phi \in \text{Gal}(K/\mathbb{Q})$, we have that ϕ is uniquely determined by its value on ζ and moreover, $\phi(\zeta) \in \{\zeta, \zeta^2, \zeta^3, \zeta^4, \zeta^5, \zeta^6\}$ as these are the roots of f(x), the minimal polynomial of ζ . This gives 6 possible elements of $\text{Gal}(K/\mathbb{Q})$ and thus they all work as K/\mathbb{Q} is Galois with degree 6.

Define $\sigma(\zeta) = \zeta^3$. Then $\sigma^2(\zeta) = \zeta^9 = \zeta^2$, $\sigma^3(\zeta) = \sigma(\sigma^2(\zeta)) = \sigma(\zeta^2) = \zeta^6$, $\sigma^4(\zeta) = \sigma(\sigma^3(\zeta)) = \sigma(\zeta^6) = \zeta^{18} = \zeta^4$, $\sigma^5(\zeta) = \sigma(\sigma^4(\zeta)) = \sigma(\zeta^4) = \zeta^{12} = \zeta^5$, $\sigma^6(\zeta) = \sigma(\sigma^5(\zeta)) = \sigma(\zeta^5) = \zeta^{15} = \zeta$. Thus σ^6 is the identity and σ has order 6. Hence σ is a generator of this group.

(c) Which group is $\operatorname{Gal}(K/\mathbb{Q})$ isomorphic to?

Solution: $\operatorname{Gal}(K/\mathbb{Q})$ is a cyclic group of size 6 generated by σ .

(d) Find all subgroups of $\operatorname{Gal}(K/\mathbb{Q})$.

Solution: The subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ are $\{1\}, \{1, \sigma^3\}, \{1, \sigma^2, \sigma^4\}$ and all of $\operatorname{Gal}(K/\mathbb{Q})$.

(e) How many subfields are there between K and \mathbb{Q} (inclusive)? What are their degrees? Extra credit: find these subfields explicitly and match them up with the subgroups of $\operatorname{Gal}(K/\mathbb{Q})$ via the Galois correspondence theorem.

Solution: There are 4 subgroups and so there are 4 subfields. Their degrees are 1,2,3 and 6.

Extra credit: The fixed field of $\{1\}$ is K. The fixed field of $\{1, \sigma^3\}$ is $\mathbb{Q}(\zeta + \zeta^{-1})$. The fixed field of $\{1, \sigma^2, \sigma^4\}$ is $\mathbb{Q}(\sqrt{-7})$ and the fixed field of $\operatorname{Gal}(K/\mathbb{Q})$ is \mathbb{Q} .

- 3. This question will lead you to a proof of the fact that all algebraic extensions of \mathbb{Z}_p are separable.
 - (a) Let f(x) be a polynomial in $\mathbb{Z}_p[x]$. If f'(x) = 0, prove that there is some polynomial $g(x) \in \mathbb{Z}_p[x]$ such that $f(x) = g(x)^p$.

[Hint: First proof that if $f(x) = \sum_{i=0}^{n} c_i x^i$, then $c_i \neq 0$ iff *i* is a multiple of *p*. Then use the fact that $a^p = a$ for all $a \in \mathbb{Z}_p$ and the fact that $(a+b)^p = a^p + b^p$ in \mathbb{Z}_p .]

Solution: Let $f(x) = \sum_{i=0}^{n} c_i x^i$. Then f'(x) = 0 implies $ic_i = 0$ for all i. Thus if $i \neq 0$, we must have that $c_i = 0$. But i = 0 in \mathbb{Z}_p iff i is a multiple of p. Thus

$$f(x) = c_0 + c_p x^p + c_{2p} x^{2p} + \dots$$

= $c_0^p + c_p^p x^p + c_{2p}^p x^{2p} + \dots$
= $(c_0 + c_p x + c_{2p} x^2 + \dots)^p$

as desired. Here we are using the fact that $a^p = a \pmod{p}$.

(b) Let F be a field and let α be a root of $f(x) \in F[x]$ with multiplicity e. Show that α is a root of f'(x) with multiplicity at least e - 1. (We showed in class that the multiplicity was exactly e - 1 if F has characteristic 0 — the same proof works here with the weaker conclusion.)

Solution: Write $f(x) = (x - \alpha)^e \cdot g(x)$ with $g(\alpha) \neq 0$. Then

$$f'(x) = e(x - \alpha)^{e-1}g(x) + (x - \alpha)^e g'(x) = (x - \alpha)^{e-1}(eg(x) + (x - \alpha)g'(x)).$$

and hence α has multiplicity at least e - 1.

(c) Prove that if p(x) is an irreducible polynomial in Z_p[x], then p(x) has no repeated roots.
[Hint: If p(x) has a repeated root, use part (b) to see that p'(x) and p(x) are not relatively prime. Since p(x) is irreducible, this would force p'(x) = 0. Now apply part (a) to deduce that p(x) is not irreducible.]

Solution: If p(x) has a repeated root, then p(x) and p'(x) share a common factor by (b). But since p(x) is irreducible and $\deg(p') < \deg(p)$, this is only possible if p'(x) = 0. But then by part (a), p(x) is a p-th power and not irreducible.

(d) Deduce that every algebraic extension of \mathbb{Z}_p is separable.

Solution: This is immediate from the previous part as all irreducible polynomials over \mathbb{Z}_p have no repeated roots.

4. (a) Let K be any finite field of characteristic p. Show that the map $\varphi(x) = x^p$ is an automorphism of K. (This is called the *Frobenius* automorphism.)

Solution: Since $(a + b)^p = a^p + b^p$ in characteristic p and $(ab)^p = a^p b^p$, φ is a homomorphism. It is clearly non-zero as $\varphi(1) = 1$. Thus, φ is injective (as non-zero maps between fields are always injective) and since K is finite, φ is automatically surjective. Thus, φ is an automorphism.

(b) Let $K = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ be a field with 4 elements. Show that K/\mathbb{Z}_2 is a Galois extension. [Hint: Show that K is the splitting field of $y^3 - 1$ over \mathbb{Z}_2 .]

Solution: The elements of K are given by the equivalence classes of 0, 1, x and x + 1. We claim that the 3 non-zero elements of K satisfy $y^3 - 1 = 0$. We have $1^3 = 1$. To compute x^3 , note that $x^2 = x + 1$ in K and thus $x^3 = x^2 + x = 1$ in K. Finally, $(x + 1)^3 = x^3 + 1 = x + 1$. Hence, K is the splitting field of $y^3 - 1$ over \mathbb{Z}_2 . By 3(d), K/\mathbb{Z}_2 is separable and thus is a Galois extension.

(c) Show that $\operatorname{Gal}(K/\mathbb{Z}_2)$ is a cyclic group of size 2 generated by the Frobenius automorphism.

Solution: Clearly $[K : \mathbb{Z}_2] = 2$ and thus $\operatorname{Gal}(K/\mathbb{Z}_2)$ has size 2. Since the Frobenius automorphism φ is in $\operatorname{Gal}(K/\mathbb{Z}_2)$ we just need to check that it is not the identity. But $\varphi(x) = x^2 = x + 1 \neq x$.