
Modern Algebra 2 – MA 542 – Spring 2019 – R. Pollack
HW #11 Solutions

1. Let K denote the splitting field of (x2 − 5)(x2 − 7) over Q.

(a) Compute [K : Q].

Solution: We have K = Q(
√

5,
√

7). Clearly [Q(
√

5) : Q] = 2 as x2 − 5 = irr(
√

5,Q). We now
need to compute [K : Q(

√
5)] and thus we need to compute irr(

√
7,Q(

√
5)). We thus need to

check that x2 − 7 is irreducible over Q(
√

5) for which it suffices to see that it has no roots in
Q(
√

5). To this end, assume (a+ b
√

5)2 = 7. Then a2 + 5b2 + 2ab
√

5 = 7 and hence a2 + 5b2 = 7
and 2ab = 0. Thus a = 0 or b = 0. If a = 0 then 5b2 = 7 which is not solvable in Q, and if b = 0
then a2 = 7 which again is not solvable in Q. Thus x2−7 is irreducible over Q(

√
5) which implies

[K : Q(
√

5)] = 2. Hence [K : Q] = [K : Q(
√

5)] · [Q(
√

5) : Q] = 2 · 2 = 4.

(b) Write down generators of Gal(K/Q) and write down all elements of this group in terms of these
generators.

Solution: Let φ be an element of Gal(K/Q). Then φ is determined by what it does to
√

5 and
to
√

7. Moreover φ(
√

5) ∈ {
√

5,−
√

5} and φ(
√

7) ∈ {
√

7,−
√

7} as each element must be sent to
a root of its minimal polynomial. We see then that the size of Gal(K/Q) is at most 4 and since
this is a Galois extension the size is exactly 4 = [K : Q]. Thus, everything possibility for φ works.

To write down generators, let σ5 be defined by σ5(
√

5) = −
√

5 and σ5(
√

7) =
√

7, and let σ7 be
defined by σ7(

√
5) =

√
5 and σ7(

√
7) = −

√
7. Note that σ2

5 = σ2
7 = 1 where 1 is the identity map

and σ5σ7 = σ7σ5. Then the elements of Gal(K/Q) are the 1, σ5, σ7 and σ5σ7.

(c) Which group is Gal(K/Q) isomorphic to?

Solution: This group is C2 × C2 as it has size 4 and every element has order 2.

(d) Find all subgroups of Gal(K/Q).

Solution: The subgroups are {1}, {1, σ5}, {1, σ7}, {1, σ5σ7} and Gal(K/Q).

(e) How many subfields are there between K and Q (inclusive)? What are their degrees?
Extra credit: find these subfields explicitly and match them up with the subgroups of Gal(K/Q)
via the Galois correspondence theorem.

Solution: Since there are 5 subgroups, there are 5 subfields. The degrees of these fields are 1, 2,
2, 2, and 4.

Extra credit: The fixed field of {1} is K. The fixed field of {1, σ5} is Q(
√

7). The fixed field of
{1, σ7} is Q(

√
5). The fixed field of {1, σ5σ7} is Q(

√
35). The fixed field of Gal(K/Q) is Q.

2. Let K denote the splitting field of x7 − 1 over Q. Complete all parts of the previous question for this
field K.

(a) Compute [K : Q].

Solution: We have K = Q(ζ) where ζ = e2πi/7 as the roots of x7 − 1 are all of the form
e2πik/7 where k = 1, . . . , 7. We thus need to find the minimum polynomial of ζ. Note that
x7 − 1 = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1) and since ζ 6= 1 is a root of x7 − 1 it must be
a root of f(x) = x6 + x5 + x4 + x3 + x2 + x+ 1. To see that f(x) is irreducible, we replace x by
x+ 1 and get

f(x+ 1) =
(x+ 1)7 − 1

x+ 1− 1
=
x7 +

(
7
6

)
x6 +

(
7
5

)
x5 +

(
7
4

)
x4 +

(
7
3

)
x3 +

(
7
2

)
x2 +

(
7
1

)
x

x

= x6 +

(
7

6

)
x5 +

(
7

5

)
x4 +

(
7

4

)
x3 +

(
7

3

)
x2 +

(
7

2

)
x+

(
7

1

)
.



Since
(
7
i

)
is divisible by 7 for i = 1, . . . , 6, we have that f(x+ 1) is Eisenstein for p = 7 and thus

irreducible. Thus, f(x) is irreducible and [K : Q] = 6. (This is the same trick we used for p = 5
earlier in the semester — it works for all primes.)

(b) Write down generators of Gal(K/Q) and write down all elements of this group in terms of these
generators.

Solution: For φ ∈ Gal(K/Q), we have that φ is uniquely determined by its value on ζ and
moreover, φ(ζ) ∈ {ζ, ζ2, ζ3, ζ4, ζ5, ζ6} as these are the roots of f(x), the minimal polynomial of ζ.
This gives 6 possible elements of Gal(K/Q) and thus they all work as K/Q is Galois with degree
6.

Define σ(ζ) = ζ3. Then σ2(ζ) = ζ9 = ζ2, σ3(ζ) = σ(σ2(ζ)) = σ(ζ2) = ζ6, σ4(ζ) = σ(σ3(ζ)) =
σ(ζ6) = ζ18 = ζ4, σ5(ζ) = σ(σ4(ζ)) = σ(ζ4) = ζ12 = ζ5, σ6(ζ) = σ(σ5(ζ)) = σ(ζ5) = ζ15 = ζ.
Thus σ6 is the identity and σ has order 6. Hence σ is a generator of this group.

(c) Which group is Gal(K/Q) isomorphic to?

Solution: Gal(K/Q) is a cyclic group of size 6 generated by σ.

(d) Find all subgroups of Gal(K/Q).

Solution: The subgroups of Gal(K/Q) are {1}, {1, σ3}, {1, σ2, σ4} and all of Gal(K/Q).

(e) How many subfields are there between K and Q (inclusive)? What are their degrees?
Extra credit: find these subfields explicitly and match them up with the subgroups of Gal(K/Q)
via the Galois correspondence theorem.

Solution: There are 4 subgroups and so there are 4 subfields. Their degrees are 1,2,3 and 6.

Extra credit: The fixed field of {1} is K. The fixed field of {1, σ3} is Q(ζ + ζ−1). The fixed field
of {1, σ2, σ4} is Q(

√
−7) and the fixed field of Gal(K/Q) is Q.

3. This question will lead you to a proof of the fact that all algebraic extensions of Zp are separable.

(a) Let f(x) be a polynomial in Zp[x]. If f ′(x) = 0, prove that there is some polynomial g(x) ∈ Zp[x]
such that f(x) = g(x)p.

[Hint: First proof that if f(x) =
∑n
i=0 cix

i, then ci 6= 0 iff i is a multiple of p. Then use the fact
that ap = a for all a ∈ Zp and the fact that (a+ b)p = ap + bp in Zp.]

Solution: Let f(x) =
∑n
i=0 cix

i. Then f ′(x) = 0 implies ici = 0 for all i. Thus if i 6= 0, we must
have that ci = 0. But i = 0 in Zp iff i is a multiple of p. Thus

f(x) = c0 + cpx
p + c2px

2p + . . .

= cp0 + cppx
p + cp2px

2p + . . .

= (c0 + cpx+ c2px
2 + . . . )p

as desired. Here we are using the fact that ap = a (mod p).

(b) Let F be a field and let α be a root of f(x) ∈ F [x] with multiplicity e. Show that α is a root of
f ′(x) with multiplicity at least e− 1. (We showed in class that the multiplicity was exactly e− 1
if F has characteristic 0 — the same proof works here with the weaker conclusion.)

Solution: Write f(x) = (x− α)e · g(x) with g(α) 6= 0. Then

f ′(x) = e(x− α)e−1g(x) + (x− α)eg′(x) = (x− α)e−1(eg(x) + (x− α)g′(x)).

and hence α has multiplicity at least e− 1.



(c) Prove that if p(x) is an irreducible polynomial in Zp[x], then p(x) has no repeated roots.

[Hint: If p(x) has a repeated root, use part (b) to see that p′(x) and p(x) are not relatively prime.
Since p(x) is irreducible, this would force p′(x) = 0. Now apply part (a) to deduce that p(x) is
not irreducible.]

Solution: If p(x) has a repeated root, then p(x) and p′(x) share a common factor by (b). But
since p(x) is irreducible and deg(p′) < deg(p), this is only possible if p′(x) = 0. But then by part
(a), p(x) is a p-th power and not irreducible.

(d) Deduce that every algebraic extension of Zp is separable.

Solution: This is immediate from the previous part as all irreducible polynomials over Zp have
no repeated roots.

4. (a) Let K be any finite field of characteristic p. Show that the map ϕ(x) = xp is an automorphism
of K. (This is called the Frobenius automorphism.)

Solution: Since (a+ b)p = ap + bp in characteristic p and (ab)p = apbp, ϕ is a homomorphism. It
is clearly non-zero as ϕ(1) = 1. Thus, ϕ is injective (as non-zero maps between fields are always
injective) and since K is finite, ϕ is automatically surjective. Thus, ϕ is an automophism.

(b) Let K = Z2[x]/〈x2 + x+ 1〉 be a field with 4 elements. Show that K/Z2 is a Galois extension.

[Hint: Show that K is the splitting field of y3 − 1 over Z2.]

Solution: The elements of K are given by the equivalence classes of 0, 1, x and x+ 1. We claim
that the 3 non-zero elements of K satisfy y3 − 1 = 0. We have 13 = 1. To compute x3, note that
x2 = x+ 1 in K and thus x3 = x2 + x = 1 in K. Finally, (x+ 1)3 = x3 + 1 = x+ 1. Hence, K is
the splitting field of y3 − 1 over Z2. By 3(d), K/Z2 is separable and thus is a Galois extension.

(c) Show that Gal(K/Z2) is a cyclic group of size 2 generated by the Frobenius automorphism.

Solution: Clearly [K : Z2] = 2 and thus Gal(K/Z2) has size 2. Since the Frobenius automorphism
ϕ is in Gal(K/Z2) we just need to check that it is not the identity. But ϕ(x) = x2 = x+ 1 6= x.


