1. Let K denote the splitting field of $\left(x^{2}-5\right)\left(x^{2}-7\right)$ over \mathbb{Q}.
(a) Compute $[K: \mathbb{Q}]$.

Solution: We have $K=\mathbb{Q}(\sqrt{5}, \sqrt{7})$. Clearly $[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]=2$ as $x^{2}-5=\operatorname{irr}(\sqrt{5}, \mathbb{Q})$. We now need to compute $[K: \mathbb{Q}(\sqrt{5})]$ and thus we need to compute $\operatorname{irr}(\sqrt{7}, \mathbb{Q}(\sqrt{5}))$. We thus need to check that $x^{2}-7$ is irreducible over $\mathbb{Q}(\sqrt{5})$ for which it suffices to see that it has no roots in $\mathbb{Q}(\sqrt{5})$. To this end, assume $(a+b \sqrt{5})^{2}=7$. Then $a^{2}+5 b^{2}+2 a b \sqrt{5}=7$ and hence $a^{2}+5 b^{2}=7$ and $2 a b=0$. Thus $a=0$ or $b=0$. If $a=0$ then $5 b^{2}=7$ which is not solvable in \mathbb{Q}, and if $b=0$ then $a^{2}=7$ which again is not solvable in \mathbb{Q}. Thus $x^{2}-7$ is irreducible over $\mathbb{Q}(\sqrt{5})$ which implies $[K: \mathbb{Q}(\sqrt{5})]=2$. Hence $[K: \mathbb{Q}]=[K: \mathbb{Q}(\sqrt{5})] \cdot[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]=2 \cdot 2=4$.
(b) Write down generators of $\operatorname{Gal}(K / \mathbb{Q})$ and write down all elements of this group in terms of these generators.
Solution: Let ϕ be an element of $\operatorname{Gal}(K / \mathbb{Q})$. Then ϕ is determined by what it does to $\sqrt{5}$ and to $\sqrt{7}$. Moreover $\phi(\sqrt{5}) \in\{\sqrt{5},-\sqrt{5}\}$ and $\phi(\sqrt{7}) \in\{\sqrt{7},-\sqrt{7}\}$ as each element must be sent to a root of its minimal polynomial. We see then that the size of $\operatorname{Gal}(K / \mathbb{Q})$ is at most 4 and since this is a Galois extension the size is exactly $4=[K: \mathbb{Q}]$. Thus, everything possibility for ϕ works. To write down generators, let σ_{5} be defined by $\sigma_{5}(\sqrt{5})=-\sqrt{5}$ and $\sigma_{5}(\sqrt{7})=\sqrt{7}$, and let σ_{7} be defined by $\sigma_{7}(\sqrt{5})=\sqrt{5}$ and $\sigma_{7}(\sqrt{7})=-\sqrt{7}$. Note that $\sigma_{5}^{2}=\sigma_{7}^{2}=\mathbf{1}$ where $\mathbf{1}$ is the identity map and $\sigma_{5} \sigma_{7}=\sigma_{7} \sigma_{5}$. Then the elements of $\operatorname{Gal}(K / \mathbb{Q})$ are the $\mathbf{1}, \sigma_{5}, \sigma_{7}$ and $\sigma_{5} \sigma_{7}$.
(c) Which group is $\operatorname{Gal}(K / \mathbb{Q})$ isomorphic to?

Solution: This group is $C_{2} \times C_{2}$ as it has size 4 and every element has order 2.
(d) Find all subgroups of $\operatorname{Gal}(K / \mathbb{Q})$.

Solution: The subgroups are $\{\mathbf{1}\},\left\{\mathbf{1}, \sigma_{5}\right\},\left\{\mathbf{1}, \sigma_{7}\right\},\left\{\mathbf{1}, \sigma_{5} \sigma_{7}\right\}$ and $\operatorname{Gal}(K / \mathbb{Q})$.
(e) How many subfields are there between K and \mathbb{Q} (inclusive)? What are their degrees?

Extra credit: find these subfields explicitly and match them up with the subgroups of $\operatorname{Gal}(K / \mathbb{Q})$ via the Galois correspondence theorem.
Solution: Since there are 5 subgroups, there are 5 subfields. The degrees of these fields are 1,2 , 2,2 , and 4 .

Extra credit: The fixed field of $\{\mathbf{1}\}$ is K. The fixed field of $\left\{\mathbf{1}, \sigma_{5}\right\}$ is $\mathbb{Q}(\sqrt{7})$. The fixed field of $\left\{\mathbf{1}, \sigma_{7}\right\}$ is $\mathbb{Q}(\sqrt{5})$. The fixed field of $\left\{\mathbf{1}, \sigma_{5} \sigma_{7}\right\}$ is $\mathbb{Q}(\sqrt{35})$. The fixed field of $\operatorname{Gal}(K / \mathbb{Q})$ is \mathbb{Q}.
2. Let K denote the splitting field of $x^{7}-1$ over \mathbb{Q}. Complete all parts of the previous question for this field K.
(a) Compute $[K: \mathbb{Q}]$.

Solution: We have $K=\mathbb{Q}(\zeta)$ where $\zeta=e^{2 \pi i / 7}$ as the roots of $x^{7}-1$ are all of the form $e^{2 \pi i k / 7}$ where $k=1, \ldots, 7$. We thus need to find the minimum polynomial of ζ. Note that $x^{7}-1=(x-1)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)$ and since $\zeta \neq 1$ is a root of $x^{7}-1$ it must be a root of $f(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$. To see that $f(x)$ is irreducible, we replace x by $x+1$ and get

$$
\begin{aligned}
f(x+1) & =\frac{(x+1)^{7}-1}{x+1-1}=\frac{x^{7}+\binom{7}{6} x^{6}+\binom{7}{5} x^{5}+\binom{7}{4} x^{4}+\binom{7}{3} x^{3}+\binom{7}{2} x^{2}+\binom{7}{1} x}{x} \\
& =x^{6}+\binom{7}{6} x^{5}+\binom{7}{5} x^{4}+\binom{7}{4} x^{3}+\binom{7}{3} x^{2}+\binom{7}{2} x+\binom{7}{1} .
\end{aligned}
$$

Since $\binom{7}{i}$ is divisible by 7 for $i=1, \ldots, 6$, we have that $f(x+1)$ is Eisenstein for $p=7$ and thus irreducible. Thus, $f(x)$ is irreducible and $[K: \mathbb{Q}]=6$. (This is the same trick we used for $p=5$ earlier in the semester - it works for all primes.)
(b) Write down generators of $\operatorname{Gal}(K / \mathbb{Q})$ and write down all elements of this group in terms of these generators.

Solution: For $\phi \in \operatorname{Gal}(K / \mathbb{Q})$, we have that ϕ is uniquely determined by its value on ζ and moreover, $\phi(\zeta) \in\left\{\zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}, \zeta^{6}\right\}$ as these are the roots of $f(x)$, the minimal polynomial of ζ. This gives 6 possible elements of $\operatorname{Gal}(K / \mathbb{Q})$ and thus they all work as K / \mathbb{Q} is Galois with degree 6.

Define $\sigma(\zeta)=\zeta^{3}$. Then $\sigma^{2}(\zeta)=\zeta^{9}=\zeta^{2}, \sigma^{3}(\zeta)=\sigma\left(\sigma^{2}(\zeta)\right)=\sigma\left(\zeta^{2}\right)=\zeta^{6}, \sigma^{4}(\zeta)=\sigma\left(\sigma^{3}(\zeta)\right)=$ $\sigma\left(\zeta^{6}\right)=\zeta^{18}=\zeta^{4}, \sigma^{5}(\zeta)=\sigma\left(\sigma^{4}(\zeta)\right)=\sigma\left(\zeta^{4}\right)=\zeta^{12}=\zeta^{5}, \sigma^{6}(\zeta)=\sigma\left(\sigma^{5}(\zeta)\right)=\sigma\left(\zeta^{5}\right)=\zeta^{15}=\zeta$. Thus σ^{6} is the identity and σ has order 6 . Hence σ is a generator of this group.
(c) Which group is $\operatorname{Gal}(K / \mathbb{Q})$ isomorphic to?

Solution: $\operatorname{Gal}(K / \mathbb{Q})$ is a cyclic group of size 6 generated by σ.
(d) Find all subgroups of $\operatorname{Gal}(K / \mathbb{Q})$.

Solution: The subgroups of $\operatorname{Gal}(K / \mathbb{Q})$ are $\{\mathbf{1}\},\left\{\mathbf{1}, \sigma^{3}\right\},\left\{\mathbf{1}, \sigma^{2}, \sigma^{4}\right\}$ and all of $\operatorname{Gal}(K / \mathbb{Q})$.
(e) How many subfields are there between K and \mathbb{Q} (inclusive)? What are their degrees?

Extra credit: find these subfields explicitly and match them up with the subgroups of $\operatorname{Gal}(K / \mathbb{Q})$ via the Galois correspondence theorem.
Solution: There are 4 subgroups and so there are 4 subfields. Their degrees are $1,2,3$ and 6 .
Extra credit: The fixed field of $\{\mathbf{1}\}$ is K. The fixed field of $\left\{\mathbf{1}, \sigma^{3}\right\}$ is $\mathbb{Q}\left(\zeta+\zeta^{-1}\right)$. The fixed field of $\left\{\mathbf{1}, \sigma^{2}, \sigma^{4}\right\}$ is $\mathbb{Q}(\sqrt{-7})$ and the fixed field of $\operatorname{Gal}(K / \mathbb{Q})$ is \mathbb{Q}.
3. This question will lead you to a proof of the fact that all algebraic extensions of \mathbb{Z}_{p} are separable.
(a) Let $f(x)$ be a polynomial in $\mathbb{Z}_{p}[x]$. If $f^{\prime}(x)=0$, prove that there is some polynomial $g(x) \in \mathbb{Z}_{p}[x]$ such that $f(x)=g(x)^{p}$.
[Hint: First proof that if $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$, then $c_{i} \neq 0$ iff i is a multiple of p. Then use the fact that $a^{p}=a$ for all $a \in \mathbb{Z}_{p}$ and the fact that $(a+b)^{p}=a^{p}+b^{p}$ in \mathbb{Z}_{p}.]
Solution: Let $f(x)=\sum_{i=0}^{n} c_{i} x^{i}$. Then $f^{\prime}(x)=0$ implies $i c_{i}=0$ for all i. Thus if $i \neq 0$, we must have that $c_{i}=0$. But $i=0$ in \mathbb{Z}_{p} iff i is a multiple of p. Thus

$$
\begin{aligned}
f(x) & =c_{0}+c_{p} x^{p}+c_{2 p} x^{2 p}+\ldots \\
& =c_{0}^{p}+c_{p}^{p} x^{p}+c_{2 p}^{p} x^{2 p}+\ldots \\
& =\left(c_{0}+c_{p} x+c_{2 p} x^{2}+\ldots\right)^{p}
\end{aligned}
$$

as desired. Here we are using the fact that $a^{p}=a(\bmod p)$.
(b) Let F be a field and let α be a root of $f(x) \in F[x]$ with multiplicity e. Show that α is a root of $f^{\prime}(x)$ with multiplicity at least $e-1$. (We showed in class that the multiplicity was exactly $e-1$ if F has characteristic 0 - the same proof works here with the weaker conclusion.)

Solution: Write $f(x)=(x-\alpha)^{e} \cdot g(x)$ with $g(\alpha) \neq 0$. Then

$$
f^{\prime}(x)=e(x-\alpha)^{e-1} g(x)+(x-\alpha)^{e} g^{\prime}(x)=(x-\alpha)^{e-1}\left(e g(x)+(x-\alpha) g^{\prime}(x)\right) .
$$

and hence α has multiplicity at least $e-1$.
(c) Prove that if $p(x)$ is an irreducible polynomial in $\mathbb{Z}_{p}[x]$, then $p(x)$ has no repeated roots.
[Hint: If $p(x)$ has a repeated root, use part (b) to see that $p^{\prime}(x)$ and $p(x)$ are not relatively prime. Since $p(x)$ is irreducible, this would force $p^{\prime}(x)=0$. Now apply part (a) to deduce that $p(x)$ is not irreducible.]

Solution: If $p(x)$ has a repeated root, then $p(x)$ and $p^{\prime}(x)$ share a common factor by (b). But since $p(x)$ is irreducible and $\operatorname{deg}\left(p^{\prime}\right)<\operatorname{deg}(p)$, this is only possible if $p^{\prime}(x)=0$. But then by part (a), $p(x)$ is a p-th power and not irreducible.
(d) Deduce that every algebraic extension of \mathbb{Z}_{p} is separable.

Solution: This is immediate from the previous part as all irreducible polynomials over \mathbb{Z}_{p} have no repeated roots.
4. (a) Let K be any finite field of characteristic p. Show that the map $\varphi(x)=x^{p}$ is an automorphism of K. (This is called the Frobenius automorphism.)

Solution: Since $(a+b)^{p}=a^{p}+b^{p}$ in characteristic p and $(a b)^{p}=a^{p} b^{p}, \varphi$ is a homomorphism. It is clearly non-zero as $\varphi(1)=1$. Thus, φ is injective (as non-zero maps between fields are always injective) and since K is finite, φ is automatically surjective. Thus, φ is an automophism.
(b) Let $K=\mathbb{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$ be a field with 4 elements. Show that K / \mathbb{Z}_{2} is a Galois extension. [Hint: Show that K is the splitting field of $y^{3}-1$ over \mathbb{Z}_{2}.]

Solution: The elements of K are given by the equivalence classes of $0,1, x$ and $x+1$. We claim that the 3 non-zero elements of K satisfy $y^{3}-1=0$. We have $1^{3}=1$. To compute x^{3}, note that $x^{2}=x+1$ in K and thus $x^{3}=x^{2}+x=1$ in K. Finally, $(x+1)^{3}=x^{3}+1=x+1$. Hence, K is the splitting field of $y^{3}-1$ over \mathbb{Z}_{2}. By $3(\mathrm{~d}), K / \mathbb{Z}_{2}$ is separable and thus is a Galois extension.
(c) Show that $\operatorname{Gal}\left(K / \mathbb{Z}_{2}\right)$ is a cyclic group of size 2 generated by the Frobenius automorphism.

Solution: Clearly $\left[K: \mathbb{Z}_{2}\right]=2$ and thus $\operatorname{Gal}\left(K / \mathbb{Z}_{2}\right)$ has size 2. Since the Frobenius automorphism φ is in $\operatorname{Gal}\left(K / \mathbb{Z}_{2}\right)$ we just need to check that it is not the identity. But $\varphi(x)=x^{2}=x+1 \neq x$.

