Section 18:
2) $(16)(3)=48=16$ in \mathbb{Z}_{32}.
6) $(-3,5)(2,-4)=(-6,-20)=(2,2)$ in $\mathbb{Z}_{4} \times \mathbb{Z}_{11}$.
8) \mathbb{Z}^{+}is not a ring as it is not even a group under addition. For instance, 1 has no additive inverse.
10) $2 \mathbb{Z} \times \mathbb{Z}$ is a commutative ring but it has no unity and it is not a field (for instance, $(2,1)$ has no multiplicative inverse).
11) $\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\}$ is a commutative ring with unity, but is not a field. For instance, 2 has no multiplicative inverse.
12) $\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field and thus also a commutative ring with unity. The key point to see that it is a field is that

$$
\frac{1}{a+b \sqrt{2}}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2} .
$$

13) The set of purely imaginary numbers is not even a ring as it is not closed under multiplicative. For instance, $i \cdot i=-1$ which is not purely imaginary.
14) The units in \mathbb{Z}_{5} are $\{1,2,3,4\}$. To see this, note that $1 \cdot 1=4 \cdot 4=2 \cdot 3=1$.
15) For R a ring with unity, write R^{\times}for the units in R. Then for R and S rings, we have that $(R \times S)^{\times}=R^{\times} \times S^{\times}$(check this!). Thus,

$$
(\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z})^{\times}=\mathbb{Z}^{\times} \times \mathbb{Q}^{\times} \times \mathbb{Z}^{\times}
$$

The only units in \mathbb{Z} are 1 and -1 while $\mathbb{Q}^{\times}=\mathbb{Q}-\{0\}$ as \mathbb{Q} is a field. Thus,

$$
(\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z})^{\times}=\{ \pm 1\} \times(\mathbb{Q}-\{0\}) \times\{ \pm 1\}
$$

27) The reasoning here is flawed as it assumes that the ring is an integral domain. From $\left(X-I_{3}\right)\left(X+I_{3}\right)=0$ one cannot deduce $X=I_{3}$ or $X=-I_{3}$ as this ring has zero divisors. As an explicit counter-example, the $\operatorname{matrix} X=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ satisfies $X^{2}=I_{3}$ but X is neither the identity or its negative. 33)
a. True
b. False. For example, $R=2 \mathbb{Z}$ is a ring without a multiplicative identity.
c. False. For example, $R=\mathbb{Z}_{2}$ is a ring with unity, but only has 1 unit.
d. False. For example, $R=\mathbb{Q}$ is a ring with unity, but has infinitely many units.
e. True, this is possible. Consider $F=\mathbb{Q}$ and $R=2 \mathbb{Z}$ which is a subring of F but not a field.
f. False, but silly as this is a subjective question. They are important because they give the link between + and \cdot
g. True (by definition)
h. True (see \#37)
i. True (by definition)
j. True (by definition)
28) We need to check that multiplication on U is closed, associative, has an identity element and that every element has an inverse. As $U \subseteq R$, we immediately see that multiplication on U is associative as it is on R. The element 1 is the identity element of U. If $u \in U$, then by definition there exists $v \in R$ such that $u v=v u=1$. But then it is clear that v is itself a unit (and thus $v \in U$). Hence, $u^{-1}=v \in U$. Lastly, we need to check that U is closed under multiplication. Let u_{1} and u_{2} be elements of U. By definition, there exists v_{1} and v_{2} such that $u_{1} v_{1}=v_{1} u_{1}=u_{2} v_{2}=v_{2} u_{2}=1$. Thus,

$$
\left(u_{1} u_{2}\right)\left(v_{2} v_{1}\right)=u_{1} \cdot 1 \cdot v_{1}=u_{1} v_{1}=1
$$

and

$$
\left(v_{2} v_{1}\right)\left(u_{1} u_{2}\right)=v_{2} \cdot 1 \cdot u_{2}=v_{2} u_{2}=1
$$

Hence, $u_{1} u_{2}$ is a unit and multiplication is closed on U. This proves that U is a group under multiplication.
44)
a. Let a and b be idempotents in R. We need to check that $a b$ is an idempotent. We compute

$$
(a b)^{2}=a b a b=a a b b=a^{2} b^{2}=1 \cdot 1=1
$$

Thus $a b$ is an idempotent. (Note that we used the commutativity of R in the middle step above.)
b. If (a, b) is idempotent in $\mathbb{Z}_{6} \times \mathbb{Z}_{12}$, then $(a, b)^{2}=(a, b)$ and thus $a^{2}=a$ in \mathbb{Z}_{6} and $b^{2}=b$ in \mathbb{Z}_{12}. The idempotents in \mathbb{Z}_{6} are $\{0,1,3,4\}$ while the idempotents in \mathbb{Z}_{12} are $\{0,1,4,9\}$. Hence the idempotents in $\mathbb{Z}_{6} \times \mathbb{Z}_{12}$ are $\{0,1,3,4\} \times\{0,1,4,9\}$.
55) Let R be a Boolean ring and let $a, b \in R$. We then have

$$
\begin{aligned}
a+b & =(a+b)^{2} \\
& =(a+b)(a+b) \\
& =a^{2}+b a+a b+b^{2} \\
& =a+b a+a b+b .
\end{aligned}
$$

Subtracting, then yields

$$
a b=-b a
$$

This looks wrong because of the minus sign! But note that since this equation is true for all a and b, we can take $b=1$. Then we have $a=-a$ for all a. In particular, $-b a=b a$ and thus $a b=b a$ for all a and b. Hence, R is commutative.
Section 19:
3) $3 x=2$ in \mathbb{Z}_{7} implies $x=3$ while in \mathbb{Z}_{23} we have that $x=16$.
14) $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) \cdot\left(\begin{array}{cc}2 & 2 \\ -1 & -1\end{array}\right)=0$.
17)
a. False. $n \mathbb{Z}$ is a subring of \mathbb{Z} and thus has no zero divisors.
b. True
c. False. $n \mathbb{Z}$ has characteristic 0
d. False. The map $x \mapsto n x$ is not an isomorphism.
e. True
f. True
g. False. Consider $R=\mathbb{Z} \times \mathbb{Z}$. Then \mathbb{Z} is an integral domain but $(1,0) \cdot(0,1)=(0,0)$.
h. True
i. False. $n \mathbb{Z}$ has no unity for $n>1$ which is required for a domain.
j. False. \mathbb{Z} is not a field!
29) Let the characteristic of D equal x. Assume x is not 0 and not a prime. Note that it is not possible that $x=1$ as in this case we would have that $1=0$ in D and hence D is the zero ring which is not a domain. Hence, x is composite and we can write $x=m n$ and $0<m, n<x$. We then know that

$$
0=m n \cdot 1=(m \cdot 1)(n \cdot 1)
$$

Since D is a domain, we must have that $m \cdot 1=0$ or $n \cdot 1=0$. But this is impossible as x is smallest positive integer such that $x \cdot 1=0$. This contradiction implie that x is either 0 or prime.

