Section 20:
2) 2 is a generator of \mathbb{Z}_{11}^{\times}as its powers are: $2,4,8,5,10,9,7,3,6,1$ which hit every non-zero element.
3) 3 is a generator of \mathbb{Z}_{17}^{\times}as its powers are: $3,9,10,13,5,15,11,16,14,8,7,4,12,2,6,1$ which hit every non-zero element.
4) Since $3^{22} \equiv 1(\bmod 23)$, we have that $3^{47} \equiv 3^{22 \cdot 2+3} \equiv 3^{3} \equiv 4(\bmod 23)$.
6) We first compute $2^{17} \bmod 18$ by successive squaring. In \mathbb{Z}_{18} we have

$$
\begin{aligned}
2^{2} & =4 \\
2^{4} & =\left(2^{2}\right)^{2}=4^{2}=16 \\
2^{8} & =\left(2^{4}\right)^{2}=16^{2}=(-2)^{2}=4 \\
2^{16} & =\left(2^{8}\right)^{2}=4^{2}=16
\end{aligned}
$$

Thus $2^{17} \equiv 2^{16} \cdot 2 \equiv 16 \cdot 2=14(\bmod 18)$ and $2^{17}=18 k+14$ for some k.
Then by Fermat's little theorem, we know $2^{18} \equiv 1(\bmod 19)$ and thus

$$
2^{2^{17}} \equiv 2^{18 k+14} \equiv 2^{14} \quad(\bmod 19) .
$$

Again we successively square but this time in \mathbb{Z}_{19} :

$$
\begin{aligned}
& 2^{2}=4 \\
& 2^{4}=\left(2^{2}\right)^{2}=4^{2}=16 \\
& 2^{8}=\left(2^{4}\right)^{2}=16^{2}=(-3)^{2}=9
\end{aligned}
$$

Thus

$$
2^{2^{17}} \equiv 2^{14} \equiv 2^{8} \cdot 2^{4} \cdot 2^{2} \equiv 4 \cdot 16 \cdot 9 \equiv 4 \cdot(-3) \cdot 9 \equiv 4 \cdot(-27) \equiv 4 \cdot 11 \equiv 44 \equiv 6 \quad(\bmod 19) .
$$

8) We have that $\varphi\left(p^{2}\right)$ is the number of integers between 1 and p^{2} that are relatively prime to p^{2}. Since a number is relatively prime to p^{2} iff it is not divisible by p, we just need to know how many of these p^{2} numbers are not divisible by p. Since exactly p of them are divisible by p (e.g. $p \cdot 1, p \cdot 2, \cdots, p \cdot p$), we see that $p^{2}-p$ are not multiplies of p. Thus $\varphi\left(p^{2}\right)=p^{2}-p$.
10). By Euler's theorem, $7^{\varphi(24)}=7^{8} \equiv 1(\bmod 24)$. Thus,

$$
7^{1000} \equiv 7^{8 \cdot 125} \equiv\left(7^{8}\right)^{125} \equiv 1^{125} \equiv 1 \quad(\bmod 24)
$$

a. False. This is not true for any $a \equiv 0(\bmod p)$.
b. True.
c. True.
d. False. $\varphi(1)=1$
e. True.
f. True.
g. False.
h. True.
i. False. $0 x \equiv 1(\bmod p)$ has no solution.
j. True.
24) All units in \mathbb{Z}_{12} have order dividing 2 and thus this group of size 4 is the Klein 4-group $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.
27) We have

$$
\begin{aligned}
x \equiv x^{-1} \quad(\bmod p) & \Longrightarrow x^{2} \equiv 1 \quad(\bmod p) \\
& \Longrightarrow x^{2}-1 \equiv 0 \quad(\bmod p) \\
& \Longrightarrow(x-1)(x+1) \equiv 0 \quad(\bmod p) \\
& \Longrightarrow x-1 \equiv 0 \quad(\bmod p) \text { or } x+1 \equiv 0 \quad(\bmod p) \\
& \Longrightarrow x \equiv \pm 1 \quad(\bmod p)
\end{aligned}
$$

Here the penultimate implication follows because \mathbb{Z}_{p} is a field and thus an integral domain.

Section 21:

1) The field of quotients of $\mathbb{Z}[i]$ is $\mathbb{Q}(i)=\{a+b i: a, b \in \mathbb{Q}\}$.
2) The field of quotients of $\mathbb{Z}[\sqrt{2}]$ is $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$.
3)

a. True.
b. False. The field of quotients is unique and since it is \mathbb{Q} it can't be \mathbb{R} as \mathbb{Q} and \mathbb{R} are not isomorphic.
c. True.
d. False. The field of quotients is unique and since it is \mathbb{R} it can't be \mathbb{C} as \mathbb{C} and \mathbb{R} are not isomorphic.
e. True.
f. True (subjective question though!)
g. False. 0 is not a unit.
h. True.
i. True.
j. True.
5) Let $\mathbb{Z}[1 / 2]=\{a / b: b$ is a power of 2$\}$. This is a ring and we have that $\mathbb{Z} \subseteq \mathbb{Z}[1 / 2] \subseteq \mathbb{Q}$. However, the field of quotients of both \mathbb{Z} and $\mathbb{Z}[1 / 2]$ are \mathbb{Q}.
8) We compute that

$$
\overline{(-a, b)}+\overline{(a, b)}=\overline{\left((-a) b+b a, b^{2}\right)}=\overline{\left(0, b^{2}\right)}=\overline{(0,1)}=0
$$

and thus $\overline{(-a, b)}$ is the additive inverse of $\overline{(a, b)}$.
10) We have

$$
\overline{(a, b)} \cdot \overline{(c, d)}=\overline{(a c, b d)}=\overline{(c a, d b)}=\overline{(c, d)} \cdot \overline{(a, b)}
$$

and thus multiplication is commutative.

Section 21:
2) We have

$$
x+1+x+1=2 x+2=0 \text { in } \mathbb{Z}_{2}[x]
$$

and

$$
(x+1)^{2}=x^{2}+2 x+1=x^{2}+1 \text { in } \mathbb{Z}_{2}[x]
$$

6) Such polynomials have the form $a+b x+c x^{2}$ where a, b, c are in \mathbb{Z}_{5}. Since there are 5 choices for each of a, b and c, there are $5^{3}=125$ such polynomials.
7) The roots are 0 and 4 .
8) Let $f(x)$ and $g(x)$ be non-zero polynomials in $D[x]$. Write $f(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\ldots$ and $g(x)=$ $b_{e} x^{e}+b_{e-1} x^{e-1}+\ldots$ where a_{d} and b_{e} are non-zero. Then the leading term of $f(x) g(x)$ is given by $a_{d} b_{e} x^{d+e}$ and we know that $a_{d} b_{e}$ is non-zero since D is an integral domain and both a_{d} and d_{e} are non-zero. Thus $f(x) g(x)$ is non-zero and $D[x]$ is an integral domain.
