
Introduction to Analysis – MA 542 – Fall 2019 – R. Pollack
HW #3 Solutions

Section 22:
17) Clearly 0 is a root of this polynomial. Then for a 6≡ 0 (mod 5), by Fermat’s little theorem, we know
that a4 ≡ 1 (mod 5). Thus, for any a ∈ (Z5)× we have

2a219 + 3a74 + 2a57 + 3a44 ≡ 2a3 + 3a2 + 2a1 + 3a0 ≡ 2a3 + 3a2 + 2a1 + 3 (mod 5).

Directly computing, we see that a = 1, 2, 3 satisfy 2a3 + 3a2 + 2a1 + 3 ≡ 0 (mod 5). Thus the zeroes of this
polynomial in Z5 are 0, 1, 2, 3.

23)

a. True.

b. True.

c. True.

d. True.

e. False.

f. False. For instance, f(x) = 2x3 and g(x) = 2x4 in Z4[x].

g. True.

h. True.

i. True.

j. False.

25) (a) The units of D[x] are simply the units of D when D is an integral domain. It’s clear that the units of D
are units in D[x]. For the reverse inclusion, let f ∈ D[x]×. Then there exists g ∈ D[x] such that fg = 1. Then
since over an integral domain, we have deg(fg) = deg(f) + deg(g), we have deg(f) + deg(g) = deg(1) = 0.
In particular, deg(f) = deg(g) = 0 and both f and g are constants in D. Since fg = 1, we see that f and g
are units in D as desired.

(b) By part (a), (Z[x])× = Z× = {±1} since Z is an integral domain.

(c) By part (a), (Z7[x])× = Z×
7 = Z7 − {0} since Z7 is a field.

Section 23:
2) q(x) = 5x4 + 5x2 + 6x and r(x) = x + 2.

6) The generators of Z7 are 3 and 5.

7) First note (by direct computation) that 3 is a generator of Z17. Then all generators of Z17 are given by
3a where gcd(a, 16) = 1. This list is {3, 5, 6, 7, 10, 11, 12, 14}.



9) x4 + 4 ≡ x4 − 1 = (x− 1)(x− 2)(x− 3)(x− 4) (mod 5) by Fermat’s little theorem.

12) We have x3 + 2x + 3 = (x + 3)(x + 1)2 in Z5[x] and is thus not irreducible.

14) We have that f(x) = x2 + 8x− 2 is irreducible over Q iff it has no roots in Q. To see if it has any roots,
we use the quadratic formula which gives that any root if of the form
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2 and thus f(x) has no roots in Q and is irreducible over Q. However,
f(x) is reducible over R or C as it has real (and thus complex) roots.

16) By the rational root theorem, if f(x) = x3 + 3x2 − 8 has a root in Q, then the root is in the set
{±1,±2,±4}. By direct computation, none of these elements are roots and thus f(x) has no roots in Q.
Since f(x) is a cubic, this means that f(x) is irreducible over Q.

18) x2 − 12 is an Eisenstein polynomial for p = 3 and is thus irreducible over Q.

20) 4x10 − 9x3 + 24x − 18 is not Eisenstein for any prime p. Indeed, because of the cubic term −9x3 the
only possible prime to use is p = 3. However, 9 divides the constant term which is -18.

25)

a. True.

b. True.

c. True.

d. False. x = 2 is a zero.

e. True.

f. False. Every non-zero element is a unit.

g. True (unless you want to say that 0 is a counter-example).

h. True (unless you want to say that 0 is a counter-example).

i. True.

j. False. The 0 polynomial can have infinitely many zeroes.

26) We have f(x) = x4 + x3 + x2 − x + 1 has x + 2 as a factor iff f(x) has -2 as root. This is the case if
f(−2) ≡ 0 (mod p). Since f(−2) = (−2)4 + (−2)3 + (−2)2 − (−2) + 1 = 15 we have that this holds iff p = 3
or p = 5.



28) The only polynomials of degree 3 in Z2[x] are:

x3, x3 + 1, x3 + x, x3 + x + 1, x3 + x2, x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x + 1.

The irreducible ones in this list are the ones with no roots in Z2. First eliminating the ones with 0 as a root
gives:

x3 + 1, x3 + x + 1, x3 + x2 + 1, x3 + x2 + x + 1.

Then eliminating the ones with 1 as a root gives

x3 + x + 1, x3 + x2 + 1.

30) Now there are a lot of polynomials to consider. Let’s not list them all. Rather any such polynomial will
be of the form ax3 + bx2 + cx+ d with a 6= 0. In fact, let’s scale so that a = 1. Then if such a polynomial is
irreducible then 0, 1 and 2 are not zeroes. Since 0 is not a zero, we know that d 6= 0. Since 1 is not a root,
we know that 1 + b + c + d 6= 0. Since 2 is not a root, we know that 2 + b + 2c + d 6= 0.

The complete list of such polynomials is:

x3+2x+1, x3+2x+2, x3+x2+2, x3+x2+x+2, x3+x2+2x+1, x3+2x2+1, x3+2x2+x+1, x3+2x2+2x+2.

These are just the monic irreducibles. There are also the polynomials whose leading coefficient is 2 (which
is obtained by simply scaling each polynomial in the above list by 2):

2x3+x+1, 2x3+x+2, 2x3+x2+2, 2x3+x2+x+1, 2x3+x2+2x+2, 2x3+2x2+1, 2x3+2x2+x+2, 2x3+2x2+2x+1.

34) To show that f(x) = xp + a is never irreducible over Zp, we will exhibit a root of this polynomial.
Namely,

f(−a) = (−a)p + a = −a + a = 0

as by Fermat’s little theorem bp = b for any b in Zp.

37c) The mod 5 reduction of f is x3 + 2x + 1 which is irreducible as it has no roots in Z5. Thus, f is
irreducible over Q.


