Section 22:
17) Clearly 0 is a root of this polynomial. Then for $a \not \equiv 0(\bmod 5)$, by Fermat's little theorem, we know that $a^{4} \equiv 1(\bmod 5)$. Thus, for any $a \in\left(\mathbb{Z}_{5}\right)^{\times}$we have

$$
2 a^{219}+3 a^{74}+2 a^{57}+3 a^{44} \equiv 2 a^{3}+3 a^{2}+2 a^{1}+3 a^{0} \equiv 2 a^{3}+3 a^{2}+2 a^{1}+3 \quad(\bmod 5)
$$

Directly computing, we see that $a=1,2,3$ satisfy $2 a^{3}+3 a^{2}+2 a^{1}+3 \equiv 0(\bmod 5)$. Thus the zeroes of this polynomial in \mathbb{Z}_{5} are $0,1,2,3$.
a. True.
b. True.
c. True.
d. True.
e. False.
f. False. For instance, $f(x)=2 x^{3}$ and $g(x)=2 x^{4}$ in $\mathbb{Z}_{4}[x]$.
g. True.
h. True.
i. True.
j. False.
25) (a) The units of $D[x]$ are simply the units of D when D is an integral domain. It's clear that the units of D are units in $D[x]$. For the reverse inclusion, let $f \in D[x]^{\times}$. Then there exists $g \in D[x]$ such that $f g=1$. Then since over an integral domain, we have $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$, we have $\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(1)=0$. In particular, $\operatorname{deg}(f)=\operatorname{deg}(g)=0$ and both f and g are constants in D. Since $f g=1$, we see that f and g are units in D as desired.
(b) By part (a), $(\mathbb{Z}[x])^{\times}=\mathbb{Z}^{\times}=\{ \pm 1\}$ since \mathbb{Z} is an integral domain.
(c) By part (a), $\left(\mathbb{Z}_{7}[x]\right)^{\times}=\mathbb{Z}_{7}^{\times}=\mathbb{Z}_{7}-\{0\}$ since \mathbb{Z}_{7} is a field.

Section 23:
2) $q(x)=5 x^{4}+5 x^{2}+6 x$ and $r(x)=x+2$.
6) The generators of \mathbb{Z}_{7} are 3 and 5 .
7) First note (by direct computation) that 3 is a generator of \mathbb{Z}_{17}. Then all generators of \mathbb{Z}_{17} are given by 3^{a} where $\operatorname{gcd}(a, 16)=1$. This list is $\{3,5,6,7,10,11,12,14\}$.
9) $x^{4}+4 \equiv x^{4}-1=(x-1)(x-2)(x-3)(x-4)(\bmod 5)$ by Fermat's little theorem.
12) We have $x^{3}+2 x+3=(x+3)(x+1)^{2}$ in $\mathbb{Z}_{5}[x]$ and is thus not irreducible.
14) We have that $f(x)=x^{2}+8 x-2$ is irreducible over \mathbb{Q} iff it has no roots in \mathbb{Q}. To see if it has any roots, we use the quadratic formula which gives that any root if of the form

$$
\frac{-8 \pm \sqrt{64+8}}{2}=\frac{-8 \pm \sqrt{72}}{2}=\frac{-8 \pm 6 \sqrt{2}}{2}=-4 \pm 3 \sqrt{2} .
$$

As $\sqrt{2}$ is irrational, so is $-4 \pm 3 \sqrt{2}$ and thus $f(x)$ has no roots in \mathbb{Q} and is irreducible over \mathbb{Q}. However, $f(x)$ is reducible over \mathbb{R} or \mathbb{C} as it has real (and thus complex) roots.
16) By the rational root theorem, if $f(x)=x^{3}+3 x^{2}-8$ has a root in \mathbb{Q}, then the root is in the set $\{ \pm 1, \pm 2, \pm 4\}$. By direct computation, none of these elements are roots and thus $f(x)$ has no roots in \mathbb{Q}. Since $f(x)$ is a cubic, this means that $f(x)$ is irreducible over \mathbb{Q}.
18) $x^{2}-12$ is an Eisenstein polynomial for $p=3$ and is thus irreducible over \mathbb{Q}.
20) $4 x^{10}-9 x^{3}+24 x-18$ is not Eisenstein for any prime p. Indeed, because of the cubic term $-9 x^{3}$ the only possible prime to use is $p=3$. However, 9 divides the constant term which is -18 .
25)
a. True.
b. True.
c. True.
d. False. $x=2$ is a zero.
e. True.
f. False. Every non-zero element is a unit.
g. True (unless you want to say that 0 is a counter-example).
h. True (unless you want to say that 0 is a counter-example).
i. True.
j. False. The 0 polynomial can have infinitely many zeroes.
26) We have $f(x)=x^{4}+x^{3}+x^{2}-x+1$ has $x+2$ as a factor iff $f(x)$ has -2 as root. This is the case if $f(-2) \equiv 0(\bmod p)$. Since $f(-2)=(-2)^{4}+(-2)^{3}+(-2)^{2}-(-2)+1=15$ we have that this holds iff $p=3$ or $p=5$.
28) The only polynomials of degree 3 in $\mathbb{Z}_{2}[x]$ are:

$$
x^{3}, x^{3}+1, x^{3}+x, x^{3}+x+1, x^{3}+x^{2}, x^{3}+x^{2}+1, x^{3}+x^{2}+x, x^{3}+x^{2}+x+1
$$

The irreducible ones in this list are the ones with no roots in \mathbb{Z}_{2}. First eliminating the ones with 0 as a root gives:

$$
x^{3}+1, x^{3}+x+1, x^{3}+x^{2}+1, x^{3}+x^{2}+x+1
$$

Then eliminating the ones with 1 as a root gives

$$
x^{3}+x+1, x^{3}+x^{2}+1
$$

30) Now there are a lot of polynomials to consider. Let's not list them all. Rather any such polynomial will be of the form $a x^{3}+b x^{2}+c x+d$ with $a \neq 0$. In fact, let's scale so that $a=1$. Then if such a polynomial is irreducible then 0,1 and 2 are not zeroes. Since 0 is not a zero, we know that $d \neq 0$. Since 1 is not a root, we know that $1+b+c+d \neq 0$. Since 2 is not a root, we know that $2+b+2 c+d \neq 0$.

The complete list of such polynomials is:
$x^{3}+2 x+1, x^{3}+2 x+2, x^{3}+x^{2}+2, x^{3}+x^{2}+x+2, x^{3}+x^{2}+2 x+1, x^{3}+2 x^{2}+1, x^{3}+2 x^{2}+x+1, x^{3}+2 x^{2}+2 x+2$.
These are just the monic irreducibles. There are also the polynomials whose leading coefficient is 2 (which is obtained by simply scaling each polynomial in the above list by 2):
$2 x^{3}+x+1,2 x^{3}+x+2,2 x^{3}+x^{2}+2,2 x^{3}+x^{2}+x+1,2 x^{3}+x^{2}+2 x+2,2 x^{3}+2 x^{2}+1,2 x^{3}+2 x^{2}+x+2,2 x^{3}+2 x^{2}+2 x+1$.
34) To show that $f(x)=x^{p}+a$ is never irreducible over \mathbb{Z}_{p}, we will exhibit a root of this polynomial. Namely,

$$
f(-a)=(-a)^{p}+a=-a+a=0
$$

as by Fermat's little theorem $b^{p}=b$ for any b in \mathbb{Z}_{p}.
$37 \mathrm{c})$ The $\bmod 5$ reduction of f is $x^{3}+2 x+1$ which is irreducible as it has no roots in \mathbb{Z}_{5}. Thus, f is irreducible over \mathbb{Q}.

