Introduction to Analysis – MA 542 – Fall 2019 – R. Pollack HW #3 Solutions

<u>Section 22</u>:

17) Clearly 0 is a root of this polynomial. Then for $a \neq 0 \pmod{5}$, by Fermat's little theorem, we know that $a^4 \equiv 1 \pmod{5}$. Thus, for any $a \in (\mathbb{Z}_5)^{\times}$ we have

$$2a^{219} + 3a^{74} + 2a^{57} + 3a^{44} \equiv 2a^3 + 3a^2 + 2a^1 + 3a^0 \equiv 2a^3 + 3a^2 + 2a^1 + 3 \pmod{5}$$

Directly computing, we see that a = 1, 2, 3 satisfy $2a^3 + 3a^2 + 2a^1 + 3 \equiv 0 \pmod{5}$. Thus the zeroes of this polynomial in \mathbb{Z}_5 are 0, 1, 2, 3.

- a. True.
- b. True.
- c. True.
- d. True.
- e. False.
- f. False. For instance, $f(x) = 2x^3$ and $g(x) = 2x^4$ in $\mathbb{Z}_4[x]$.
- g. True.
- h. True.
- i. True.
- j. False.

25) (a) The units of D[x] are simply the units of D when D is an integral domain. It's clear that the units of D are units in D[x]. For the reverse inclusion, let $f \in D[x]^{\times}$. Then there exists $g \in D[x]$ such that fg = 1. Then since over an integral domain, we have $\deg(fg) = \deg(f) + \deg(g)$, we have $\deg(f) + \deg(g) = \deg(1) = 0$. In particular, $\deg(f) = \deg(g) = 0$ and both f and g are constants in D. Since fg = 1, we see that f and g are units in D as desired.

(b) By part (a), $(\mathbb{Z}[x])^{\times} = \mathbb{Z}^{\times} = \{\pm 1\}$ since \mathbb{Z} is an integral domain.

(c) By part (a), $(\mathbb{Z}_7[x])^{\times} = \mathbb{Z}_7^{\times} = \mathbb{Z}_7 - \{0\}$ since \mathbb{Z}_7 is a field.

Section 23: 2) $q(x) = 5x^4 + 5x^2 + 6x$ and r(x) = x + 2.

6) The generators of \mathbb{Z}_7 are 3 and 5.

7) First note (by direct computation) that 3 is a generator of \mathbb{Z}_{17} . Then all generators of \mathbb{Z}_{17} are given by 3^a where gcd(a, 16) = 1. This list is $\{3, 5, 6, 7, 10, 11, 12, 14\}$.

9) $x^4 + 4 \equiv x^4 - 1 = (x - 1)(x - 2)(x - 3)(x - 4) \pmod{5}$ by Fermat's little theorem.

12) We have $x^3 + 2x + 3 = (x+3)(x+1)^2$ in $\mathbb{Z}_5[x]$ and is thus not irreducible.

14) We have that $f(x) = x^2 + 8x - 2$ is irreducible over \mathbb{Q} iff it has no roots in \mathbb{Q} . To see if it has any roots, we use the quadratic formula which gives that any root if of the form

$$\frac{-8 \pm \sqrt{64 + 8}}{2} = \frac{-8 \pm \sqrt{72}}{2} = \frac{-8 \pm 6\sqrt{2}}{2} = -4 \pm 3\sqrt{2}.$$

As $\sqrt{2}$ is irrational, so is $-4 \pm 3\sqrt{2}$ and thus f(x) has no roots in \mathbb{Q} and is irreducible over \mathbb{Q} . However, f(x) is reducible over \mathbb{R} or \mathbb{C} as it has real (and thus complex) roots.

16) By the rational root theorem, if $f(x) = x^3 + 3x^2 - 8$ has a root in \mathbb{Q} , then the root is in the set $\{\pm 1, \pm 2, \pm 4\}$. By direct computation, none of these elements are roots and thus f(x) has no roots in \mathbb{Q} . Since f(x) is a cubic, this means that f(x) is irreducible over \mathbb{Q} .

18) $x^2 - 12$ is an Eisenstein polynomial for p = 3 and is thus irreducible over \mathbb{Q} .

20) $4x^{10} - 9x^3 + 24x - 18$ is not Eisenstein for any prime *p*. Indeed, because of the cubic term $-9x^3$ the only possible prime to use is p = 3. However, 9 divides the constant term which is -18.

25)

a. True.

- b. True.
- c. True.
- d. False. x = 2 is a zero.
- e. True.
- f. False. Every non-zero element is a unit.
- g. True (unless you want to say that 0 is a counter-example).
- h. True (unless you want to say that 0 is a counter-example).
- i. True.
- j. False. The 0 polynomial can have infinitely many zeroes.

26) We have $f(x) = x^4 + x^3 + x^2 - x + 1$ has x + 2 as a factor iff f(x) has -2 as root. This is the case if $f(-2) \equiv 0 \pmod{p}$. Since $f(-2) = (-2)^4 + (-2)^3 + (-2)^2 - (-2) + 1 = 15$ we have that this holds iff p = 3 or p = 5.

28) The only polynomials of degree 3 in $\mathbb{Z}_2[x]$ are:

$$x^{3}, x^{3} + 1, x^{3} + x, x^{3} + x + 1, x^{3} + x^{2}, x^{3} + x^{2} + 1, x^{3} + x^{2} + x, x^{3} + x^{2} + x + 1.$$

The irreducible ones in this list are the ones with no roots in \mathbb{Z}_2 . First eliminating the ones with 0 as a root gives:

$$x^{3} + 1, x^{3} + x + 1, x^{3} + x^{2} + 1, x^{3} + x^{2} + x + 1$$

Then eliminating the ones with 1 as a root gives

$$x^3 + x + 1, x^3 + x^2 + 1.$$

30) Now there are a lot of polynomials to consider. Let's not list them all. Rather any such polynomial will be of the form $ax^3 + bx^2 + cx + d$ with $a \neq 0$. In fact, let's scale so that a = 1. Then if such a polynomial is irreducible then 0, 1 and 2 are not zeroes. Since 0 is not a zero, we know that $d \neq 0$. Since 1 is not a root, we know that $1 + b + c + d \neq 0$. Since 2 is not a root, we know that $2 + b + 2c + d \neq 0$.

The complete list of such polynomials is:

$$x^{3} + 2x + 1, x^{3} + 2x + 2, x^{3} + x^{2} + 2, x^{3} + x^{2} + x + 2, x^{3} + x^{2} + 2x + 1, x^{3} + 2x^{2} + 1, x^{3} + 2x^{2} + x + 1, x^{3} + 2x^{2} + 2x + 2, x^{3} + x^{2} + 2x + 2, x^{3} + 2x^{2} + 2x^{2} + 2, x^{3} + 2x^{2} + 2, x^{3} + 2x^{2} + 2, x^{3} + 2x^{$$

These are just the monic irreducibles. There are also the polynomials whose leading coefficient is 2 (which is obtained by simply scaling each polynomial in the above list by 2):

$$2x^{3} + x + 1, 2x^{3} + x + 2, 2x^{3} + x^{2} + 2, 2x^{3} + x^{2} + x + 1, 2x^{3} + x^{2} + 2x + 2, 2x^{3} + 2x^{2} + 1, 2x^{3} + 2x^{2} + x + 2, 2x^{3} + 2x^{2} + 2x + 1, 2x^{3} + 2x^{2} + 2x + 2, 2x^{3} + 2x^{2} + 2x^{3} + 2x^{3} + 2x^{2} + 2x^{3} +$$

34) To show that $f(x) = x^p + a$ is never irreducible over \mathbb{Z}_p , we will exhibit a root of this polynomial. Namely,

$$f(-a) = (-a)^p + a = -a + a = 0$$

as by Fermat's little theorem $b^p = b$ for any b in \mathbb{Z}_p .

37c) The mod 5 reduction of f is $x^3 + 2x + 1$ which is irreducible as it has no roots in \mathbb{Z}_5 . Thus, f is irreducible over \mathbb{Q} .