Introduction to Analysis – MA 542 – Fall 2019 – R. Pollack HW #4 Solutions

Section 26:

1) Let $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be a ring homomorphism. Let $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Then the values of $\varphi(e_1)$ and $\varphi(e_2)$ completely determine φ as

$$\varphi((a,b)) = a\varphi(e_1) + b\varphi(e_2)$$

since φ is an additive homomorphism.

Write $\varphi(e_1) = f_1$ and $\varphi(e_2) = f_2$. Since $e_1 \cdot e_1 = e_1$ and φ is a ring homomorphism, we must have that $\varphi(e_1) \cdot \varphi(e_1) = \varphi(e_1)$ and thus $f_1 \cdot f_1 = f_1$. Likewise, $e_2 \cdot e_2 = e_2$ gives that $f_2 \cdot f_2 = f_2$. Further, $e_1 \cdot e_2 = (0, 0)$ implies $f_1 \cdot f_2 = (0, 0)$.

We claim now that any choice of f_1 and f_2 such that $f_1^2 = f_1$, $f_2^2 = f_2$ and $f_1 \cdot f_2 = (0,0)$ gives rise to a ring homomorphism where $\varphi(e_1) = f_1$ and $\varphi(e_2) = f_2$. Indeed, the corresponding φ is clearly an additive ring homomorphism. To check that it is a multiplicative homomorphism, note that

$$\varphi((a,b) \cdot (c,d)) = \varphi((ac,bd)) = \varphi(ace_1 + bde_2) = acf_1 + bdf_2$$

while

$$\begin{aligned} \varphi((a,b)) \cdot \varphi((c,d)) &= \varphi(ae_1 + be_2) \cdot \varphi(ce_1 + de_2) \\ &= (af_1 + bf_2) \cdot (cf_1 + df_2) \\ &= acf_1f_1 + adf_1f_2 + bcf_2f_1 + bdf_2f_2 \\ &= acf_1 + bdf_2 \end{aligned}$$

since $f_1^2 = f_1$, $f_2^2 = f_2$ and $f_1 f_2 = 0$. Thus $\varphi((a, b) \cdot (c, d)) = \varphi((a, b)) \cdot \varphi((c, d))$ and φ is a ring homomorphism.

Finally, we must compute all possible values of $f_1 = (a, b)$ and $f_2 = (c, d)$ satisfying $f_1^2 = f_1$, $f_2^2 = f_2$ and $f_1f_2 = 0$. Since $f_1^2 = f_1$, we have $(a, b) \cdot (a, b) = (a, b)$ which implies that $a^2 = a$ and $b^2 = b$. Since $a, b \in \mathbb{Z}$, we must have that a = 0 or 1 and b = 0 or 1. Similarly, by considering $f_2 \cdot f_2 = f_2$ we deduce that c = 0 or 1 and d = 0 or 1. Further, $f_1f_2 = (0, 0)$ implies that (ac, bd) = (0, 0) and thus ac = 0 and bd = 0.

There are nine such possible values of a, b, c, d solving these equations. Namely,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3) We first consider the principal ideals $I = x\mathbb{Z}_{12}$. We have

$$\begin{aligned} x &= 0: I = 0\mathbb{Z}_{12} = \{0\} \\ x &= 1: I = x\mathbb{Z}_{12} = \mathbb{Z}_{12} \\ x &= 2: I = x\mathbb{Z}_{12} = \{0, 2, 4, 6, 8, 10\} \\ x &= 3: I = x\mathbb{Z}_{12} = \{0, 2, 4, 6, 8, 10\} \\ x &= 3: I = x\mathbb{Z}_{12} = \{0, 3, 6, 9\} \\ x &= 4: I = x\mathbb{Z}_{12} = \{0, 4, 8\} \\ x &= 5: I = x\mathbb{Z}_{12} = \{0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7\} = \mathbb{Z}_{12} \\ x &= 6: I = x\mathbb{Z}_{12} = \{0, 6\} \\ x &= 7: I = x\mathbb{Z}_{12} = \{0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5\} = \mathbb{Z}_{12} \\ x &= 8: I = x\mathbb{Z}_{12} = \{0, 8, 4\} = 4\mathbb{Z}_{12} \\ x &= 9: I = x\mathbb{Z}_{12} = \{0, 9, 6, 3\} = 3\mathbb{Z}_{12} \\ x &= 10: I = x\mathbb{Z}_{12} = \{0, 10, 8, 6, 4, 2\} = 2\mathbb{Z}_{12} \\ x &= 11: I = x\mathbb{Z}_{12} = \{0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1\} = \mathbb{Z}_{12} \end{aligned}$$

This gives 6 distinct principal ideals: $\langle 0 \rangle, \langle 1 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 4 \rangle, \langle 6 \rangle$. It turns out that all ideals in this ring are principal and so there are no additional ideals to consider.

Now for the factors rings. In each case $\mathbb{Z}_{12}/\langle n \rangle$ is isomorphic to $\mathbb{Z}_{\text{gcd}(n,12)}$ if we interpret \mathbb{Z}_1 to be the zero ring.

4)

	+		0 +	$8\mathbb{Z}$	2 +	$8\mathbb{Z}$	4 +	8Z	6 +	$8\mathbb{Z}$	
Addition table:	$0+8\mathbb{Z}$		$0+8\mathbb{Z}$		$2+8\mathbb{Z}$		$4+8\mathbb{Z}$		$6+8\mathbb{Z}$		
	$2+8\mathbb{Z}$		$2+8\mathbb{Z}$		$4+8\mathbb{Z}$		$6+8\mathbb{Z}$		$0+8\mathbb{Z}$		
	$4+8\mathbb{Z}$		$4+8\mathbb{Z}$		$6+8\mathbb{Z}$		$0+8\mathbb{Z}$		$2+8\mathbb{Z}$		
	$6+8\mathbb{Z}$		$6+8\mathbb{Z}$		$0+8\mathbb{Z}$		$2+8\mathbb{Z}$		$4+8\mathbb{Z}$		
		•	0 -	- 8Z	2 +	$-8\mathbb{Z}$	4+	- 8Z	6 +	$-8\mathbb{Z}$	
Multiplication table:		$0+8\mathbb{Z}$		$0+8\mathbb{Z}$		$0+8\mathbb{Z}$		$0+8\mathbb{Z}$		0 +	- 8Z
		$2+8\mathbb{Z}$		$0+8\mathbb{Z}$		$4+8\mathbb{Z}$		$0+8\mathbb{Z}$		4 -	- 8Z
		$4+8\mathbb{Z}$		$0+8\mathbb{Z}$		$0+8\mathbb{Z}$		$0+8\mathbb{Z}$		$0+8\mathbb{Z}$	
		6 +	$6+8\mathbb{Z}$		$0+8\mathbb{Z}$		$4+8\mathbb{Z}$		$0+8\mathbb{Z}$		- 8Z

From these tables we can see that $2\mathbb{Z}/8\mathbb{Z}$ is not isomorphic to \mathbb{Z}_4 . Indeed, there is no multiplicative identity in $2\mathbb{Z}/8\mathbb{Z}$ while there is one in \mathbb{Z}_4 . 10)

- a. Yes...I guess so.
- b. False. For instance $\mathbb{Z} \to \mathbb{Z}[i]$ by $a \mapsto a + 0i$ is a ring homomorphism, but \mathbb{Z} is not an ideal of $\mathbb{Z}[i]$.
- c. True.
- d. False. If an ideal contains 1, then it must be the whole ring.
- e. True.
- f. False. As above with \mathbb{Z} and $\mathbb{Z}[i]$.
- g. True
- h. True.
- i. True.
- j. Yes.
- 12) For any prime p, \mathbb{Z}_p is a field and \mathbb{Z}_p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$.
- 13) We have that \mathbb{Z} is an integral domain, but $\mathbb{Z}/4\mathbb{Z}$ is not an integral domain as $2 \cdot 2 = 0$.

¹⁴⁾ We have that \mathbb{Z}_6 is not an integral domain as $2 \cdot 3 = 0$, but $\mathbb{Z}_6/2\mathbb{Z}_6$ is isomorphic to \mathbb{Z}_3 which is a field and thus an integral domain.

- a. This is a silly question. I think the answer the textbook is looking for is that one shouldn't write $r, s \in R/N$; one should instead write $r + N, s + N \in R/N$. But maybe r is the notation for a coset of the form a + N...
- b. see above
- c. We have R/N is commutative iff (r+N)(s+N) = (s+N)(r+N) for all $r, s \in R$ iff rs+N = sr+N iff $rs-sr \in N$.
- 17) Write $\mathbb{Z}[\sqrt{2}]$ for R in this question. Then $\mathbb{Z}[\sqrt{2}]$ is closed under + and \cdot as

$$a + b\sqrt{2} + c + d\sqrt{2} = a + c + (b + d)\sqrt{2}$$

and

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$$

Clearly $0 \in \mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{2}]$ has additive inverses as $-(a + b\sqrt{2}) = -a - b\sqrt{2}$. The remaining ring axioms all follow as $\mathbb{Z}[\sqrt{2}]$ is contained in \mathbb{R} .

For R', we have

$$\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} + \begin{pmatrix} c & 2d \\ d & c \end{pmatrix} = \begin{pmatrix} a+c & 2(b+d) \\ b+d & a+c \end{pmatrix}$$

and

$$\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} c & 2d \\ d & c \end{pmatrix} = \begin{pmatrix} ac+2bd & 2(ad+bc) \\ ad+bc & ac+2bd \end{pmatrix}$$

and thus addition and multiplication are closed on R'. Again clearly $0 \in R'$ and $-\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} = \begin{pmatrix} -a & 2(-b) \\ -b & -a \end{pmatrix}$ making R' a subring.

Finally, consider the map $\varphi : \mathbb{Z}[\sqrt{2}] \to R'$ by $\varphi(a + b\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix}$. We have

$$\varphi((a+b\sqrt{2})(c+d\sqrt{2})) = \varphi((ac+2bd) + (ad+bc)\sqrt{2}) = \begin{pmatrix} ac+2bd & 2(ad+bc)\\ ad+bc & ac+2bd \end{pmatrix}$$

while

$$\varphi(a+b\sqrt{2})\varphi(c+d\sqrt{2}) = \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} \cdot \begin{pmatrix} c & 2d \\ d & c \end{pmatrix} = \begin{pmatrix} ac+2bd & 2(ad+bc) \\ ad+bc & ac+2bd \end{pmatrix}.$$

Seeing that φ is an additive homomorphism is easy and thus φ is a ring homomorphism. Clearly φ is surjective. We then just need to compute its kernel. We have $a + b\sqrt{2} \in \ker(\varphi)$ implies $\begin{pmatrix} a & 2b \\ b & a \end{pmatrix} = 0$ which implies that a = b = 0. Thus $\ker(\varphi) = \{0\}$ and φ is injective. Hence, φ is an isomorphism.

24) The only ideals of a field F are $\{0\}$ and F as proven in class. Thus, the only possible quotients are F/F and $F/\{0\}$. Here F/F is the zero ring while $F/\{0\}$ is isomorphic to F.

26) Clearly $0 \in I_a$. For $x, y \in I_a$ we have ax = 0 and ay = 0. Thus 0 = ax + ay = a(x + y) which implies a(x + y) = 0. $x + y \in I_a$. Lastly, for $x \in I_a$ and $r \in R$, we have ax = 0 and thus axr = 0 which implies $xr \in I_a$. Hence, I_a is an ideal of R.

27) I'll check this for 2 ideals, but the same proof works for arbitrarily many ideals. Let I and J be ideals of R. First note that $0 \in I \cap J$. Next, for $x, y \in I \cap J$, we have $x, y \in I$ and $x, y \in J$. Since I and J are ideals, we have $x + y \in I$ and $x + y \in J$. Hence, $x + y \in I \cap J$ as desired. Lastly, take $x \in I \cap J$ and $r \in R$. Then since $x \in I$ and $x \in J$, we have $rx, xr \in I$ and $rx, xr \in J$ again since I and J are ideals. Thus, $rx, xr \in I \cap J$ and $I \cap J$ is an ideal of R.

30) Let I be the nilradical of R. Clearly $0 \in I$ since $0^1 = 0$. Now take $x, y \in I$ and we need to check that $x + y \in I$. Let n, m be integers such that $x^n = y^m = 0$. Then

$$(x+y)^{n+m} = \sum_{j=0}^{n+m} \binom{n+m}{j} x^j y^{m+n-j}.$$

In this sum, if $j \ge n$, then $x^j = 0$ and thus $x^j y^{m+n-j} = 0$. But if j < n, then $m + n - j \ge m$ and hence $y^{m+n-j} = 0$. Hence every term in the sum vanishes and $(x+y)^{n+m} = 0$. Thus $x+y \in I$ as desired.

Finally, for $r \in R$ and $x \in I$, we need to check that $rx \in I$. But this is easy as $x \in I$ implies that there is some n such that $x^n = 0$. But then $(rx)^n = r^n x^n = 0$ and so $rx \in I$.

31) For \mathbb{Z}_{12} , we have $x^n = 0 \in \mathbb{Z}_{12}$ implies $4|x^n$ and $3|x^n$. In particular, 2|x and 3|x which implies 6|x. Since $6^2 = 0$ in \mathbb{Z}_{12} , we have that 6 is in fact nilpotent in \mathbb{Z}_{12} and thus, the nilradical of \mathbb{Z}_{12} is the principal ideal generated by 6.

For \mathbb{Z} , since \mathbb{Z} is an integral domain, the only nilpotent element is 0 and the nilradical is just $\{0\}$.

For \mathbb{Z}_{32} , we have $x^n = 0 \in \mathbb{Z}_{32}$ implies $2^5 | x^n$ which implies that 2 | x. Since $2^5 = 0$ in \mathbb{Z}_{32} , we have that 2 is in fact nilpotent in \mathbb{Z}_{32} and thus, the nilradical of \mathbb{Z}_{32} is the principal ideal generated by 2.

32) Assume x + N is nilpotent in R/N. Then $(x + N)^n = 0$ for some n and thus $x^n + N = 0$. This implies that $x^n \in N$. Thus x^n is nilpotent in R and there exists m such that $(x^n)^m = 0$ in R. But then $x^{nm} = 0$ in R and x is nilpotent in R. Hence $x \in N$ and x + N = 0 in R/N as desired.