Section 26:

1) Let $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a ring homomorphism. Let $e_{1}=(1,0)$ and $e_{2}=(0,1)$. Then the values of $\varphi\left(e_{1}\right)$ and $\varphi\left(e_{2}\right)$ completely determine φ as

$$
\varphi((a, b))=a \varphi\left(e_{1}\right)+b \varphi\left(e_{2}\right)
$$

since φ is an additive homomorphism.
Write $\varphi\left(e_{1}\right)=f_{1}$ and $\varphi\left(e_{2}\right)=f_{2}$. Since $e_{1} \cdot e_{1}=e_{1}$ and φ is a ring homomorphism, we must have that $\varphi\left(e_{1}\right) \cdot \varphi\left(e_{1}\right)=\varphi\left(e_{1}\right)$ and thus $f_{1} \cdot f_{1}=f_{1}$. Likewise, $e_{2} \cdot e_{2}=e_{2}$ gives that $f_{2} \cdot f_{2}=f_{2}$. Further, $e_{1} \cdot e_{2}=(0,0)$ implies $f_{1} \cdot f_{2}=(0,0)$.

We claim now that any choice of f_{1} and f_{2} such that $f_{1}^{2}=f_{1}, f_{2}^{2}=f_{2}$ and $f_{1} \cdot f_{2}=(0,0)$ gives rise to a ring homomorphism where $\varphi\left(e_{1}\right)=f_{1}$ and $\varphi\left(e_{2}\right)=f_{2}$. Indeed, the corresponding φ is clearly an additive ring homomorphism. To check that it is a multiplicative homomorphism, note that

$$
\varphi((a, b) \cdot(c, d))=\varphi((a c, b d))=\varphi\left(a c e_{1}+b d e_{2}\right)=a c f_{1}+b d f_{2}
$$

while

$$
\begin{aligned}
\varphi((a, b)) \cdot \varphi((c, d)) & =\varphi\left(a e_{1}+b e_{2}\right) \cdot \varphi\left(c e_{1}+d e_{2}\right) \\
& =\left(a f_{1}+b f_{2}\right) \cdot\left(c f_{1}+d f_{2}\right) \\
& =a c f_{1} f_{1}+a d f_{1} f_{2}+b c f_{2} f_{1}+b d f_{2} f_{2} \\
& =a c f_{1}+b d f_{2}
\end{aligned}
$$

since $f_{1}^{2}=f_{1}, f_{2}^{2}=f_{2}$ and $f_{1} f_{2}=0$. Thus $\varphi((a, b) \cdot(c, d))=\varphi((a, b)) \cdot \varphi((c, d))$ and φ is a ring homomorphism.
Finally, we must compute all possible values of $f_{1}=(a, b)$ and $f_{2}=(c, d)$ satisfying $f_{1}^{2}=f_{1}, f_{2}^{2}=f_{2}$ and $f_{1} f_{2}=0$. Since $f_{1}^{2}=f_{1}$, we have $(a, b) \cdot(a, b)=(a, b)$ which implies that $a^{2}=a$ and $b^{2}=b$. Since $a, b \in \mathbb{Z}$, we must have that $a=0$ or 1 and $b=0$ or 1 . Similarly, by considering $f_{2} \cdot f_{2}=f_{2}$ we deduce that $c=0$ or 1 and $d=0$ or 1 . Further, $f_{1} f_{2}=(0,0)$ implies that $(a c, b d)=(0,0)$ and thus $a c=0$ and $b d=0$.

There are nine such possible values of a, b, c, d solving these equations. Namely,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

3) We first consider the principal ideals $I=x \mathbb{Z}_{12}$. We have

$$
\begin{aligned}
& x=0: I=0 \mathbb{Z}_{12}=\{0\} \\
& x=1: I=x \mathbb{Z}_{12}=\mathbb{Z}_{12} \\
& x=2: I=x \mathbb{Z}_{12}=\{0,2,4,6,8,10\} \\
& x=3: I=x \mathbb{Z}_{12}=\{0,3,6,9\} \\
& x=4: I=x \mathbb{Z}_{12}=\{0,4,8\} \\
& x=5: I=x \mathbb{Z}_{12}=\{0,5,10,3,8,1,6,11,4,9,2,7\}=\mathbb{Z}_{12} \\
& x=6: I=x \mathbb{Z}_{12}=\{0,6\} \\
& x=7: I=x \mathbb{Z}_{12}=\{0,7,2,9,4,11,6,1,8,3,10,5\}=\mathbb{Z}_{12} \\
& x=8: I=x \mathbb{Z}_{12}=\{0,8,4\}=4 \mathbb{Z}_{12} \\
& x=9: I=x \mathbb{Z}_{12}=\{0,9,6,3\}=3 \mathbb{Z}_{12} \\
& x=10: I=x \mathbb{Z}_{12}=\{0,10,8,6,4,2\}=2 \mathbb{Z}_{12} \\
& x=11: I=x \mathbb{Z}_{12}=\{0,11,10,9,8,7,6,5,4,3,2,1\}=\mathbb{Z}_{12}
\end{aligned}
$$

This gives 6 distinct principal ideals: $\langle 0\rangle,\langle 1\rangle,\langle 2\rangle,\langle 3\rangle,\langle 4\rangle,\langle 6\rangle$. It turns out that all ideals in this ring are principal and so there are no additional ideals to consider.

Now for the factors rings. In each case $\mathbb{Z}_{12} /\langle n\rangle$ is isomorphic to $\mathbb{Z}_{\operatorname{gcd}(n, 12)}$ if we interpret \mathbb{Z}_{1} to be the zero ring.
4)

Addition table:

+	$0+8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$
$0+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$
$2+8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$	$0+8 \mathbb{Z}$
$4+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$2+8 \mathbb{Z}$
$6+8 \mathbb{Z}$	$6+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$

Multiplication table:

\cdot	$0+8 \mathbb{Z}$	$2+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$6+8 \mathbb{Z}$
$0+8 \mathbb{Z}$				
$2+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$4+8 \mathbb{Z}$
$4+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$0+8 \mathbb{Z}$
$6+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$4+8 \mathbb{Z}$	$0+8 \mathbb{Z}$	$4+8 \mathbb{Z}$

From these tables we can see that $2 \mathbb{Z} / 8 \mathbb{Z}$ is not isomorphic to \mathbb{Z}_{4}. Indeed, there is no multiplicative identity in $2 \mathbb{Z} / 8 \mathbb{Z}$ while there is one in \mathbb{Z}_{4}.
10)
a. Yes...I guess so.
b. False. For instance $\mathbb{Z} \rightarrow \mathbb{Z}[i]$ by $a \mapsto a+0 i$ is a ring homomorphism, but \mathbb{Z} is not an ideal of $\mathbb{Z}[i]$.
c. True.
d. False. If an ideal contains 1 , then it must be the whole ring.
e. True.
f. False. As above with \mathbb{Z} and $\mathbb{Z}[i]$.
g. True
h. True.
i. True.
j. Yes.
12) For any prime p, \mathbb{Z}_{p} is a field and \mathbb{Z}_{p} is isomorphic to $\mathbb{Z} / p \mathbb{Z}$.
13) We have that \mathbb{Z} is an integral domain, but $\mathbb{Z} / 4 \mathbb{Z}$ is not an integral domain as $2 \cdot 2=0$.
14) We have that \mathbb{Z}_{6} is not an integral domain as $2 \cdot 3=0$, but $\mathbb{Z}_{6} / 2 \mathbb{Z}_{6}$ is isomorphic to \mathbb{Z}_{3} which is a field and thus an integral domain.
a. This is a silly question. I think the answer the textbook is looking for is that one shouldn't write $r, s \in R / N$; one should instead write $r+N, s+N \in R / N$. But maybe r is the notation for a coset of the form $a+N \ldots$
b. see above
c. We have R / N is commutative iff $(r+N)(s+N)=(s+N)(r+N)$ for all $r, s \in R$ iff $r s+N=s r+N$ iff $r s-s r \in N$.
17) Write $\mathbb{Z}[\sqrt{2}]$ for R in this question. Then $\mathbb{Z}[\sqrt{2}]$ is closed under + and \cdot as

$$
a+b \sqrt{2}+c+d \sqrt{2}=a+c+(b+d) \sqrt{2}
$$

and

$$
(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}
$$

Clearly $0 \in \mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{2}]$ has additive inverses as $-(a+b \sqrt{2})=-a-b \sqrt{2}$. The remaining ring axioms all follow as $\mathbb{Z}[\sqrt{2}]$ is contained in \mathbb{R}.

For R^{\prime}, we have

$$
\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right)+\left(\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a+c & 2(b+d) \\
b+d & a+c
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right) \cdot\left(\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a c+2 b d & 2(a d+b c) \\
a d+b c & a c+2 b d
\end{array}\right)
$$

and thus addition and multiplication are closed on R^{\prime}. Again clearly $0 \in R^{\prime}$ and $-\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)=\left(\begin{array}{cc}-a & 2(-b) \\ -b & -a\end{array}\right)$ making R^{\prime} a subring.

Finally, consider the map $\varphi: \mathbb{Z}[\sqrt{2}] \rightarrow R^{\prime}$ by $\varphi(a+b \sqrt{2})=\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)$. We have

$$
\varphi((a+b \sqrt{2})(c+d \sqrt{2}))=\varphi((a c+2 b d)+(a d+b c) \sqrt{2})=\left(\begin{array}{cc}
a c+2 b d & 2(a d+b c) \\
a d+b c & a c+2 b d
\end{array}\right)
$$

while

$$
\varphi(a+b \sqrt{2}) \varphi(c+d \sqrt{2})=\left(\begin{array}{cc}
a & 2 b \\
b & a
\end{array}\right) \cdot\left(\begin{array}{cc}
c & 2 d \\
d & c
\end{array}\right)=\left(\begin{array}{cc}
a c+2 b d & 2(a d+b c) \\
a d+b c & a c+2 b d
\end{array}\right)
$$

Seeing that φ is an additive homomorphism is easy and thus φ is a ring homomorphism. Clearly φ is surjective. We then just need to compute its kernel. We have $a+b \sqrt{2} \in \operatorname{ker}(\varphi) \operatorname{implies}\left(\begin{array}{cc}a & 2 b \\ b & a\end{array}\right)=0$ which implies that $a=b=0$. Thus $\operatorname{ker}(\varphi)=\{0\}$ and φ is injective. Hence, φ is an isomorphism.
24) The only ideals of a field F are $\{0\}$ and F as proven in class. Thus, the only possible quotients are F / F and $F /\{0\}$. Here F / F is the zero ring while $F /\{0\}$ is isomorphic to F.
26) Clearly $0 \in I_{a}$. For $x, y \in I_{a}$ we have $a x=0$ and $a y=0$. Thus $0=a x+a y=a(x+y)$ which implies $a(x+y)=0 . x+y \in I_{a}$. Lastly, for $x \in I_{a}$ and $r \in R$, we have $a x=0$ and thus $a x r=0$ which implies $x r \in I_{a}$. Hence, I_{a} is an ideal of R.
27) I'll check this for 2 ideals, but the same proof works for arbitrarily many ideals. Let I and J be ideals of R. First note that $0 \in I \cap J$. Next, for $x, y \in I \cap J$, we have $x, y \in I$ and $x, y \in J$. Since I and J are ideals, we have $x+y \in I$ and $x+y \in J$. Hence, $x+y \in I \cap J$ as desired. Lastly, take $x \in I \cap J$ and $r \in R$. Then since $x \in I$ and $x \in J$, we have $r x, x r \in I$ and $r x, x r \in J$ again since I and J are ideals. Thus, $r x, x r \in I \cap J$ and $I \cap J$ is an ideal of R.
30) Let I be the nilradical of R. Clearly $0 \in I$ since $0^{1}=0$. Now take $x, y \in I$ and we need to check that $x+y \in I$. Let n, m be integers such that $x^{n}=y^{m}=0$. Then

$$
(x+y)^{n+m}=\sum_{j=0}^{n+m}\binom{n+m}{j} x^{j} y^{m+n-j} .
$$

In this sum, if $j \geq n$, then $x^{j}=0$ and thus $x^{j} y^{m+n-j}=0$. But if $j<n$, then $m+n-j \geq m$ and hence $y^{m+n-j}=0$. Hence every term in the sum vanishes and $(x+y)^{n+m}=0$. Thus $x+y \in I$ as desired.

Finally, for $r \in R$ and $x \in I$, we need to check that $r x \in I$. But this is easy as $x \in I$ implies that there is some n such that $x^{n}=0$. But then $(r x)^{n}=r^{n} x^{n}=0$ and so $r x \in I$.
31) For \mathbb{Z}_{12}, we have $x^{n}=0 \in \mathbb{Z}_{12}$ implies $4 \mid x^{n}$ and $3 \mid x^{n}$. In particular, $2 \mid x$ and $3 \mid x$ which implies $6 \mid x$. Since $6^{2}=0$ in \mathbb{Z}_{12}, we have that 6 is in fact nilpotent in \mathbb{Z}_{12} and thus, the nilradical of \mathbb{Z}_{12} is the principal ideal generated by 6 .

For \mathbb{Z}, since \mathbb{Z} is an integral domain, the only nilpotent element is 0 and the nilradical is just $\{0\}$.
For \mathbb{Z}_{32}, we have $x^{n}=0 \in \mathbb{Z}_{32}$ implies $2^{5} \mid x^{n}$ which implies that $2 \mid x$. Since $2^{5}=0$ in \mathbb{Z}_{32}, we have that 2 is in fact nilpotent in \mathbb{Z}_{32} and thus, the nilradical of \mathbb{Z}_{32} is the principal ideal generated by 2 .
32) Assume $x+N$ is nilpotent in R / N. Then $(x+N)^{n}=0$ for some n and thus $x^{n}+N=0$. This implies that $x^{n} \in N$. Thus x^{n} is nilpotent in R and there exists m such that $\left(x^{n}\right)^{m}=0$ in R. But then $x^{n m}=0$ in R and x is nilpotent in R. Hence $x \in N$ and $x+N=0$ in R / N as desired.

