Introduction to Analysis — MA 542 — Fall 2019 — R.. Pollack
HW +#4 Solutions

Section 26:
1) Let ¢ : ZxZ — Z X Z be a ring homomorphism. Let e; = (1,0) and es = (0,1). Then the values of ¢(e;)
and ¢(es) completely determine ¢ as

¢((a,)) = ap(er) + bp(ez2)

since ¢ is an additive homomorphism.

Write ¢(e1) = f1 and ¢(e2) = fo. Since e; - e = e; and ¢ is a ring homomorphism, we must have that
w(e1) ¢(e1) = p(er) and thus fr- f1 = f1. Likewise, e3-eq = eq gives that fo- fo = fa. Further, e;-e2 = (0,0)
implies f1 - f2 = (0,0).

We claim now that any choice of f; and fy such that fZ = fi, f2 = fo and f1 - fo = (0,0) gives rise to
a ring homomorphism where ¢(e1) = f1 and p(e2) = fo. Indeed, the corresponding ¢ is clearly an additive
ring homomorphism. To check that it is a multiplicative homomorphism, note that

o((a,b) - (¢,d)) = ¢((ac,bd)) = p(ace; + bdes) = acfy + bdfa

while

¢((a,b)) - ¢((c,d)) = p(aeyr + bez) - p(cer + dez)

= (afi +bf2) - (cf1 + df2)

= acf1f1 + adf1 f2 + befa fi + bdfa fo

= acf1 -+ bdf2
since f2 = f1, f2 = foand f1f2 = 0. Thus ¢((a,b)-(c,d)) = ¢((a,b))-¢((c,d)) and ¢ is a ring homomorphism.

Finally, we must compute all possible values of f; = (a,b) and fo = (c,d) satisfying f? = f1, 7 = fo and

fif2 = 0. Since f2 = f1, we have (a,b) - (a,b) = (a,b) which implies that a> = a and b? = b. Since a,b € Z,
we must have that a =0 or 1 and b = 0 or 1. Similarly, by considering fs - fo = fo we deduce that ¢ =0 or

1 and d =0 or 1. Further, f;f2 = (0,0) implies that (ac,bd) = (0,0) and thus ac = 0 and bd = 0.
There are nine such possible values of a, b, ¢, d solving these equations. Namely,
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3) We first consider the principal ideals I = 2Z15. We have

2 =0:1=0Z1 = {0}

x=1:1=xZis =712
x=2:1=ual3=1{0,2,4,6,8,10}
w=3:1=aZ=1{0,3,6,9)
x=4:1=2aZ=1{0,4,8}
x=5:1=ual=1{0,510,3,8,1,6,11,4,9,2,7} = Z1>
x=6:1=aZ={0,6}
w=T:1=al=1{0,7,2,9,4,11,6,1,8,3,10,5} = Z1»
x=8:1=ualis ={0,8,4} = 4Z>
x=9:1=2aZ13=1{0,9,6,3} =3Z12

2 =10:1 =27, = {0,10,8,6,4,2} = 271,

2 =11:1=aZ» = {0,11,10,9,8,7,6,5,4,3,2,1} = Z1»



This gives 6 distinct principal ideals: (0), (1), (2), (3),(4),(6). It turns out that all ideals in this ring are
principal and so there are no additional ideals to consider.

Now for the factors rings. In each case Zio/(n) is isomorphic to Zgeq(n,12) if We interpret Z; to be the
zero ring.

"

+ 0+8Z | 2+4+8Z | 4+8Z | 6+8Z
0+8Z | 0+8Z | 2+8Z | 4+8Z | 6+ 8Z

Addition table: 2+8Z | 2+8Z | 448Z | 6 +8Z | 0+ 8Z

4+8Z | 4+8Z | 6+8Z | 0+8Z | 2+ 8Z

6+8Z | 6+8Z | 0+8Z | 2+8Z | 4+ 8Z
. 0+8Z |2+4+8Z | 4+8Z | 6+8Z
0+8Z | 0+8Z | 0+8Z | 0+8Z | 0+ 8Z

Multiplication table: 2+4+8Z | 04+8Z | 4+8Z | 0+8Z | 4+ 8Z

4+8Z | 0+8Z | 0+8Z | 0+8Z | 0+ 8Z
6+8Z | 0+8Z | 4+8Z | 0+8Z | 4+ 8Z

From these tables we can see that 27Z/87Z is not isomorphic to Z4. Indeed, there is no multiplicative
identity in 27Z/87Z while there is one in Zy.

10)

a.

b.

Yes...I guess so.

False. For instance Z — Z[i] by a + a + 0i is a ring homomorphism, but Z is not an ideal of Z[i].
True.

False. If an ideal contains 1, then it must be the whole ring.

True.

False. As above with Z and Z[i].

g. True

True.

True.

. Yes.

12) For any prime p, Z, is a field and Z,, is isomorphic to Z/pZ.

13) We have that Z is an integral domain, but Z/47Z is not an integral domain as 2 -2 = 0.

14) We have that Zg is not an integral domain as 2 -3 = 0, but Zg/2Zg is isomorphic to Zs which is a field
and thus an integral domain.

16)



a. This is a silly question. I think the answer the textbook is looking for is that one shouldn’t write
r,s € R/N; one should instead write » + N, s+ N € R/N. But maybe r is the notation for a coset of
the form a + N...

b. see above

c. We have R/N is commutative iff (r + N)(s+ N) =(s+ N)(r+ N) forall r,s e Riff rs + N =sr+ N
iff rs—sreN.

17) Write Z[/2] for R in this question. Then Z[v/2] is closed under + and - as

a+bV2+c+dV2=a+c+ (b+d)V2

and

(a +bV2)(c + dV2) = (ac + 2bd) + (ad + be)V2.

Clearly 0 € Z[v/2] and Z[v/2] has additive inverses as —(a + bv/2) = —a — by/2. The remaining ring axioms
all follow as Z[v/2] is contained in R.

For R/, we have
a 2b L[ 2d\ _ [(a+c 2(b+d)
b a d c¢) \b+d a+c

a 2b\ (c 2d\ _ (ac+2bd 2(ad+ bc)
b a d c¢) \ad+bc ac+2bd

and thus addition and multiplication are closed on R’. Again clearly 0 € R’ and — (a 2b> = (a Q(b))

and

b a -b —a
making R’ a subring.

Finally, consider the map ¢ : Z[v/2] — R by p(a + bv/2) = (a 2b

). We have
b a

ad + be ac + 2bd

((a+bV2)(c+dv2)) = p((ac + 2bd) + (ad + be)v/2) = (“C +2bd 2(ad + bc))

while

a 2b c 2d ac+ 2bd  2(ad + bc
“’(“‘Lb\@)“"(”d\/ﬁ):(b a>'(d c):(ad+bc éc—l—?bd))'

Seeing that ¢ is an additive homomorphism is easy and thus ¢ is a ring homomorphism. Clearly ¢ is sur-
jective. We then just need to compute its kernel. We have a 4 by/2 € ker(ip) implies (Z 2ab> = 0 which

implies that a = b = 0. Thus ker(yp) = {0} and ¢ is injective. Hence, ¢ is an isomorphism.

24) The only ideals of a field F are {0} and F as proven in class. Thus, the only possible quotients are F'/F
and F/{0}. Here F/F is the zero ring while F//{0} is isomorphic to F.

26) Clearly 0 € I,. For z,y € I, we have ax = 0 and ay = 0. Thus 0 = az + ay = a(z + y) which implies
alr+y)=0. x+y € I,. Lastly, for x € I, and r € R, we have az = 0 and thus azr = 0 which implies
xr € I,. Hence, I, is an ideal of R.

27) I'll check this for 2 ideals, but the same proof works for arbitrarily many ideals. Let I and J be ideals of
R. First note that 0 € I N J. Next, for x,y € INJ, we have z,y € I and =,y € J. Since I and J are ideals,
we have x+y €l and z+y € J. Hence, z +y € I N J as desired. Lastly, take x € INJ and r € R. Then
since z € I and = € J, we have rx,xr € I and rz,zr € J again since I and J are ideals. Thus, rz,zr € INJ
and I NJ is an ideal of R.



30) Let I be the nilradical of R. Clearly 0 € I since 0! = 0. Now take z,y € I and we need to check that
x4y € I. Let n, m be integers such that ™ = y™ = 0. Then

n+m n + m
(x+ y)"+m = Z ( ) >xjym4rnj.
P
In this sum, if j > n, then 7 = 0 and thus z7y™+" 7 = 0. But if j < n, then m +n — j > m and hence
y™*t"=J = (. Hence every term in the sum vanishes and (z + y)"*™ = 0. Thus = + y € I as desired.
Finally, for r € R and x € I, we need to check that rz € I. But this is easy as = € I implies that there
is some n such that ™ = 0. But then (rz)” = r"z™ =0 and so rz € I.

31) For Z12, we have ™ = 0 € Z;5 implies 4|z™ and 3|2™. In particular, 2|z and 3|z which implies 6|z. Since
62 = 0 in Zi2, we have that 6 is in fact nilpotent in Zi5 and thus, the nilradical of Z, is the principal ideal
generated by 6.

For Z, since Z is an integral domain, the only nilpotent element is 0 and the nilradical is just {0}.

For Z3s, we have 2™ = 0 € Z3o implies 25|:1:” which implies that 2|x. Since 25 = 0 in Zss, we have that 2
is in fact nilpotent in Zss and thus, the nilradical of Z3, is the principal ideal generated by 2.

32) Assume x + N is nilpotent in R/N. Then (x + N)™ = 0 for some n and thus 2™ + N = 0. This implies
that 2™ € N. Thus z™ is nilpotent in R and there exists m such that (™)™ = 0 in R. But then 2™ =0 in
R and z is nilpotent in R. Hence x € N and # + N =0 in R/N as desired.



