
Introduction to Analysis – MA 542 – Fall 2019 – R. Pollack
HW #4 Solutions

Section 26:
1) Let ϕ : Z×Z→ Z×Z be a ring homomorphism. Let e1 = (1, 0) and e2 = (0, 1). Then the values of ϕ(e1)
and ϕ(e2) completely determine ϕ as

ϕ((a, b)) = aϕ(e1) + bϕ(e2)

since ϕ is an additive homomorphism.
Write ϕ(e1) = f1 and ϕ(e2) = f2. Since e1 · e1 = e1 and ϕ is a ring homomorphism, we must have that

ϕ(e1) ·ϕ(e1) = ϕ(e1) and thus f1 ·f1 = f1. Likewise, e2 ·e2 = e2 gives that f2 ·f2 = f2. Further, e1 ·e2 = (0, 0)
implies f1 · f2 = (0, 0).

We claim now that any choice of f1 and f2 such that f2
1 = f1, f2

2 = f2 and f1 · f2 = (0, 0) gives rise to
a ring homomorphism where ϕ(e1) = f1 and ϕ(e2) = f2. Indeed, the corresponding ϕ is clearly an additive
ring homomorphism. To check that it is a multiplicative homomorphism, note that

ϕ((a, b) · (c, d)) = ϕ((ac, bd)) = ϕ(ace1 + bde2) = acf1 + bdf2

while

ϕ((a, b)) · ϕ((c, d)) = ϕ(ae1 + be2) · ϕ(ce1 + de2)

= (af1 + bf2) · (cf1 + df2)

= acf1f1 + adf1f2 + bcf2f1 + bdf2f2

= acf1 + bdf2

since f2
1 = f1, f2

2 = f2 and f1f2 = 0. Thus ϕ((a, b)·(c, d)) = ϕ((a, b))·ϕ((c, d)) and ϕ is a ring homomorphism.
Finally, we must compute all possible values of f1 = (a, b) and f2 = (c, d) satisfying f2

1 = f1, f2
2 = f2 and

f1f2 = 0. Since f2
1 = f1, we have (a, b) · (a, b) = (a, b) which implies that a2 = a and b2 = b. Since a, b ∈ Z,

we must have that a = 0 or 1 and b = 0 or 1. Similarly, by considering f2 · f2 = f2 we deduce that c = 0 or
1 and d = 0 or 1. Further, f1f2 = (0, 0) implies that (ac, bd) = (0, 0) and thus ac = 0 and bd = 0.

There are nine such possible values of a, b, c, d solving these equations. Namely,(
a b
c d

)
=

(
0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
1 1
0 0

)
,

(
0 1
1 0

)
,

(
0 1
1 0

)
,

(
1 0
0 1

)
.

3) We first consider the principal ideals I = xZ12. We have

x = 0 : I = 0Z12 = {0}
x = 1 : I = xZ12 = Z12

x = 2 : I = xZ12 = {0, 2, 4, 6, 8, 10}
x = 3 : I = xZ12 = {0, 3, 6, 9}
x = 4 : I = xZ12 = {0, 4, 8}
x = 5 : I = xZ12 = {0, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7} = Z12

x = 6 : I = xZ12 = {0, 6}
x = 7 : I = xZ12 = {0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5} = Z12

x = 8 : I = xZ12 = {0, 8, 4} = 4Z12

x = 9 : I = xZ12 = {0, 9, 6, 3} = 3Z12

x = 10 : I = xZ12 = {0, 10, 8, 6, 4, 2} = 2Z12

x = 11 : I = xZ12 = {0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} = Z12



This gives 6 distinct principal ideals: 〈0〉, 〈1〉, 〈2〉, 〈3〉, 〈4〉, 〈6〉. It turns out that all ideals in this ring are
principal and so there are no additional ideals to consider.

Now for the factors rings. In each case Z12/〈n〉 is isomorphic to Zgcd(n,12) if we interpret Z1 to be the
zero ring.

4)

Addition table:

+ 0 + 8Z 2 + 8Z 4 + 8Z 6 + 8Z
0 + 8Z 0 + 8Z 2 + 8Z 4 + 8Z 6 + 8Z
2 + 8Z 2 + 8Z 4 + 8Z 6 + 8Z 0 + 8Z
4 + 8Z 4 + 8Z 6 + 8Z 0 + 8Z 2 + 8Z
6 + 8Z 6 + 8Z 0 + 8Z 2 + 8Z 4 + 8Z

Multiplication table:

· 0 + 8Z 2 + 8Z 4 + 8Z 6 + 8Z
0 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z
2 + 8Z 0 + 8Z 4 + 8Z 0 + 8Z 4 + 8Z
4 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z 0 + 8Z
6 + 8Z 0 + 8Z 4 + 8Z 0 + 8Z 4 + 8Z

From these tables we can see that 2Z/8Z is not isomorphic to Z4. Indeed, there is no multiplicative
identity in 2Z/8Z while there is one in Z4.
10)

a. Yes...I guess so.

b. False. For instance Z→ Z[i] by a 7→ a + 0i is a ring homomorphism, but Z is not an ideal of Z[i].

c. True.

d. False. If an ideal contains 1, then it must be the whole ring.

e. True.

f. False. As above with Z and Z[i].

g. True

h. True.

i. True.

j. Yes.

12) For any prime p, Zp is a field and Zp is isomorphic to Z/pZ.

13) We have that Z is an integral domain, but Z/4Z is not an integral domain as 2 · 2 = 0.

14) We have that Z6 is not an integral domain as 2 · 3 = 0, but Z6/2Z6 is isomorphic to Z3 which is a field
and thus an integral domain.

16)



a. This is a silly question. I think the answer the textbook is looking for is that one shouldn’t write
r, s ∈ R/N ; one should instead write r + N, s + N ∈ R/N . But maybe r is the notation for a coset of
the form a + N ...

b. see above

c. We have R/N is commutative iff (r +N)(s+N) = (s+N)(r +N) for all r, s ∈ R iff rs+N = sr +N
iff rs− sr ∈ N .

17) Write Z[
√

2] for R in this question. Then Z[
√

2] is closed under + and · as

a + b
√

2 + c + d
√

2 = a + c + (b + d)
√

2

and
(a + b

√
2)(c + d

√
2) = (ac + 2bd) + (ad + bc)

√
2.

Clearly 0 ∈ Z[
√

2] and Z[
√

2] has additive inverses as −(a + b
√

2) = −a− b
√

2. The remaining ring axioms
all follow as Z[

√
2] is contained in R.

For R′, we have (
a 2b
b a

)
+

(
c 2d
d c

)
=

(
a + c 2(b + d)
b + d a + c

)
and (

a 2b
b a

)
·
(
c 2d
d c

)
=

(
ac + 2bd 2(ad + bc)
ad + bc ac + 2bd

)
and thus addition and multiplication are closed on R′. Again clearly 0 ∈ R′ and −

(
a 2b
b a

)
=

(
−a 2(−b)
−b −a

)
making R′ a subring.

Finally, consider the map ϕ : Z[
√

2]→ R′ by ϕ(a + b
√

2) =

(
a 2b
b a

)
. We have

ϕ((a + b
√

2)(c + d
√

2)) = ϕ((ac + 2bd) + (ad + bc)
√

2) =

(
ac + 2bd 2(ad + bc)
ad + bc ac + 2bd

)
while

ϕ(a + b
√

2)ϕ(c + d
√

2) =

(
a 2b
b a

)
·
(
c 2d
d c

)
=

(
ac + 2bd 2(ad + bc)
ad + bc ac + 2bd

)
.

Seeing that ϕ is an additive homomorphism is easy and thus ϕ is a ring homomorphism. Clearly ϕ is sur-

jective. We then just need to compute its kernel. We have a + b
√

2 ∈ ker(ϕ) implies

(
a 2b
b a

)
= 0 which

implies that a = b = 0. Thus ker(ϕ) = {0} and ϕ is injective. Hence, ϕ is an isomorphism.

24) The only ideals of a field F are {0} and F as proven in class. Thus, the only possible quotients are F/F
and F/{0}. Here F/F is the zero ring while F/{0} is isomorphic to F .

26) Clearly 0 ∈ Ia. For x, y ∈ Ia we have ax = 0 and ay = 0. Thus 0 = ax + ay = a(x + y) which implies
a(x + y) = 0. x + y ∈ Ia. Lastly, for x ∈ Ia and r ∈ R, we have ax = 0 and thus axr = 0 which implies
xr ∈ Ia. Hence, Ia is an ideal of R.

27) I’ll check this for 2 ideals, but the same proof works for arbitrarily many ideals. Let I and J be ideals of
R. First note that 0 ∈ I ∩ J . Next, for x, y ∈ I ∩ J , we have x, y ∈ I and x, y ∈ J . Since I and J are ideals,
we have x + y ∈ I and x + y ∈ J . Hence, x + y ∈ I ∩ J as desired. Lastly, take x ∈ I ∩ J and r ∈ R. Then
since x ∈ I and x ∈ J , we have rx, xr ∈ I and rx, xr ∈ J again since I and J are ideals. Thus, rx, xr ∈ I ∩J
and I ∩ J is an ideal of R.



30) Let I be the nilradical of R. Clearly 0 ∈ I since 01 = 0. Now take x, y ∈ I and we need to check that
x + y ∈ I. Let n,m be integers such that xn = ym = 0. Then

(x + y)n+m =

n+m∑
j=0

(
n + m

j

)
xjym+n−j .

In this sum, if j ≥ n, then xj = 0 and thus xjym+n−j = 0. But if j < n, then m + n − j ≥ m and hence
ym+n−j = 0. Hence every term in the sum vanishes and (x + y)n+m = 0. Thus x + y ∈ I as desired.

Finally, for r ∈ R and x ∈ I, we need to check that rx ∈ I. But this is easy as x ∈ I implies that there
is some n such that xn = 0. But then (rx)n = rnxn = 0 and so rx ∈ I.

31) For Z12, we have xn = 0 ∈ Z12 implies 4|xn and 3|xn. In particular, 2|x and 3|x which implies 6|x. Since
62 = 0 in Z12, we have that 6 is in fact nilpotent in Z12 and thus, the nilradical of Z12 is the principal ideal
generated by 6.

For Z, since Z is an integral domain, the only nilpotent element is 0 and the nilradical is just {0}.
For Z32, we have xn = 0 ∈ Z32 implies 25|xn which implies that 2|x. Since 25 = 0 in Z32, we have that 2

is in fact nilpotent in Z32 and thus, the nilradical of Z32 is the principal ideal generated by 2.

32) Assume x + N is nilpotent in R/N . Then (x + N)n = 0 for some n and thus xn + N = 0. This implies
that xn ∈ N . Thus xn is nilpotent in R and there exists m such that (xn)m = 0 in R. But then xnm = 0 in
R and x is nilpotent in R. Hence x ∈ N and x + N = 0 in R/N as desired.


