Section 27:

5) This quotient is a field iff $x^{2}+c$ is an irreducible polynomial in $\mathbb{Z}_{3}[x]$ and this occurs iff $x^{2}+c$ has no roots in \mathbb{Z}_{3}. Thus, $c=1$ is the only possibility as x^{2} and $x^{2}+2$ both have roots.
6) This quotient is a field iff $x^{3}+x^{2}+c$ is an irreducible polynomial in $\mathbb{Z}_{3}[x]$ and this occurs iff $x^{3}+x^{2}+c$ has no roots in \mathbb{Z}_{3}. Thus, $c=2$ is the only possibility as $x^{3}+x^{2}$ and $x^{3}+x^{2}+1$ both have roots.
7) This quotient is a field iff $x^{2}+x+c$ is an irreducible polynomial in $\mathbb{Z}_{3}[x]$ and this occurs iff $x^{2}+x+c$ has no roots in \mathbb{Z}_{3}. Thus, $c=1,2$ are the only possibilities as $x^{2}+x, x^{2}+x+3, x^{2}+x+4$ and $x^{3}+x^{2}+1$ all have roots.
8)

a. False. $\langle 0\rangle$ is a prime ideal of \mathbb{Z} but is not maximal.
b. True.
c. True.
d. False. The prime field here is \mathbb{Q}.
e. True.
f. True. For instance, $\mathbb{Z}_{2}[x] /\langle x\rangle$.
g. True.
h. False. $\left\langle x^{2}\right\rangle$ is not a prime ideal.
i. True.
j. False. $\langle 0\rangle$ is not a maximal ideal.
15) $I=\mathbb{Z} \times 2 \mathbb{Z}$ is maximal as $(\mathbb{Z} \times \mathbb{Z}) /(\mathbb{Z} \times 2 \mathbb{Z}) \cong \mathbb{Z} / 2 \mathbb{Z}$ which is a field. (To see this isomorphism, consider the map $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ given by $\varphi((x, y))=y+2 \mathbb{Z}$. Then $\operatorname{ker}(\varphi)=I$ and apply the first isomorphism theorem.)
16) $I=\mathbb{Z} \times\{0\}$ is prime as $(\mathbb{Z} \times \mathbb{Z}) /(\mathbb{Z} \times\{0\}) \cong \mathbb{Z}$ and \mathbb{Z} is an integral domain. However, I is not maximal as it is contained in the example from $\# 15$.
17) $I=6 \mathbb{Z} \times\{0\}$ is not prime as $(2,0) \cdot(3,0) \in I$ but neither of these elements is in I.
18) Since $x^{2}-5 x+6=(x-2)(x-3)$, we have $\left\langle x^{2}-5 x+6\right\rangle$ is NOT a maximal ideal and hence $\mathbb{Q}[x] /\left\langle x^{2}-5 x+6\right\rangle$ is not a field. We can see this directly as well as $\left(x-2+\left\langle x^{2}-5 x+6\right\rangle\right)\left(x-3+\left\langle x^{2}-5 x+6\right\rangle\right)=0$ in $\mathbb{Q}[x] /\left\langle x^{2}-5 x+6\right\rangle$ and thus $\mathbb{Q}[x] /\left\langle x^{2}-5 x+6\right\rangle$ is not even an integral domain.
24) Let I be a prime ideal. Then R / I is a finite integral domain. Since finite integral domains are fields (proven in class), we have that R / I is a field and hence I is a maximal ideal.
30) Let I be a non-trivial proper prime ideal of $F[x]$. This means that $I \neq 0$ and $I \neq F[x]$ and that I is prime. Since all ideals of $F[x]$ are principal, we have that $I=\langle\pi\rangle$ for some $\pi \in F[x]$. To prove I is maximal, let $A=\langle g\rangle$ be some ideal containing I. Then $\pi \in A$ implies that $\pi=g \cdot g^{\prime}$. Thus $g \cdot g^{\prime} \in I$ and since I is prime we have $g \in I$ or $g^{\prime} \in I$. In the first case, we then have that $A=I$ while in the second case, $g^{\prime}=\pi h$ so that $\pi=g g^{\prime}=g \pi h$. Cancelling gives $g h=1$ and thus g and h are constants. This implies that $A=R$ and that I is a maximal ideal.
32) We first check that N is an ideal. Clearly $0 \in N$. Let $r_{1} f+s_{1} g, r_{2} f+s_{2} g$ be in N. Then

$$
r_{1} f+s_{1} g+r_{2} f+s_{2} g=\left(r_{1}+r_{2}\right) f+\left(s_{1}+s_{2}\right) g
$$

is again in N. Further, for $h \in F[x]$ and $r_{1} f+s_{1} g \in N$, we have

$$
h\left(r_{1} f+s_{1} g\right)=h r_{1} f+h s_{1} g
$$

is again in N. Thus N is an ideal.
For the second question, assume that both $f(x)$ and $g(x)$ are irreducible. Then $\langle f\rangle$ and $\langle g\rangle$ are both maximal ideals. Since $N \supseteq\langle f\rangle$, we then have that $N=F[x]$ or $N=\langle f\rangle$. But the question poses that $N \neq F[x]$ and thus $N=\langle f\rangle$. The analogous argument shows that $N=\langle g\rangle$. But then $\langle f\rangle=\langle g\rangle$ which implies that f and g have the degree.
34) (a) Clearly $0 \in A+B$. Take $a_{1}+b_{1}$ and $a_{2}+b_{2}$ in $A+B$. Then

$$
a_{1}+b_{1}+a_{2}+b_{2}=\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) \in A+B
$$

For $r \in R$ and $a+b \in A+B$, we have

$$
r \cdot(a+b)=r a+r b \in A+B
$$

since A and B are ideals.
(b) It's clear that $A \subseteq A+B$ as $a=a+0$ and $0 \in B$. Likewise for $B \subseteq A+B$.
35) (a) Clearly the sum of two elements of $A B$ is again in $A B$ as a sum of n terms of the form $a b$ with a sum of m terms of this form is simply a sum of $m+n$ terms of this form. For scalars, let $r \in R$ and $\sum_{i=1}^{n} a_{i} b_{i} \in A B$. Then

$$
r \cdot \sum_{i=1}^{n} a_{i} b_{i}=\sum_{i=1}^{n} r a_{i} b_{i}
$$

which is in $A B$ as A is an ideal.
b) Any element $\sum_{i=1}^{n} a_{i} b_{i}$ of $A B$ is in A as A is an ideal and $a_{i} \in A$. Likewise, this sum is in B as $b_{i} \in B$ and B is an ideal. Thus, $A B$ is contained in $A \cap B$.

