Introduction to Analysis – MA 542 – Fall 2019 – R. Pollack HW #5 Solutions

Section 27:

5) This quotient is a field iff $x^2 + c$ is an irreducible polynomial in $\mathbb{Z}_3[x]$ and this occurs iff $x^2 + c$ has no roots in \mathbb{Z}_3 . Thus, c = 1 is the only possibility as x^2 and $x^2 + 2$ both have roots.

6) This quotient is a field iff $x^3 + x^2 + c$ is an irreducible polynomial in $\mathbb{Z}_3[x]$ and this occurs iff $x^3 + x^2 + c$ has no roots in \mathbb{Z}_3 . Thus, c = 2 is the only possibility as $x^3 + x^2$ and $x^3 + x^2 + 1$ both have roots.

8) This quotient is a field iff $x^2 + x + c$ is an irreducible polynomial in $\mathbb{Z}_3[x]$ and this occurs iff $x^2 + x + c$ has no roots in \mathbb{Z}_3 . Thus, c = 1, 2 are the only possibilities as $x^2 + x, x^2 + x + 3, x^2 + x + 4$ and $x^3 + x^2 + 1$ all have roots.

14)

- a. False. $\langle 0 \rangle$ is a prime ideal of \mathbb{Z} but is not maximal.
- b. True.
- c. True.
- d. False. The prime field here is \mathbb{Q} .
- e. True.
- f. True. For instance, $\mathbb{Z}_2[x]/\langle x \rangle$.
- g. True.
- h. False. $\langle x^2 \rangle$ is not a prime ideal.
- i. True.
- j. False. $\langle 0 \rangle$ is not a maximal ideal.

15) $I = \mathbb{Z} \times 2\mathbb{Z}$ is maximal as $(\mathbb{Z} \times \mathbb{Z})/(\mathbb{Z} \times 2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ which is a field. (To see this isomorphism, consider the map $\varphi : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ given by $\varphi((x, y)) = y + 2\mathbb{Z}$. Then $\ker(\varphi) = I$ and apply the first isomorphism theorem.)

16) $I = \mathbb{Z} \times \{0\}$ is prime as $(\mathbb{Z} \times \mathbb{Z})/(\mathbb{Z} \times \{0\}) \cong \mathbb{Z}$ and \mathbb{Z} is an integral domain. However, I is not maximal as it is contained in the example from #15.

17) $I = 6\mathbb{Z} \times \{0\}$ is not prime as $(2,0) \cdot (3,0) \in I$ but neither of these elements is in I.

18) Since $x^2 - 5x + 6 = (x-2)(x-3)$, we have $\langle x^2 - 5x + 6 \rangle$ is NOT a maximal ideal and hence $\mathbb{Q}[x]/\langle x^2 - 5x + 6 \rangle$ is not a field. We can see this directly as well as $(x - 2 + \langle x^2 - 5x + 6 \rangle)(x - 3 + \langle x^2 - 5x + 6 \rangle) = 0$ in $\mathbb{Q}[x]/\langle x^2 - 5x + 6 \rangle$ and thus $\mathbb{Q}[x]/\langle x^2 - 5x + 6 \rangle$ is not even an integral domain.

24) Let I be a prime ideal. Then R/I is a finite integral domain. Since finite integral domains are fields (proven in class), we have that R/I is a field and hence I is a maximal ideal.

30) Let I be a non-trivial proper prime ideal of F[x]. This means that $I \neq 0$ and $I \neq F[x]$ and that I is prime. Since all ideals of F[x] are principal, we have that $I = \langle \pi \rangle$ for some $\pi \in F[x]$. To prove I is maximal, let $A = \langle g \rangle$ be some ideal containing I. Then $\pi \in A$ implies that $\pi = g \cdot g'$. Thus $g \cdot g' \in I$ and since I is prime we have $g \in I$ or $g' \in I$. In the first case, we then have that A = I while in the second case, $g' = \pi h$ so that $\pi = gg' = g\pi h$. Cancelling gives gh = 1 and thus g and h are constants. This implies that A = R and that I is a maximal ideal.

32) We first check that N is an ideal. Clearly $0 \in N$. Let $r_1f + s_1g, r_2f + s_2g$ be in N. Then

$$r_1f + s_1g + r_2f + s_2g = (r_1 + r_2)f + (s_1 + s_2)g$$

is again in N. Further, for $h \in F[x]$ and $r_1 f + s_1 g \in N$, we have

$$h(r_1f + s_1g) = hr_1f + hs_1g$$

is again in N. Thus N is an ideal.

For the second question, assume that both f(x) and g(x) are irreducible. Then $\langle f \rangle$ and $\langle g \rangle$ are both maximal ideals. Since $N \supseteq \langle f \rangle$, we then have that N = F[x] or $N = \langle f \rangle$. But the question poses that $N \neq F[x]$ and thus $N = \langle f \rangle$. The analogous argument shows that $N = \langle g \rangle$. But then $\langle f \rangle = \langle g \rangle$ which implies that f and g have the degree.

34) (a) Clearly $0 \in A + B$. Take $a_1 + b_1$ and $a_2 + b_2$ in A + B. Then

$$a_1 + b_1 + a_2 + b_2 = (a_1 + a_2) + (b_1 + b_2) \in A + B.$$

For $r \in R$ and $a + b \in A + B$, we have

$$r\cdot(a+b)=ra+rb\in A+B$$

since A and B are ideals.

(b) It's clear that $A \subseteq A + B$ as a = a + 0 and $0 \in B$. Likewise for $B \subseteq A + B$.

35) (a) Clearly the sum of two elements of AB is again in AB as a sum of n terms of the form ab with a sum of m terms of this form is simply a sum of m + n terms of this form. For scalars, let $r \in R$ and $\sum_{i=1}^{n} a_i b_i \in AB$. Then

$$r \cdot \sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} r a_i b_i$$

which is in AB as A is an ideal.

b) Any element $\sum_{i=1}^{n} a_i b_i$ of AB is in A as A is an ideal and $a_i \in A$. Likewise, this sum is in B as $b_i \in B$ and B is an ideal. Thus, AB is contained in $A \cap B$.