
Introduction to Analysis – MA 542 – Fall 2019 – R. Pollack
HW #7 Solutions

Section 31:
1) Answer: [Q(

√
2) : Q] = 2 with basis {1,

√
2}.

To justify this first note that
√

2 is a zero of x2 − 2. To see that x2 − 2 is the minimum polynomial of
√

2
over Q we need to know that it is irreducible. This can be seen in a number of different ways:

• prove that ±
√

2 6∈ Q and thus this polynomial has no roots in Q. Since the polynomial is quadratic
this implies that it is irreducible;

• use the rational root theorem to deduce that this polynomial has no roots in Q and again deduce that
it is irreducible;

• use the Eisenstein criterion with p = 2.

Once we know that x2 − 2 is the minimum polynomial of
√

2 we then immediately see that [Q(
√

2) : Q] = 2
with basis {1,

√
2} by the general fact:

Fact 1: [F (α) : F ] = n = deg(α, F ) with basis {1, α, . . . , αn−1}.

2) Answer: [Q(
√

2,
√

3) : Q] = 4 with basis {1,
√

2,
√

3,
√

6}.

To justify this we first note that from #1 we know that [Q(
√

2) : Q] = 2 with basis {1,
√

2}. We will now
check that [Q(

√
2,
√

3) : Q(
√

2)] = 2 with basis {1,
√

3}. This justifies our answer using the general fact:

Fact 2: [L : F ] = [L : K] · [K : F ] and L/F has basis {αiβj} if L/K has basis {αi} and K/F has basis {βi}.

To verify [Q(
√

2,
√

3) : Q(
√

2)] = 2, we need to compute the minimum polynomial of
√

3 over Q(
√

2). Clearly√
3 satisfies x2 − 3 so we need to check that this polynomial is irreducible over Q(

√
2). To this end, assume

it has a root in Q(
√

2) so that there is some a, b ∈ Q such that (a+ b
√

2)2 = 3. Then a2 + 2b2 + 2ab
√

2 = 3.
We then deduce that a2 + 2b2 = 3 and 2ab = 0. (This deduction uses the fact that {1,

√
2} is a basis of

Q(
√

2) over Q!). Thus a = 0 or b = 0. If a = 0 then 2b2 = 3 with b ∈ Q. Thus 2x2− 3 has a root in Q which
is impossible as this polynomial is Eisenstein with p = 3. Now if b = 0 then a2 = 3 which leads to similar
contradiction as x2 − 3 is irreducible over Q. Thus, no such a+ b

√
2 can exist and we deduce that x2 − 3 is

irreducible over Q(
√

2) proving our claim.

4) Answer: [Q( 3
√

2,
√

3) : Q] = 6 with basis {1, 3
√

2, 3
√

4,
√

3,
√

3 3
√

2,
√

3 3
√

4}.

To justify this we can proceed as before, but this situation is actually a bit simpler because the degree of 3
√

2
and
√

3 are relatively prime. Namely, first note that [Q( 3
√

2) : Q] = 3 with basis {1, 3
√

2, 3
√

4}. Indeed, the
minimum polynomial of 3

√
2 over Q is x3−2 as 3

√
2 satisfies this polynomial and this polynomial is irreducible

as it is an Eisenstein polynomial (p = 2).
We now need to check that [Q( 3

√
2,
√

3) : Q( 3
√

2)] = 2 with basis {1,
√

3}. To this end, first note that√
3 satisfies x2 − 3 and so deg(

√
3,Q( 3

√
2)) is either 2 (if this polynomial is irreducible over Q( 3

√
2)) or 1 (if√

3 ∈ Q( 3
√

2)). So we need to rule out that
√

3 ∈ Q( 3
√

2). But this is easy! If
√

3 ∈ Q( 3
√

2) then Q(
√

3)
is a subfield of Q( 3

√
2) which implies that [Q(

√
3) : Q] divides [Q( 3

√
2) : Q]. But then 2 divides 3 which is

impossible! Thus [Q( 3
√

2,
√

3) : Q( 3
√

2)] = 2 with basis {1,
√

3} (from fact 1).
Applying fact 2 with L = Q( 3

√
2,
√

3), K = Q( 3
√

2) and F = Q then completes the question.

6) Answer: [Q(
√

2 +
√

3) : Q] = 4 with basis {1, α, α2, α3} with α =
√

2 +
√

3.



Solution 1: To see this, we compute the minimum polynomial of α =
√

2 +
√

3 over Q. To this end, note
that

α2 = 2 + 3 + 2
√

6

and thus
(α2 − 5)2 = (2

√
6)2 = 24.

Thus
α4 − 10α2 + 1 = 0

and α satisfies x4 − 10x2 + 1. We must now show that this polynomial is irreducible to deduce that it is the
minimum polynomial.

To this end, note that it is not Eisenstein and that it is not irreducible modulo 2,3 or 5. So we need
another method. First note that the polynomial has no roots in Q (by the rational roots theorem as 1 and
−1 are not roots). We now need to rule out the case where this 4th degree polynomial factors as the product
of two quadratics. Assume that it does so that

x4 − 10x2 + 1 = (x2 + ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (b+ ac+ d)x2 + (ad+ bc)x+ bd

with a, b, c, d ∈ Z. (We can assume these coefficients are in Z by Theorem 23.11.). Equating coefficients then
gives that bd = 1, b+ ac+ d = −10 and a+ c = 0. Since bd = 1 we deduce that b = d = 1 or b = d = −1. If
b = d = 1, then b + ac + d = −10 becomes ac = −12. Since a + c = 0 we have a = −c and then ac = −12
is equivalent to a2 = 12 which is not solvable in Z. Similarly, if b = d = −1, then ac = −8 which implies
a2 = 8 which again has no solutions. Thus x4 − 10x2 + 1 is irreducible over Q which justifies our answer by
fact 1.

Solution 2: Note that
2− 3√
2 +
√

3
=
√

2−
√

3.

Since 2− 3 and
√

2 +
√

3 are in Q(
√

2 +
√

3), we deduce that
√

2−
√

3 ∈ Q(
√

2 +
√

3). But then

√
2 +
√

3 +
√

2−
√

3 = 2
√

2 ∈ Q(
√

2 +
√

3)

and √
2 +
√

3− (
√

2−
√

3) = 2
√

3 ∈ Q(
√

2 +
√

3).

Hence
√

2,
√

3 ∈ Q(
√

2+
√

3) and Q(
√

2,
√

3) ⊆ Q(
√

2+
√

3). Since it is clear that Q(
√

2,
√

3) ⊇ Q(
√

2+
√

3),
we deduce that Q(

√
2,
√

3) = Q(
√

2 +
√

3). By #2, [Q(
√

2,
√

3) : Q] = 4 and thus [Q(
√

2 +
√

3) : Q] = 4.

8) Answer: [Q( 3
√

5,
√

2) : Q] = 6 with basis {1, 3
√

5, 3
√

25,
√

2,
√

2 3
√

5,
√

2 3
√

25}.

The justification of this fact is nearly verbatim the justification of #4.

12) Answer: [Q(
√

2,
√

3),Q(
√

2 +
√

3)] = 1 with basis {1}.

By question #2, [Q(
√

2,
√

3) : Q] = 4. By question #6, [Q(
√

2+
√

3) : Q] = 4. Since Q(
√

2+
√

3) ⊆ Q(
√

2,
√

3)
we deduce from fact 2 that [Q(

√
2,
√

3) : Q(
√

2 +
√

3)] = 1.

19)

a. False. Take E = F = Q.

b. True.

c. False.



d. True (use fact 2 repeatedly)

23) Let α be any element of E which is not in F . Then F (α) is a subfield of E. Thus by Fact 2,
[E : F ] = [E : F (α)] · [F (α) : F ]. In particular, [F (α) : F ] divides [E : F ]. Since we are assuming
that [E : F ] is prime, we deduce that [F (α) : F ] = [E : F ] or [F (α) : F ] = 1. But in the latter case, this
implies that F (α) = F and hence α ∈ F which we assumed not to be the case. Thus [E : F ] = [F (α) : F ]
which implies [E : F (α)] = 1 and hence E = F (α) as desired.

27) Solution 1 (hard way): We first check that Q(
√

3,
√

7) has degree 4 over Q. To do this we proceed in
two steps by checking that

• [Q(
√

3) : Q] = 2,

• [Q(
√

3,
√

7) : Q(
√

3)] = 2.

The first equality is clear as the minimum polynomial of
√

3 over Q is x2 − 3 (as in the solution to #1).
For the second equality, note that Q(

√
3,
√

7) = Q(
√

3)(
√

7) and thus we need to determine the minimum
polynomial of

√
7 over Q(

√
3). To do this, note that

√
7 satisfies x2 − 7 and so we must check that this

polynomial is irreducible over Q(
√

3). We do this by checking that it has no roots in Q(
√

3).
To this end, assume that there exists a, b ∈ Q such that (a + b

√
3)2 = 7. Thus (a2 + 3b2) + 2ab

√
3 = 7.

Since {1,
√

3} is a basis of Q(
√

3) over Q, we deduce that a2 + 3b2 = 7 and 2ab = 0. Thus a = 0 or b = 0. If
b = 0 then a2 = 7. If a = 0 then 3b2 = 7. However, both polynomials x2− 7 and 3x2− 7 are irreducible over
Q as they are Eisenstein polynomials with p = 7. (Many other arguments are possible here: rational roots
theorem, checking directly that

√
7 6∈ Q, ...). This contradiction implies that x2 − 7 has no roots in Q(

√
3)

and is thus irreducible over Q(
√

3). Therefore [Q(
√

3,
√

7) : Q(
√

3)] = 2
Now, by Fact 2,

[Q(
√

3,
√

7) : Q] = [Q(
√

3,
√

7) : Q(
√

3)] · [Q(
√

3) : Q] = 2 · 2 = 4.

We now check that Q(
√

3 +
√

7) has degree 4 over Q. To do this, we compute the minimal polynomial of
α =
√

3 +
√

7 over Q. We have
α2 = 3 + 7 + 2

√
21

and thus
(α2 − 10)2 = (2

√
21)2 = 84.

Hence
α4 − 20α2 + 16 = 0

and α satisfies x4− 20x2 + 16. To see this polynomial is irreducible over Q, first note that it has no rational
roots (as ±16,±8,±4,±2,±1 are not roots). Assume that there is a factorization

x4 − 20x2 + 16 = (x2 + ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (b+ ac+ d)x2 + (ad+ bc)x+ bd

with a, b, c, d ∈ Z. (We can assume these coefficients are in Z by Theorem 23.11.). Equating coefficients
then gives that bd = 1, b + ac + d = −20 and a + c = 0. Since bd = 16 we deduce that (b, d) is one
of {(1, 16), (2, 8), (4, 4), (−1,−16), (−2,−8), (−4,−4)}. Since a = −c, we have that b + ac + d = −20 is
equivalent to a2 = 20 + b + d. Running through the possible values of (b, d), we then see that a2 must be
one of the values {37, 30, 28, 12, 10, 3}. However, none of these values are a square in Z. Thus x4− 20x2 + 16
is irreducible over Q and is thus the minimum polynomial of

√
(3) +

√
7. Hence Q(

√
3 +
√

7) has degree 4
over Q.

Finally, since Q(
√

3 +
√

7) ⊆ Q(
√

3,
√

7) we must have that these two fields are the same as they both
have the same degree over Q.



Solution 2 (easier way): Note that
3− 7√
3 +
√

7
=
√

3−
√

7.

Since 3− 7 and
√

3 +
√

7 are in Q(
√

3 +
√

7), we deduce that
√

3−
√

7 ∈ Q(
√

3 +
√

7). But then adding and
subtracting these two elements gives:

√
3 +
√

7 +
√

3−
√

7 = 2
√

3 ∈ Q(
√

3 +
√

7)

and √
3 +
√

7− (
√

3−
√

7) = 2
√

7 ∈ Q(
√

3 +
√

7).

Dividing by 2 gives
√

3,
√

7 ∈ Q(
√

3 +
√

7) and hence Q(
√

3,
√

7) ⊆ Q(
√

3 +
√

7). Since it is clear that
Q(
√

3,
√

7) ⊇ Q(
√

3 +
√

7), we deduce that Q(
√

3,
√

7) = Q(
√

3 +
√

7) as desired.

29) Assume that p(x) has a zero α in E. Since p(x) is irreducible, it must be the minimal polynomial of
α over F . Thus [F (α) : F ] = deg(p(x)). However, by Fact 2, [F (α) : F ] divides [E : F ]. But this is a
contradiction as it was assumed that the degree of p(x) does not divide [E : F ].


