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Section 31:
20) Powers of an element α in a finite extension E/F eventually satisfy a linear relation over F which is thus
a polynomial relation on α.

21) If {αi} is a basis of K/E and {βi} is a basis of E/F , then {αiβj} is a basis of K/F . Indeed, one can
write any element in K as a linear combination of the αi with coefficients in E and those coefficients one
can write as a linear combination of the βi with coefficients in F which yields a linear combination of the
αiβj with coefficients in F .

24) If x2 − 3 had a root in Q( 3
√

2) then Q(
√

3) would be a subfield of Q( 3
√

2). But then [Q(
√

3) : Q] = 2
would divide [Q( 3

√
2) : Q] = 3 which is impossible.

28) Clearly Q(
√
a+
√
b) ⊆ Q(

√
a,
√
b) as

√
a+
√
b ∈ Q(

√
a,
√
b). To see the reverse inclusion, note that

a− b
√
a+
√
b

=
√
a−
√
b.

Since a−b and
√
a+
√
b are both in Q(

√
a+
√
b), their ratio is in Q(

√
a+
√
b) and thus

√
a−
√
b ∈ Q(

√
a+
√
b).

Further, we have
(
√
a+
√
b) + (

√
a−
√
b)

2
=
√
a

and
(
√
a+
√
b)− (

√
a−
√
b)

2
=
√
b.

Since both
√
a+
√
b and

√
a−
√
b are in Q(

√
a+
√
b), we then deduce that

√
a and

√
b are in Q(

√
a+
√
b).

Hence Q(
√
a,
√
b) ⊆ Q(

√
a+
√
b) and thus these two fields are the same.

31) It is clear that if K/F is algebraic then both K/E and E/F are algebraic. Indeed, for any α in K, α
satisfies a non-zero polynomial with coefficients in F and so it certainly satisfies one with coefficients in the
larger field E. This shows that K/E is algebraic. To see that E/F is algebraic, take any α ∈ E. But then
α is also in K and thus is algebraic over F . Hence E/F is algebraic.

To see the converse, assume that both K/E and E/F are algebraic and take α ∈ K. Then α sat-
isfies a non-zero polynomial with coefficients in E, say xn + an−1x

n−1 + a1x + a0. Consider the field
F (a0, a1, . . . , an−1). Since each ai ∈ E and E/F is algebraic, we deduce that F (a0, a1, . . . , an−1) is finite
over F . (We proved this in class or see Theorem 31.11.). Also, α is algebraic over F (a0, a1, . . . , an−1) since its
minimal polynomial (by construction) has coefficients in this field. Thus, F (a0, a1, . . . , an−1, α) is finite over
F (a0, a1, . . . , an−1). Since F (a0, a1, . . . , an−1, α) is finite over F (a0, a1, . . . , an−1) and F (a0, a1, . . . , an−1) is
finite over F , we deduce that F (a0, a1, . . . , an−1, α) is finite over F (as degrees are multiplicative). But finite
extensions are algebraic and thus α is algebraic over F as desired.

33) Take a non-constant polynomial f(x) in FE [x]. Write f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 with each

ai ∈ FE so that ai ∈ E and ai is algebraic over F . As E is algebraically closed, there is some α ∈ E which
is a zero of f(x). But then FE(α)/FE is algebraic. Since FE/F is algebraic by definition, exercise #31
implies that FE(α)/F is algebraic. Thus, α is algebraic over F and then by definition α ∈ FE . Hence FE is
algebraically closed.



36) We have that 21/n is in Q for all n. Since xn−2 is the minimal polynomial of 21/n over Q (it is irreducible
by Eisenstein p = 2), we have [Q(21/n) : Q] = n. But then [Q : Q] ≥ n for all n and hence Q/Q is an infinite
extension.


