Section 31:
20) Powers of an element $\alpha$ in a finite extension $E / F$ eventually satisfy a linear relation over $F$ which is thus a polynomial relation on $\alpha$.
21) If $\left\{\alpha_{i}\right\}$ is a basis of $K / E$ and $\left\{\beta_{i}\right\}$ is a basis of $E / F$, then $\left\{\alpha_{i} \beta_{j}\right\}$ is a basis of $K / F$. Indeed, one can write any element in $K$ as a linear combination of the $\alpha_{i}$ with coefficients in $E$ and those coefficients one can write as a linear combination of the $\beta_{i}$ with coefficients in $F$ which yields a linear combination of the $\alpha_{i} \beta_{j}$ with coefficients in $F$.
24) If $x^{2}-3$ had a root in $\mathbb{Q}(\sqrt[3]{2})$ then $\mathbb{Q}(\sqrt{3})$ would be a subfield of $\mathbb{Q}(\sqrt[3]{2})$. But then $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2$ would divide $[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$ which is impossible.
28) Clearly $\mathbb{Q}(\sqrt{a}+\sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a}, \sqrt{b})$ as $\sqrt{a}+\sqrt{b} \in \mathbb{Q}(\sqrt{a}, \sqrt{b})$. To see the reverse inclusion, note that

$$
\frac{a-b}{\sqrt{a}+\sqrt{b}}=\sqrt{a}-\sqrt{b}
$$

Since $a-b$ and $\sqrt{a}+\sqrt{b}$ are both in $\mathbb{Q}(\sqrt{a}+\sqrt{b})$, their ratio is in $\mathbb{Q}(\sqrt{a}+\sqrt{b})$ and thus $\sqrt{a}-\sqrt{b} \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$. Further, we have

$$
\frac{(\sqrt{a}+\sqrt{b})+(\sqrt{a}-\sqrt{b})}{2}=\sqrt{a}
$$

and

$$
\frac{(\sqrt{a}+\sqrt{b})-(\sqrt{a}-\sqrt{b})}{2}=\sqrt{b}
$$

Since both $\sqrt{a}+\sqrt{b}$ and $\sqrt{a}-\sqrt{b}$ are in $\mathbb{Q}(\sqrt{a}+\sqrt{b})$, we then deduce that $\sqrt{a}$ and $\sqrt{b}$ are in $\mathbb{Q}(\sqrt{a}+\sqrt{b})$. Hence $\mathbb{Q}(\sqrt{a}, \sqrt{b}) \subseteq \mathbb{Q}(\sqrt{a}+\sqrt{b})$ and thus these two fields are the same.
31) It is clear that if $K / F$ is algebraic then both $K / E$ and $E / F$ are algebraic. Indeed, for any $\alpha$ in $K, \alpha$ satisfies a non-zero polynomial with coefficients in $F$ and so it certainly satisfies one with coefficients in the larger field $E$. This shows that $K / E$ is algebraic. To see that $E / F$ is algebraic, take any $\alpha \in E$. But then $\alpha$ is also in $K$ and thus is algebraic over $F$. Hence $E / F$ is algebraic.

To see the converse, assume that both $K / E$ and $E / F$ are algebraic and take $\alpha \in K$. Then $\alpha$ satisfies a non-zero polynomial with coefficients in $E$, say $x^{n}+a_{n-1} x^{n-1}+a_{1} x+a_{0}$. Consider the field $F\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. Since each $a_{i} \in E$ and $E / F$ is algebraic, we deduce that $F\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is finite over $F$. (We proved this in class or see Theorem 31.11.). Also, $\alpha$ is algebraic over $F\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ since its minimal polynomial (by construction) has coefficients in this field. Thus, $F\left(a_{0}, a_{1}, \ldots, a_{n-1}, \alpha\right)$ is finite over $F\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$. Since $F\left(a_{0}, a_{1}, \ldots, a_{n-1}, \alpha\right)$ is finite over $F\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ and $F\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ is finite over $F$, we deduce that $F\left(a_{0}, a_{1}, \ldots, a_{n-1}, \alpha\right)$ is finite over $F$ (as degrees are multiplicative). But finite extensions are algebraic and thus $\alpha$ is algebraic over $F$ as desired.
33) Take a non-constant polynomial $f(x)$ in $F_{E}[x]$. Write $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ with each $a_{i} \in F_{E}$ so that $a_{i} \in E$ and $a_{i}$ is algebraic over $F$. As $E$ is algebraically closed, there is some $\alpha \in E$ which is a zero of $f(x)$. But then $F_{E}(\alpha) / F_{E}$ is algebraic. Since $F_{E} / F$ is algebraic by definition, exercise \#31 implies that $F_{E}(\alpha) / F$ is algebraic. Thus, $\alpha$ is algebraic over $F$ and then by definition $\alpha \in F_{E}$. Hence $F_{E}$ is algebraically closed.
36) We have that $2^{1 / n}$ is in $\overline{\mathbb{Q}}$ for all $n$. Since $x^{n}-2$ is the minimal polynomial of $2^{1 / n}$ over $\mathbb{Q}$ (it is irreducible by Eisenstein $p=2$ ), we have $\left[\mathbb{Q}\left(2^{1 / n}\right): \mathbb{Q}\right]=n$. But then $[\overline{\mathbb{Q}}: \mathbb{Q}] \geq n$ for all $n$ and hence $\overline{\mathbb{Q}} / \mathbb{Q}$ is an infinite extension.

