
Modern Algebra 2 – MA 542 – Fall 2019 – R. Pollack
HW #9 Solutions

Section 48:
2). Since irr(

√
2,R) = x−

√
2 we have that

√
2 is the only conjugate of

√
2 over R.

4) The conjugates of
√

2−
√

3 over Q are ±
√

2±
√

3.

8) Let α =
√

1 +
√

2. Then α2 = 1 +
√

2 and thus α satisfies x2− 1−
√

2 over Q(
√

2). We should check that
this polynomial is irreducible over Q(

√
2). To this end, assume that it has a root a+ b

√
2. Then

(a+ b
√

2)2 = a2 + 2b2 + 2ab
√

2 = 1 +
√

2

and thus
a2 + 2b2 = 1 and 2ab = 1.

Combining these equations gives

a2 + 2(1/2a)2 = 1 =⇒ 4a4 + 2 = 4a2 =⇒ 2a4 − 2a2 + 1 = 0.

But this equation has no roots in R much less Q. Thus x2 − 1 −
√

2 is irreducible over Q(
√

2) and the
conjugates of α are ±α.

10) τ2(
√

2 +
√

5) = −
√

2 +
√

5.

12)

(τ5τ3)

(√
2− 3

√
5

2
√

3−
√

2

)
= τ5

( √
2− 3

√
5

−2
√

3−
√

2

)
=

√
2 + 3

√
5

−2
√

3−
√

2

14)

τ3

(
τ5(
√

2−
√

3 + (τ2τ5)(
√

30))
)

= τ3

(
τ5(
√

2−
√

3 +
√

30)
)

= τ3

(√
2−
√

3−
√

30
)

=
√

2 +
√

3 +
√

30

16) The fixed field of τ3 is Q(
√

2,
√

5). Indeed

τ3(a+b
√

2+c
√

3+d
√

5+e
√

6+f
√

10+g
√

15+h
√

30) = a+b
√

2−c
√

3+d
√

5−e
√

6+f
√

10−g
√

15−h
√

30)

iff c = e = g = h = 0 iff

a+ b
√

2 + c
√

3 + d
√

5 + e
√

6 + f
√

10 + g
√

15 + h
√

30 = a+ b
√

2 + d
√

5 + f
√

10 ∈ Q(
√

2,
√

5).

18). The fixed field of {τ2, τ3} is Q(
√

5). Indeed, for α = a+b
√

2+c
√

3+d
√

5+e
√

6+f
√

10+g
√

15+h
√

30,
we have τ2(α) = α iff b = e = f = h = 0 and τ3(α) = α iff c = e = g = h = 0. Thus both τ2 and τ3 fix α iff
α = a+ d

√
5 ∈ Q(

√
5).



22a) Since τ2 fixes
√

3 and
√

5, clearly τ22 also fixes these elements. Further, τ22 (
√

2) = −τ2(
√

2) = −(−
√

2) =√
2. Thus, τ2 fixes all of Q(

√
2,
√

3,
√

5) and is thus the identity element. This means τ2 has order 2 (as it
is not the identity itself). The same argument works for τ3 and τ5.

For (b), these 3 elements generate a group of size 8 with elements

{1, τ2, τ3, τ5, τ2τ3, τ2τ5, τ3τ5, τ2τ3τ5}.

The multiplication table is too hard for me to tex up right now. But it obeys the rules τ22 = τ23 = τ25 = 1
and τ2, τ3 and τ5 all commute with one another.

34) If α is a root of irr(α, F ) = xn + an−1x
n−1 + · · ·+ a1x+ a0, then

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

with ai ∈ F . Thus
σ(α)n + an−1σ(α)n−1 + · · ·+ a1σ(α) + a0 = 0

as σ is a homomorphism that fixes F . Hence, σ(α) is also a root of irr(α, F ).
If S is the set of roots of irr(α, F ), we have shown that σ induces a map from S to itself S. Further, since

σ is invertible, σ−1 inverses the inverse map which forces σ to act as a permutation on S.

36a) As ζp = 1 and ζ 6= 1, we know that ζ has multiplicative order p. Thus ζ, ζ2, . . . , ζp−1 are all distinct
and different from 1. Further, we have ζi is a root of xp − 1 as (ζi)p = (ζp)i = 1i = 1. If i < p, then ζi 6= 1,
and thus ζi is a root of xp−1

x−1 as desired.

For part (b), fix an i such that 1 ≤ i ≤ p− 1. Then there is a field homomorphism

Q(ζ)→ Q(ζi)

which sends ζ to ζi and fixes Q as ζ and ζi are conjugate (as proven in class on Monday April 8th or see
Corollary 48.5). But Q(ζi) = Q(ζ). To see this note that ζi ∈ Q(ζ) and thus Q(ζi) ⊆ Q(ζ). To see the
reverse inclusion, let y ∈ Z denote a multiplicative inverse of i mod p so that iy ≡ 1 (mod p). That is there
is some x such that iy + xp = 1. Thus

(ζi)y = ζiy = ζ1−xp = ζ · ζ−xp = ζ · (ζp)−x = ζ · 1−x = ζ.

This proves that ζ ∈ Q(ζi) and thus Q(ζ) ⊆ Q(ζi).
We thus have a map

Q(ζ)→ Q(ζi) = Q(ζ)

which fixes Q and sends ζ to ζi. This is an automophism of Q(ζ) which we will call σi.
Note that any automorphism τ ∈ Aut(Q(ζ)) sends ζ to some ζi and thus τ = σi for that i. Thus to

prove that Aut(Q(ζ)) is abelian we need to check σi ◦ σj = σj ◦ σi for all i, j. To see this, note that σi ◦ σj
and σj ◦ σi both agree on Q as they both fix Q. We thus only need to check that they agree on ζ. We have

(σi ◦ σj)(ζ) = σi(ζ
j) = (ζj)i = ζij

and
(σj ◦ σi)(ζ) = σj(ζ

i) = (ζi)j = ζij

as desired.



39a) Let ϕ ∈ Aut(E) and let x be a square of E. So x = y2 for some y ∈ E. Then ϕ(x) = ϕ(y2) = ϕ(y)2.
Thus ϕ(x) is a square in E.
b) The fact that automorphisms of R take positive numbers to positive numbers is immediate from (a) as
the positive numbers are exactly the squares of R with the exception of 0. But any automorphism always
takes 0 to 0.
c) Let σ ∈ Aut(R). If a < b, then b−a is positive. Hence by (b) σ(b−a) is positive. This implies σ(b)−σ(a)
is positive and thus σ(b) > σ(a).
d) Take x ∈ R and assume that σ(x) 6= x. If ϕ(x) > x, then there is some rational number r such that
σ(x) > r > x. But then by (c) we have σ(r) > σ(x). However, any automorphism always fixes Q and thus
σ(r) = r. We deduce then that r > σ(x). But this is a contradiction as σ(x) > r > x. The case σ(x) < x
works exactly the same and thus σ(x) = x.


