Modern Algebra 2 - MA 542 - Fall 2019 - R. Pollack HW \#9 Solutions

Section 48:
2). Since $\operatorname{irr}(\sqrt{2}, \mathbb{R})=x-\sqrt{2}$ we have that $\sqrt{2}$ is the only conjugate of $\sqrt{2}$ over \mathbb{R}.
4) The conjugates of $\sqrt{2}-\sqrt{3}$ over \mathbb{Q} are $\pm \sqrt{2} \pm \sqrt{3}$.
8) Let $\alpha=\sqrt{1+\sqrt{2}}$. Then $\alpha^{2}=1+\sqrt{2}$ and thus α satisfies $x^{2}-1-\sqrt{2}$ over $\mathbb{Q}(\sqrt{2})$. We should check that this polynomial is irreducible over $\mathbb{Q}(\sqrt{2})$. To this end, assume that it has a root $a+b \sqrt{2}$. Then

$$
(a+b \sqrt{2})^{2}=a^{2}+2 b^{2}+2 a b \sqrt{2}=1+\sqrt{2}
$$

and thus

$$
a^{2}+2 b^{2}=1 \text { and } 2 a b=1
$$

Combining these equations gives

$$
a^{2}+2(1 / 2 a)^{2}=1 \Longrightarrow 4 a^{4}+2=4 a^{2} \Longrightarrow 2 a^{4}-2 a^{2}+1=0
$$

But this equation has no roots in \mathbb{R} much less \mathbb{Q}. Thus $x^{2}-1-\sqrt{2}$ is irreducible over $\mathbb{Q}(\sqrt{2})$ and the conjugates of α are $\pm \alpha$.
10) $\tau_{2}(\sqrt{2}+\sqrt{5})=-\sqrt{2}+\sqrt{5}$.

$$
\left(\tau_{5} \tau_{3}\right)\left(\frac{\sqrt{2}-3 \sqrt{5}}{2 \sqrt{3}-\sqrt{2}}\right)=\tau_{5}\left(\frac{\sqrt{2}-3 \sqrt{5}}{-2 \sqrt{3}-\sqrt{2}}\right)=\frac{\sqrt{2}+3 \sqrt{5}}{-2 \sqrt{3}-\sqrt{2}}
$$

14)

$$
\tau_{3}\left(\tau_{5}\left(\sqrt{2}-\sqrt{3}+\left(\tau_{2} \tau_{5}\right)(\sqrt{30})\right)\right)=\tau_{3}\left(\tau_{5}(\sqrt{2}-\sqrt{3}+\sqrt{30})\right)=\tau_{3}(\sqrt{2}-\sqrt{3}-\sqrt{30})=\sqrt{2}+\sqrt{3}+\sqrt{30}
$$

16) The fixed field of τ_{3} is $\mathbb{Q}(\sqrt{2}, \sqrt{5})$. Indeed
$\left.\tau_{3}(a+b \sqrt{2}+c \sqrt{3}+d \sqrt{5}+e \sqrt{6}+f \sqrt{10}+g \sqrt{15}+h \sqrt{30})=a+b \sqrt{2}-c \sqrt{3}+d \sqrt{5}-e \sqrt{6}+f \sqrt{10}-g \sqrt{15}-h \sqrt{30}\right)$
iff $c=e=g=h=0$ iff

$$
a+b \sqrt{2}+c \sqrt{3}+d \sqrt{5}+e \sqrt{6}+f \sqrt{10}+g \sqrt{15}+h \sqrt{30}=a+b \sqrt{2}+d \sqrt{5}+f \sqrt{10} \in \mathbb{Q}(\sqrt{2}, \sqrt{5}) .
$$

18). The fixed field of $\left\{\tau_{2}, \tau_{3}\right\}$ is $\mathbb{Q}(\sqrt{5})$. Indeed, for $\alpha=a+b \sqrt{2}+c \sqrt{3}+d \sqrt{5}+e \sqrt{6}+f \sqrt{10}+g \sqrt{15}+h \sqrt{30}$, we have $\tau_{2}(\alpha)=\alpha$ iff $b=e=f=h=0$ and $\tau_{3}(\alpha)=\alpha$ iff $c=e=g=h=0$. Thus both τ_{2} and τ_{3} fix α iff $\alpha=a+d \sqrt{5} \in \mathbb{Q}(\sqrt{5})$.

22a) Since τ_{2} fixes $\sqrt{3}$ and $\sqrt{5}$, clearly τ_{2}^{2} also fixes these elements. Further, $\tau_{2}^{2}(\sqrt{2})=-\tau_{2}(\sqrt{2})=-(-\sqrt{2})=$ $\sqrt{2}$. Thus, τ^{2} fixes all of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ and is thus the identity element. This means τ_{2} has order 2 (as it is not the identity itself). The same argument works for τ_{3} and τ_{5}.

For (b), these 3 elements generate a group of size 8 with elements

$$
\left\{1, \tau_{2}, \tau_{3}, \tau_{5}, \tau_{2} \tau_{3}, \tau_{2} \tau_{5}, \tau_{3} \tau_{5}, \tau_{2} \tau_{3} \tau_{5}\right\}
$$

The multiplication table is too hard for me to tex up right now. But it obeys the rules $\tau_{2}^{2}=\tau_{3}^{2}=\tau_{5}^{2}=1$ and τ_{2}, τ_{3} and τ_{5} all commute with one another.
34) If α is a root of $\operatorname{irr}(\alpha, F)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, then

$$
\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0
$$

with $a_{i} \in F$. Thus

$$
\sigma(\alpha)^{n}+a_{n-1} \sigma(\alpha)^{n-1}+\cdots+a_{1} \sigma(\alpha)+a_{0}=0
$$

as σ is a homomorphism that fixes F. Hence, $\sigma(\alpha)$ is also a root of $\operatorname{irr}(\alpha, F)$.
If S is the set of roots of $\operatorname{irr}(\alpha, F)$, we have shown that σ induces a map from S to itself S. Further, since σ is invertible, σ^{-1} inverses the inverse map which forces σ to act as a permutation on S.

36a) As $\zeta^{p}=1$ and $\zeta \neq 1$, we know that ζ has multiplicative order p. Thus $\zeta, \zeta^{2}, \ldots, \zeta^{p-1}$ are all distinct and different from 1. Further, we have ζ^{i} is a root of $x^{p}-1$ as $\left(\zeta^{i}\right)^{p}=\left(\zeta^{p}\right)^{i}=1^{i}=1$. If $i<p$, then $\zeta^{i} \neq 1$, and thus ζ^{i} is a root of $\frac{x^{p}-1}{x-1}$ as desired.

For part (b), fix an i such that $1 \leq i \leq p-1$. Then there is a field homomorphism

$$
\mathbb{Q}(\zeta) \rightarrow \mathbb{Q}\left(\zeta^{i}\right)
$$

which sends ζ to ζ^{i} and fixes \mathbb{Q} as ζ and ζ^{i} are conjugate (as proven in class on Monday April 8th or see Corollary 48.5). But $\mathbb{Q}\left(\zeta^{i}\right)=\mathbb{Q}(\zeta)$. To see this note that $\zeta^{i} \in \mathbb{Q}(\zeta)$ and thus $\mathbb{Q}\left(\zeta^{i}\right) \subseteq \mathbb{Q}(\zeta)$. To see the reverse inclusion, let $y \in \mathbb{Z}$ denote a multiplicative inverse of $i \bmod p$ so that $i y \equiv 1(\bmod p)$. That is there is some x such that $i y+x p=1$. Thus

$$
\left(\zeta^{i}\right)^{y}=\zeta^{i y}=\zeta^{1-x p}=\zeta \cdot \zeta^{-x p}=\zeta \cdot\left(\zeta^{p}\right)^{-x}=\zeta \cdot 1^{-x}=\zeta .
$$

This proves that $\zeta \in \mathbb{Q}\left(\zeta^{i}\right)$ and thus $\mathbb{Q}(\zeta) \subseteq \mathbb{Q}\left(\zeta^{i}\right)$.
We thus have a map

$$
\mathbb{Q}(\zeta) \rightarrow \mathbb{Q}\left(\zeta^{i}\right)=\mathbb{Q}(\zeta)
$$

which fixes \mathbb{Q} and sends ζ to ζ^{i}. This is an automophism of $\mathbb{Q}(\zeta)$ which we will call σ_{i}.
Note that any automorphism $\tau \in \operatorname{Aut}(\mathbb{Q}(\zeta))$ sends ζ to some ζ^{i} and thus $\tau=\sigma_{i}$ for that i. Thus to prove that $\operatorname{Aut}(\mathbb{Q}(\zeta))$ is abelian we need to check $\sigma_{i} \circ \sigma_{j}=\sigma_{j} \circ \sigma_{i}$ for all i, j. To see this, note that $\sigma_{i} \circ \sigma_{j}$ and $\sigma_{j} \circ \sigma_{i}$ both agree on \mathbb{Q} as they both fix \mathbb{Q}. We thus only need to check that they agree on ζ. We have

$$
\left(\sigma_{i} \circ \sigma_{j}\right)(\zeta)=\sigma_{i}\left(\zeta^{j}\right)=\left(\zeta^{j}\right)^{i}=\zeta^{i j}
$$

and

$$
\left(\sigma_{j} \circ \sigma_{i}\right)(\zeta)=\sigma_{j}\left(\zeta^{i}\right)=\left(\zeta^{i}\right)^{j}=\zeta^{i j}
$$

as desired.

39a) Let $\varphi \in \operatorname{Aut}(E)$ and let x be a square of E. So $x=y^{2}$ for some $y \in E$. Then $\varphi(x)=\varphi\left(y^{2}\right)=\varphi(y)^{2}$. Thus $\varphi(x)$ is a square in E.
b) The fact that automorphisms of \mathbb{R} take positive numbers to positive numbers is immediate from (a) as the positive numbers are exactly the squares of \mathbb{R} with the exception of 0 . But any automorphism always takes 0 to 0 .
c) Let $\sigma \in \operatorname{Aut}(\mathbb{R})$. If $a<b$, then $b-a$ is positive. Hence by (b) $\sigma(b-a)$ is positive. This implies $\sigma(b)-\sigma(a)$ is positive and thus $\sigma(b)>\sigma(a)$.
d) Take $x \in \mathbb{R}$ and assume that $\sigma(x) \neq x$. If $\varphi(x)>x$, then there is some rational number r such that $\sigma(x)>r>x$. But then by (c) we have $\sigma(r)>\sigma(x)$. However, any automorphism always fixes \mathbb{Q} and thus $\sigma(r)=r$. We deduce then that $r>\sigma(x)$. But this is a contradiction as $\sigma(x)>r>x$. The case $\sigma(x)<x$ works exactly the same and thus $\sigma(x)=x$.

