
Topology – MA 564 – Spring 2015 – R. Pollack
HW #1 Solutions

Complete each of the following exercises.

Gamelin & Greene
Chapter 1: 1,2,4,5

#1) See solutions in G & G for (a) and the solution of (b) is similar. For (c), this is false. Consider U = R,
V = R and W = R. Then

U\(V \W ) = R\(R\R) = R\∅ = R,

while
(U\V )\W = (R\R)\R = ∅\R = ∅.

For (d), again see G & G.

#2) For the first part we need to check that the discrete metric satisfies the three axioms of a metric space.
For the first we need to check that d(x, y) = 0 iff x = y. But this is immediate from the definition of
the discrete metric (since x 6= y iff d(x, y) = 1). For the second, we need to see d(x, y) = d(y, x) but
the definition of the discrete metric is symmetric in x and y and so this is immediate. For the last, we
need d(x, z) ≤ d(x, y) + d(y, z). Since the values of d are only 0 and 1, the only way this inequality could
fail is if the left hand side was 1 but the right hand side was 0. But if the right hand side was 0, then
d(x, y) = d(y, z) = 0 which implies x = y = z. But then d(x, z) = 0 and the left hand side is also 0.

#4) We need to show that (0, 1] is neither open or closed. To see that (0, 1] is not open, we show that
1 ∈ (0, 1] is not an interior point. To see this, take any r > 0 and we note that Br(1) is not completely
contained within (0, 1] — for instance, Br(1) contains 1 + r

2 but (0, 1] does not. To see that (0, 1] is not
closed, we show that 0 is an adherent point (but is not in (0,1]). To see this, take any r > 0 and we need to
see that Br(0) is not disjoint from (0, 1]. But this is clear as both sets contain r

2 .

#5) We must show that B(S), the set of bounded functions on S, is a metric space under the metric defined
in (1.6). For f, g ∈ B(S), we need d(f, g) = 0 iff f = g. Clearly, d(f, f) = 0. Conversely, if d(f, g) = 0 then
sups∈S |f(s) − g(s)| = 0. In particular, |f(s) − g(s)| = 0 for all s ∈ S since if |f(s) − g(s)| > 0 for some
s, then the supremum would also be greater than 0. Hence f(s) = g(s) for all s ∈ S which means exactly
that f = g in B(S). For the symmetry property, this is clear as |f(s)− g(s)| = |g(s)− f(s)|. Lastly, for the
triangle inequality, for f, g, h ∈ B(S), we have

d(f, g) = sup
s∈S
|f(s)− g(s)|

= sup
s∈S
|f(s)− h(s) + h(s)− g(s)|

≤ sup
s∈S
|f(s)− h(s)|+ |h(s)− g(s)|

= sup
s∈S
|f(s)− h(s)|+ sup

s∈S
|h(s)− g(s)|

= d(f, h) + d(h, g).

Here the third line is derived from the triangle inequality for regular absolute value and the fourth line is a
standard property of supremum.

Freiwald
Chapter 2, pg. 74–75: E1(a), E2, E8(a,c)

E1(a): This is false! A counter-example comes from Additional Question #2. Indeed, there I show that
in the 3-adic metric on Z, we have B1(1) = {3n + 1 | n ∈ Z} while B1(4) = {3n + 4 | n ∈ Z}. But



{3n + 1 | n ∈ Z} = {3n + 4 | n ∈ Z} since 3n + 4 = 3(n + 1) + 1. Thus, the set of integers which are 1 more
than a multiple of 3 is an open ball of radius 1 with center either 1 or 4! In fact, any element of this set is a
center!

E8(a) The only uniformly open subsets of Rn are ∅ and Rn. To see this, first note that clearly both of these
sets are uniformly open. To see the converse, let U ⊆ Rn be uniformly open; if U 6= Rn, we will show that
U is empty. To this end, take x ∈ Rn\U . Since U is uniformly open, there exists ε > 0 such that for every
u ∈ U we have Bε(u) ⊆ U .

We claim that Bε(x) is disjoint from U . To see this, assume the contrary and take y ∈ Bε(x) ∩U . Then
since y ∈ U and U is uniformly open, we have Bε(y) ⊆ U . But y ∈ Bε(x) =⇒ x ∈ Bε(y) and thus we
deduce x is in U . But x ∈ Rn\U , and this contradiction proves that Bε(x) ∩ U = ∅.

Now take any z ∈ Bε(x). Applying the same argument as above (since z /∈ U) shows that Bε(z) is
disjoint from U . Thus,

⋃
z∈Bε(x)

Bε(z) is disjoint from U . But this union of balls is simply B2ε(x), and thus

B2ε(x) is disjoint from U .
Continuing inductively shows that for all n ≥ 1, we have Bnε(x) is disjoint from U . But as n → ∞, we

have nε → ∞, and thus balls of arbitrarily large radius around x are disjoint from U . But this forces U to
be empty.

Additional questions:

1. Let (X, d) be a metric space such that X has finitely many points. Prove that for every x ∈ X, the
singleton set {x} is open.

Solution: Let r = minz∈X−{x} d(x, z). Note that since X is finite this minimum. Moreover r is positive
since each d(x, z) > 0 for z 6= x. Take any y in Br(x), and, by definition, d(y, x) < r. But then y has
distance to x less than the minimum of all points in X − {x}. This is only possible if y = x. Thus,
Br(x) = {x} and {x} is an open set.

2. Consider the metric space X = Z endowed with the 3-adic distance function. Determine then open
balls B1(1) and B1(4).

Solution: I claim B1(1) = {3n + 1 | n ∈ Z}, that is the integers which are 1 more than a multiple of 3.
To see this, first note that d(3n+1, 1) < 1 for any n. Indeed, if we write (3n+1)−1 = 3n as 3k ·u with
u not a multiple of 3, we must have that k > 0. Thus d(3n + 1, 1) = (1/3)k < 1 and 3n + 1 ∈ B1(1).
Hence, {3n + 1 | n ∈ Z} ⊆ B1(1). Conversely, for x ∈ B1(1) we will show that x = 3n + 1 for some n.
Indeed, if d(x, 1) < 1, then x − 1 = 3ku with k > 0 and thus x − 1 is a multiple of 3. In particular,
x−1 = 3n or x = 3n+ 1. Thus, B1(1) ⊆ {3n+ 1 | n ∈ Z} and we have show B1(1) = {3n+ 1 | n ∈ Z}.
The identical argument shows that B1(4) = {3n + 4 | n ∈ Z}.

3. Prove that (0,∞) is an open set in R (under the standard metric).

Solution: Take any y ∈ (0,∞). I claim By(y) ⊆ (0,∞) which would prove that (0,∞) is open. To see
this, take z ∈ By(y). Then |y − z| < y. But this is only possible if z > 0. Thus By(y) ⊆ (0,∞) and
(0,∞) is open.


