Topology — MA 564 — Spring 2015 — R. Pollack
HW #2

Complete each of the following exercises.

1. Let (X, d) be a metric space and let A, B C X. Cousider each of the following statements. If they are
true, prove them. If they are false, give a counter-example.

(a)

(c)

(d)

int(AU B) = int(A4) Uint(B)

Solution: This is false. Consider X = R with the usual metric. Take A = [0,1
Then int(A) = (0,1) and int(B) = (1,2). However, AU B = [0,2) and so int(A
particular, 1 is in int(A U B) but not in int(A) U int(B).

int(AN B) = int(A) Nint(B)

Solution: This is true. We first check int(A N B) C int(A) Nint(B). Take = € int(A N B). Thus
there is some r > 0 such that B.(z) C AN B. But then B,(xz) C A and B,.(z) C B. Hence
x € int(A) and = € int(B) which implies x € int(A4) N int(B).

Conversely, take x € int(A) Nint(B). Since z € int(A), there is some r > 0 such that B,.(x) C A.
Similarly, = € int(B) implies there is some s > 0 such that Bs(z) C B. Let ¢ = min{r, s} > 0.
Then Bi(x) C B,(z) € A and Bi(xz) C Bs(x) C B which implies Bi(z) € AN B. Hence,
x € int(A N B) as desired.

AUB=AUB

Solution: This is true. First note that if 41 C Ay C X, then A; C A,. Indeed, if « is adherent
to Ay, then x is adherent to As (direct from the definition of adherent). Applying this fact to
A C AU B, we see that A C AU B. Similarly, BC AU B and thus AUB C AU B.

Conversely, A C A and B C B implies AUB C AU B. Then by a lemma from class, we have
AUB CAUB as AU B is a closed set.

ANB=ANB

Solution: This is false. Again take X = R with the usual metric. Set A = (0,1) and B = (1,2).
Then AN B = () and hence ANB = (). However, A = [0,1] and B = [1,2] which implies
ANB={1}.

2. Let (X,d) be a metric space. For x € X and r > 0, we define the closed ball B,(z) be to the set
{ze X |d(z,z) <r}.

(a)

Prove that B,.(z) is a closed set.

Solution: To show B,.(z) is closed, I'll show the complement is open. To this end, take z ¢ B,.(z).
Set s = d(z,z) — r, and I claim B,(z) N B,(z) = 0. If not, take w in this intersection. Then
d(z,w) < s =d(z,2)—r and d(w, z) < r. Adding these inequalities gives d(z, w)+d(w, z) < d(z,x)
which contradicts the triangle inequality. Thus, Bs(z) N B.(z) = () and B(z) is completely
contained within the complement of B,.(z). Thus this complement is open and B,.(x) is closed.

Is it true that B,.(z) = B,(x)? That is, is the closure of the open ball equal to the closed ball?
Either prove this or give a counter-example.

Solution: This is false. For instance, take X any set with at least two points and give it the discrete
metric. Then for € X, we have B;(x) = {z} which is a closet set. Thus, the closure of B;(x) is
simply {z}. However, Bi(z) = {z € X | d(z,z) < 1} = X since distances in the discrete metric
are always less than or equal to 1. Since X has at least two points, Bi(z) = {z} # X = By(z).




Another counter-example: in the 2-adic metric on Z, we have that Bj(0) is the set of even numbers
while By (1) is the set of odd numbers. Thus the complement of B;(0) equals B;(1). Since B (1)
is open, we then have By (0) is closed. Therefore the closure of B;(0) equals itself and is not equal
B1(0) which is the set of all integers.

3. Let (X, d) be a metric space. We call a point € X a limit point of a set Y C X if for every r > 0, we
have B,.(z) NY contains a point of Y different from z.

(a)

Clearly, if « is a limit point of Y, then z is adherent to Y. (Make sure you believe this!). Is the
converse true? That is, is it true that if = is adherent to Y, then x is a limit point of Y7 Again,
either prove this or give a counter-example.

Solution: This is not true. Consider X = R with the usual metric and Y = {0}. Clearly {0} is
adherent to Y, but it is not a limit point of Y as B,.(x) N {0} never contains a point different from
0.

Prove that if = is a limit point of Y, then for every r > 0, we have B,(x) NY is infinite.

Solution: First solution — assume B, (x)NY is finite. Pick s > 0 small enough so that d(z,z) > s
for each of the finitely many z € B,(z) NY with z # . But then B,(z) NY = {z} contradicting
z being a limit point.

Solution: Second solution — consider B, (z)NY . Since x is a limit point, this intersection contains
some point different from x; call this point 1. Let 1 = d(z, 1) which is less than . Now consider
B, () NY which again contains a point different from z; call this point x2. Note that x5 # z1
since x1 is not in By, (x) as d(z,x1) = r;. Continuing this process, we can construct a sequence
of distinct points x,, all in B,.(x) NY and thus this set is infinite.

4. Let (X,d) be a metric space and let A, B C X. We define the boundary (or frontier) of a set to be

(a)

OA=ANnX — A.

In R under the usual metric, compute 9([0,1)), d(R), I(R — {0}), (Q), I(Z) and (D).
(Here Q is the set of rational numbers and Z is the set of integers.)

Solution:
i 9(0,1)) = {o} u{1}
ii. O(R) =10
iii. I(R —{0}) = {0}
iv. 9(Q) =R
v. 0(Z)=1Z
vi. 9(0) = 0.

Let me explain 9(Q) = R. Since Q is dense in R, we have Q = R. But it is also true that R — Q
is dense in R, and so R — Q = R. Note that the statement that Q is dense in R is not obvious.
It requires the fact that between every two real numbers there is a rational number. Likewise for
R — Q being dense in R.

Consider each of the following statements. If they are true, prove them. If they are false, give a
counter-example.

(b)

d(AUB) =0AUOB

Solution: False. A = [0,1) and B = [1,2]. Then 94 = {0} U {1} and 9B = {1} U {2}. But
d(AU B) = 0([0,2]) = {0} U {2} doesn’t contain 1.



(¢c) 0(ANB)=0ANOB
Solution: False. A = [0,2) and B = [1,3]. Then 0A = {0} U {1} and B = {1} U {2}. But
d(AU B) = 0([0,2]) = {0} U {2} doesn’t contain 1.

(d) 0A = A —int(A).
Solution:

r € A—int(A) r € Aand z ¢ int(A)

x € A and for all r > 0, we have B,.(z) Z A

x € A and for all r > 0, we have B,.(z) N (X — A) #0
re€Aandze X — A

reANX - A=0A

rrtree



