Topology – MA 564 – Spring 2015 – R. Pollack HW #3 Solutions

Complete each of the following exercises.

1. Prove that if U is open and F is closed then U - F is open. Is F - U closed?

Solution: We first show U - F is open. Take $x \in U - F$. Then since U is open there exists r > 0 such that $B_r(x) \subseteq U$. Since F is closed and $x \notin F$, there is some s > 0 such that $B_s(x) \cap F = \emptyset$. If $t = \min\{r, s\} > 0$, then $B_t(x) \subseteq U$ and $B_t(x) \cap F = \emptyset$; thus, $B_t(x) \subseteq U - F$ and we deduce that U - F is open.

Here's a second proof. By definition, $U - F = U \cap F^c$ where F^c is the complement of F. Since F is closed, F^c is open. Thus $U \cap F^c$ is open (as intersections of opens are open), and we deduce U - F is open.

It is also true that F - U is closed. Again $F - U = F \cap U^c$ which is clearly closed as F is closed and U^c is closed.

2. Prove that in \mathbb{R}^2 under the usual metric that the sequence $\{(1/n, 1/n)\}$ converges to (0, 0). Now prove that the same sequence converges to (0, 0) under the taxi-cab metric.

Solution: Take $\varepsilon > 0$. Then set $N = \frac{\sqrt{2}}{\varepsilon}$. For n > N, we have

$$\begin{split} n > \frac{\sqrt{2}}{\varepsilon} \implies n^2 > \frac{2}{\varepsilon^2} \implies \frac{2}{n^2} < \varepsilon^2 \implies \frac{1}{n^2} + \frac{1}{n^2} < \varepsilon^2 \\ \implies \sqrt{\frac{1}{n^2} + \frac{1}{n^2}} < \varepsilon \implies d\left((1/n, 1/n), (0, 0)\right) < \varepsilon. \end{split}$$

Thus, $\{(1/n, 1/n)\}$ converges to (0, 0) under the usual Euclidean metric on \mathbb{R}^2 . For the taxi-cab metric, fix $\varepsilon > 0$ and set $N = \frac{2}{\varepsilon}$. Then, for n > N, we have

$$n > \frac{2}{\varepsilon} \implies \frac{2}{n} < \varepsilon \implies \frac{1}{n} + \frac{1}{n} < \varepsilon \implies \left(\frac{1}{n} - 0\right) + \left(\frac{1}{n} - 0\right) < \varepsilon \implies d_{\text{taxi}}\left((1/n, 1/n), (0, 0)\right) < \varepsilon.$$

Thus, $\{(1/n, 1/n)\}$ converges to (0, 0) under the taxi-cab metric on \mathbb{R}^2 .

3. Prove that if x is a limit point (defined in HW #2) of a set Y, then there is a sequence $\{x_n\}$ converging to x with $x_n \in Y$ and such that $\{x_n\}$ is not eventually constant.

Solution: For each $n \ge 1$, consider $B_{1/n}(x)$. Since x is a limit point, we have $B_{1/n}(x) \cap Y$ contains some point different from x. Pick such a point and call it x_n . Then (as proved in class) $\{x_n\}$ converges to x. We just need to check that $\{x_n\}$ is not eventually constant. To see this, assume the opposite — that is, assume that there is some $y \in X$ and some N such that if n > N then $x_n = y$. Then $y = x_n \in B_{1/n}(x)$ for every n > N, and hence d(x, y) < 1/n for all n > N. But then d(x, y) = 0 and y = x. This is a contraction since by construction $y = x_n \neq x$.

- 4. Let $f: X \to Y$ be a function. Let A and B be subsets of X, and let C and D be subsets of Y. Consider each of the following statements. If they are true, prove them. If they are false, give a counter-example.
 - (a) $f(A \cup B) = f(A) \cup f(B)$

Solution: True.

$$y \in f(A \cup B) \iff y = f(x) \text{ with } x \in A \cup B$$
$$\iff y = f(x) \text{ with } x \in A \text{ or } x \in B$$
$$\iff y \in f(A) \text{ or } y \in f(B)$$
$$\iff y \in f(A) \cup f(B)$$

(b) $f(A \cap B) = f(A) \cap f(B)$

Solution: False! Take $X = Y = \mathbb{R}$ and $f(x) = x^2$. Let $A = (-\infty, 0]$ and $B = [0, \infty)$. Then $f(A) = [0, \infty) = f(B)$ and so $f(A) \cap f(B) = [0, \infty)$. However, $A \cap B = \{0\}$ and so $f(A \cap B) = \{0\}$.

(c) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$

Solution: True.

$$x \in f^{-1}(C \cup D) \iff f(x) \in C \cup D$$
$$\iff f(x) \in C \text{ or } f(x) \in D$$
$$\iff x \in f^{-1}(C) \text{ or } x \in f^{-1}(D)$$
$$\iff x \in f^{-1}(C) \cup f^{-1}(D)$$

(d) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$

Solution: True.

$$x \in f^{-1}(C \cap D) \iff f(x) \in C \cap D$$
$$\iff f(x) \in C \text{ and } f(x) \in D$$
$$\iff x \in f^{-1}(C) \text{ and } x \in f^{-1}(D)$$
$$\iff x \in f^{-1}(C) \cap f^{-1}(D)$$

(e) f(A - B) = f(A) - f(B).

Solution: False. Take $X = Y = \mathbb{R}$ and $f(x) = x^2$. Let $A = \mathbb{R}$ and $B = [0, \infty)$. Then $A - B = (-\infty, 0)$ and so $f(A - B) = (0, \infty)$. However, $f(A) = f(\mathbb{R}) = [0, \infty)$ and $f(B) = [0, \infty)$ so that $f(A) - f(B) = \emptyset$.

(f) $f^{-1}(C-D) = f^{-1}(C) - f^{-1}(D)$.

Solution: True.

$$x \in f^{-1}(C - D) \iff f(x) \in C - D$$
$$\iff f(x) \in C \text{ and } f(x) \notin D$$
$$\iff x \in f^{-1}(C) \text{ and } x \notin f^{-1}(D)$$
$$\iff x \in f^{-1}(C) - f^{-1}(D)$$

6. Freiwald, Chapter 2: E22, E26, E31

E26 Solution: Note that $\chi_A^{-1}(\{1\}) = A$ and moreover, $A = \chi_A^{-1}(B_{1/2}(1))$. If χ_A is continuous, then this pre-image is open as $B_{1/2}(1)$ is open, and thus A is open. The same argument using $B_{1/2}(0)$ shows that A^c is open and thus A is closed. Hence, if χ_A is continuous, then A is clopen (closed and open). The only subsets of \mathbb{R} which are clopen are \emptyset and \mathbb{R} .

E31(a) Solution: Assume \mathbb{R} and \mathbb{R}^2 are isometric with $f: \mathbb{R}^2 \to \mathbb{R}$ being an isometry. Then all points

on the unit circle of \mathbb{R}^2 need to map to points at distance 1 from f((0,0)). But in \mathbb{R} there are only two points at distance 1 from any given point. Since the unit circle is infinite this means that f cannot be one-to-one which is a contradiction.

E31(b) Solution: Clearly, f(x) = x is an isometry that fixes a. Further, f(x) = 2a - x is also an isometry (think of it as first negating x and then translating by 2a) which fixes a. To see that these are the only isometries, first consider f(a+1). We must have that f(a+1) is at distance 1 from a and is thus a + 1 or a - 1.

Let's first consider the case where f(a+1) = a+1. Now consider f(a+b) where $b \neq 0, 1$. Then, since a+b has distance b from a we must have that f(a+b) has distance b from f(a) = a. In particular, f(a+b) = a+b or a-b. But a+b also has distance b-1 from a+1. Thus f(a+b) has distance b-1 from f(a+1) = a+1 which implies f(a+b) = a+1+b-1 = a+b or a+1-(b-1) = 2+a-b. Thus, the only possibility is f(a+b) = a+b and thus f(x) = x for all x.

Let's now consider the case where f(a+1) = a-1. Now consider f(a+b) where $b \neq 0, 1$. Then, since a+b has distance b from a we must have that f(a+b) has distance b from f(a) = a. In particular, f(a+b) = a+b or a-b. But a+b also has distance b-1 from a+1. Thus f(a+b) has distance b-1 from f(a+1) = a-1 which implies f(a+b) = a-1+b-1 = a+b-2 or a-1-(b-1) = a-b. Thus, the only possibility is f(a+b) = a-b and thus f(x) = 2a-x for all x.

E31(c) Solution: Let $X = [0, \infty)$ with the usual metric. Then $f : X \to X$ by f(x) = x + 1 is an isometry of X with a proper subset of itself.

- 7. Let $f: X \to Y$ be a function. Let $A \subseteq X$ and $B \subseteq Y$. Consider each of the following statements. If they are true, prove them. If they are false, give a counter-example.
 - (a) $f(f^{-1}(B)) \subseteq B$

Solution: True. For $y \in f(f^{-1}(B))$, we have y = f(x) for some $x \in f^{-1}(B)$. Thus, $y = f(x) \in B$.

(b) $f(f^{-1}(B)) \supseteq B$

Solution: False. Take $X = Y = \mathbb{R}$ and $f(x) = x^2$. Let $B = \mathbb{R}$. Then $f^{-1}(B) = \mathbb{R}$, and $f(f^{-1}(B)) = f(\mathbb{R}) = [0, \infty) \not\supseteq B$.

(c) $f^{-1}(f(A)) \subseteq A$

Solution: False. Take $X = Y = \mathbb{R}$ and $f(x) = x^2$. Let $A = [0, \infty)$. Then $f(A) = [0, \infty)$, and $f^{-1}(f(A)) = \mathbb{R} \not\subseteq A$.

(d) $f^{-1}(f(A)) \supseteq A$

Solution: True. For $x \in A$, to check if $x \in f^{-1}(f(A))$ we simply need to see if $f(x) \in f(A)$ which is obviously true.

- 8. Let (X, d) and (Y, s) be metric spaces, and let $f : X \to Y$ be a *continuous* function. Let $A \subseteq X$ and $B \subseteq Y$. Consider each of the following statements. If they are true, prove them. If they are false, give a counter-example.
 - (a) $f(int(A)) \subseteq int(f(A))$

Solution: False. Take $X = Y = \mathbb{R}$ and let f(x) be the constant function which is identically 0. Let $A = \mathbb{R}$. Then $int(A) = \mathbb{R}$ and $f(int(A)) = \{0\}$. However, $f(A) = \{0\}$ and $int(f(A)) = \emptyset$. (b) $f(int(A)) \supseteq int(f(A))$

Solution: False. Take $X = \mathbb{R}^2$, $Y = \mathbb{R}$ and let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by f(x, y) = x (which is a continuous function). Let $A = \{(x, 0) \in \mathbb{R}^2\}$. Then $int(A) = \emptyset$ and so $f(int(A)) = \emptyset$. However, $f(A) = \mathbb{R}$ so that $int(f(A)) = \mathbb{R}$.

(c) $f^{-1}(\operatorname{int}(B)) \subseteq \operatorname{int}(f^{-1}(B))$

Solution: True. Take $x \in f^{-1}(\operatorname{int}(B))$. Then $f(x) \in \operatorname{int}(B)$. So there exists $\varepsilon > 0$ such that $B_{\varepsilon}(f(x)) \subseteq B$. By continuity, there is some $\delta > 0$ such that $B_{\delta}(x) \subseteq f^{-1}(B_{\varepsilon}(f(x))) \subseteq f^{-1}(B)$. Thus, $x \in \operatorname{int}(f^{-1}(B))$.

(d) $f^{-1}(\operatorname{int}(B)) \supseteq \operatorname{int}(f^{-1}(B))$

Solution: False. Take $X = Y = \mathbb{R}$ and let f be the constant function sending everything to 0. Let $B = \{0\}$. Then $\operatorname{int}(B) = \emptyset$ and so $f^{-1}(\operatorname{int}(B)) = \emptyset$. However, $f^{-1}(B) = \mathbb{R}$ and thus $\operatorname{int}(f^{-1}(B)) = \mathbb{R}$.

(e) $f(\overline{A}) \subseteq \overline{f(A)}$

Solution: True. Take $y \in f(\overline{A})$. Then there is some $x \in \overline{A}$ with f(x) = y. As proven in class, there is some sequence $\{x_n\}$ converging to x with each $x_n \in A$. Then, by the continuity of f, we have $\{f(x_n)\}$ converges to f(x). Hence, $y = f(x) \in \overline{f(A)}$ since each $f(x_n) \in f(A)$.

(f) $f(\overline{A}) \supseteq \overline{f(A)}$

Solution: False. Take $X = \mathbb{R}^2$ and $Y = \mathbb{R}$ and $f : \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = x. Let A by the hyperbola, $\{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$. Then $f(A) = \mathbb{R} - \{0\}$ and $\overline{f(A)} = \mathbb{R}$. But A is closed and thus $\overline{A} = A$. We then have $f(\overline{A}) = f(A) = \mathbb{R} - \{0\} \not\supseteq \overline{f(A)} = \mathbb{R}$.

(g) $f^{-1}(\overline{B}) \subseteq \overline{f^{-1}(B)}$

Solution: False. Take $X = \mathbb{R}$ and $Y = \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ by f(x, y) = 0. Let B = (0, 1). Then $\overline{B} = [0, 1]$ and $f^{-1}(\overline{B}) = \mathbb{R}$. However, $f^{-1}(B) = \emptyset$ and thus $\overline{f^{-1}(B)} = \emptyset$.

(h) $f^{-1}(\overline{B}) \supseteq \overline{f^{-1}(B)}$

Solution: True. Take $x \in \overline{f^{-1}(B)}$. Then (by a theorem in class) there exists a sequence $\{x_n\} \to x$ with each $x_n \in f^{-1}(B)$ (i.e. $f(x_n) \in B$). Since f is continuous, we have $\{f(x_n)\} \to f(x)$ which implies $f(x) \in \overline{B}$ and thus $x \in f^{-1}(\overline{B})$.

9. Let (X, d) be a metric space and fix $\alpha \in X$. Consider the function $f : X \to \mathbb{R}$ defined by $f(x) = d(x, \alpha)$, in words the "distance to α " function. Prove that f is a continuous function.

Solution: Take $a \in X$ and fix $\varepsilon > 0$. Set $\delta = \varepsilon$. Then for x satisfying $d(x, a) < \delta = \varepsilon$, we have

$$d(x,\alpha) \le d(x,a) + d(a,\alpha)$$

and thus

$$d(x,\alpha) - d(a,\alpha) \le d(x,a)$$

Likewise,

$$d(a,\alpha) \le d(x,a) + d(x,\alpha)$$

and thus

 $d(a, \alpha) - d(x, \alpha) \le d(x, a).$

Putting these together gives

 $|d(a,\alpha) - d(x,\alpha)| \le d(x,a) < \delta = \varepsilon$

as desired.