Topology — MA 564 — Spring 2015 — R. Pollack
HW +#3 Solutions

Complete each of the following exercises.

1. Prove that if U is open and F' is closed then U — F is open. Is F' — U closed?

Solution: We first show U — F' is open. Take x € U — F. Then since U is open there exists r > 0
such that B,.(z) C U. Since F' is closed and z ¢ F, there is some s > 0 such that Bs(z) N F = (. If
t = min{r, s} > 0, then B;(z) C U and By(z) N F = {; thus, By(x) C U — F and we deduce that U — F
is open.

Here’s a second proof. By definition, U — F = U N F° where F¢ is the complement of F. Since F' is
closed, F¢ is open. Thus U N F° is open (as intersections of opens are open), and we deduce U — F' is
open.

It is also true that F' — U is closed. Again F' — U = F N U¢ which is clearly closed as F' is closed and
U*¢ is closed.

2. Prove that in R? under the usual metric that the sequence {(1/n,1/n)} converges to (0,0). Now prove
that the same sequence converges to (0,0) under the taxi-cab metric.

Solution: Take € > 0. Then set N = g For n > N, we have
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N %+% <& = d((1/n,1/n),(0,0)) < e.

Thus, {(1/n,1/n)} converges to (0,0) under the usual Euclidean metric on R2.
For the taxi-cab metric, fix € > 0 and set N = % Then, for n > N, we have
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n>- —= —<eg = —+—-—<e¢& = (—0) + (—O) <e = diaxi ((1/n,1/n),(0,0)) < e.
€ n non n n

Thus, {(1/n,1/n)} converges to (0,0) under the taxi-cab metric on R2.

3. Prove that if 2 is a limit point (defined in HW #2) of a set Y, then there is a sequence {xz,, } converging
to « with x,, € Y and such that {x,} is not eventually constant.

Solution: For each n > 1, consider By /,(x). Since x is a limit point, we have B/, (x) N'Y contains
some point different from 2. Pick such a point and call it 2;,,. Then (as proved in class) {z,} converges
to x. We just need to check that {z,} is not eventually constant. To see this, assume the opposite
— that is, assume that there is some y € X and some N such that if n > N then z,, = y. Then
Yy = xn € By/p(x) for every n > N, and hence d(z,y) < 1/n for all n > N. But then d(z,y) = 0 and
y = x. This is a contraction since by construction y = x,, # x.

4. Let f: X — Y be a function. Let A and B be subsets of X, and let C' and D be subsets of Y. Consider
each of the following statements. If they are true, prove them. If they are false, give a counter-example.

(a) f(AUB) = f(A)U f(B)
Solution: True.
y€ f(AUB) < y= f(z) withz € AUB
< y=f(z)withzecAorzeB
= ye f(A)orye f(B)
— ye f(AUf(B)

(
(



(b) fF(ANB) = f(A)Nf(B)

Solution: False! Take X =Y = R and f(z) = 2%. Let A = (—00,0] and B = [0,00). Then
f(A) =0,00) = f(B) and so f(A)Nf(B) = [0,00). However, ANB = {0} and so f(ANB) = {0}.

(c) f7H(CUD)=f"HC)U fHD)
Solution: True.
ref"YCUD) < f(z)eCUD
<~ f(x)eCor f(x)eD
— zecf Y C)orzec f (D)
= ze fH(O)Uf D)

(@ f~HCnD)=f"1C)nf (D)
Solution: True.
refHCND) < f(zr)eCND
< f(x)€Cand f(x) €D
— zc fYC)and z € f1(D)
= ze f7H(O)NfHD)

(e) f(A=B)=f(A) - f(B).

Solution: False. Take X = Y = R and f(z) = 2. Let A = R and B = [0,00). Then
A— B =(—00,0) and so f(A— B) = (0,00). However, f(A4) = f(R) =[0,00) and f(B) = [0,0)
so that f(A) — f(B) = 0.

(f) f7HC = D)= fHC) = fH(D).
Solution: True.
r€ fY(C~-D) < f(x)eC—-D
<~ f(zx)eCand f(z) ¢ D
— zecfYC)and x ¢ f1(D)
= ze fHO) - fI(D)

6. Freiwald, Chapter 2: E22, E26, E31
E26 Solution: Note that x ;" ({1}) = A and moreover, A = x;'(By2(1)). If x4 is continuous, then

this pre-image is open as By /5(1) is open, and thus A is open. The same argument using B /2(0) shows
that A€ is open and thus A is closed. Hence, if x 4 is continuous, then A is clopen (closed and open).
The only subsets of R which are clopen are () and R.

E31(a) Solution: Assume R and R? are isometric with f : R> — R being an isometry. Then all points



on the unit circle of R? need to map to points at distance 1 from f£((0,0)). But in R there are only two
points at distance 1 from any given point. Since the unit circle is infinite this means that f cannot be
one-to-one which is a contradiction.

E31(b) Solution: Clearly, f(xr) = x is an isometry that fixes a. Further, f(z) = 2a — x is also an

isometry (think of it as first negating « and then translating by 2a) which fixes a. To see that these
are the only isometries, first consider f(a+1). We must have that f(a+ 1) is at distance 1 from a and
isthusa+1ora—1.

Let’s first consider the case where f(a+1) = a+ 1. Now consider f(a+b) where b # 0,1. Then, since
a + b has distance b from a we must have that f(a + b) has distance b from f(a) = a. In particular,
f(a+b) =a+bora—b. But a+b also has distance b — 1 from a+ 1. Thus f(a+b) has distance b —1
from f(a+ 1) = a + 1 which implies f(a+b) =a+14+b—-1=a+bora+1—(b—1)=2+4a—b.
Thus, the only possibility is f(a + b) = a + b and thus f(x) = z for all x.

Let’s now consider the case where f(a+1) = a — 1. Now consider f(a+b) where b # 0,1. Then, since
a + b has distance b from a we must have that f(a + b) has distance b from f(a) = a. In particular,
fla+b)=a+bora—b. But a+b also has distance b — 1 from a+ 1. Thus f(a + b) has distance b— 1
from f(a+ 1) = a — 1 which implies f(a+b)=a—14+b—1=a+b—20ora—1—(b—1)=a—0b.
Thus, the only possibility is f(a + b) = a — b and thus f(z) = 2a — « for all z.

E31(c) Solution: Let X = [0,00) with the usual metric. Then f: X — X by f(z) =z +11is an

isometry of X with a proper subset of itself.

7. Let f: X — Y be a function. Let A C X and B C Y. Consider each of the following statements. If
they are true, prove them. If they are false, give a counter-example.

(a) f(f7H(B)) CB
Solution: True. For y € f(f~1(B)), we have y = f(z) for some z € f~1(B). Thus, y = f(z) € B.

(b) f(f7H(B)) 2B
Solution: False. Take X =Y = R and f(z) = 2. Let B = R. Then f~}(B) = R, and
f(FH(B)) = f(R) = [0,00) 2 B.

(c) f7H(f(A)CA
Solution: False. Take X =Y = R and f(z) = 2?. Let A = [0,00). Then f(A) = [0,00), and
FHfA) =RZ A

(d) fH(f(A) 2 A

Solution: True. For z € A, to check if x € f~1(f(A)) we simply need to see if f(z) € f(A) which
is obviously true.

8. Let (X, d) and (Y, s) be metric spaces, and let f : X — Y be a continuous function. Let A C X and
B CY. Consider each of the following statements. If they are true, prove them. If they are false, give
a counter-example.

(a) f(int(A)) € int(f(A))

Solution: False. Take X =Y = R and let f(x) be the constant function which is identically 0.
Let A =R. Then int(A) =R and f(int(A)) = {0}. However, f(A) = {0} and int(f(A)) = 0.



(b) f(int(A)) 2 int(f(A))
Solution: False. Take X = R?, Y = R and let f : R> — R be given by f(z,y) = = (which is a

continuous function). Let A = {(z,0) € R?}. Then int(A) = () and so f(int(A4)) = 0. However,
f(A) =R so that int(f(A4)) =R.

(c) f7H(int(B)) C int(f~1(B))
Solution: True. Take x € f~'(int(B)). Then f(x) € int(B). So there exists € > 0 such that

B.(f(x)) C B. By continuity, there is some § > 0 such that Bs(x) C f~1(B.(f(x))) C f~1(B).
Thus, z € int(f~1(B)).

(d) f~H(int(B)) 2 int(f~(B))
Solution: False. Take X =Y = R and let f be the constant function sending everything to
0. Let B = {0}. Then int(B) = 0 and so f~!(int(B)) = (. However, f~!(B) = R and thus
int(f~1(B)) = R.

(e) f(A) < f(4)
Solution: True. Take y € f(A). Then there is some € A with f(z) = y. As proven in class,

there is some sequence {x, } converging to = with each x,, € A. Then, by the continuity of f, we
have {f(x,)} converges to f(z). Hence, y = f(z) € f(A) since each f(x,) € f(4).

(f) f(A) 2 f(4)
Solution: False. Take X = R? and Y = R and f : R? — R by f(z,y) = 2. Let A by the

hyperbola, {(z,y) € R? | zy = 1}. Then f(A) = R— {0} and f(A) = R. But A4 is closed and thus
A= A. We then have f(A) = f(A) =R — {0} 2 f(A) =R.

(g) f71(B) < f1(B)
Solution: False. Take X =R and Y =R and f: R — R by f(x,y) = 0. Let B = (0,1). Then
B =10,1] and f~1(B) = R. However, f~1(B) = 0 and thus f~1(B) = 0.

(h) f71(B) 2 f~1(B)
Solution: True. Take x € f~1(B). Then (by a theorem in class) there exists a sequence {z,} — x
with each z, € f~!(B) (i.e. f(z,) € B). Since f is continuous, we have {f(z,)} — f(z) which
implies f(x) € B and thus = € f~(B).

9. Let (X, d) be a metric space and fix & € X. Consider the function f : X — R defined by f(z) = d(z, a),
in words the “distance to «” function. Prove that f is a continuous function.

Solution: Take a € X and fix € > 0. Set 6 = e. Then for z satisfying d(z,a) < § = ¢, we have
d(z,0) < d(z,0) + d(a, )

and thus

d(z,a) —d(a,a) < d(z,a).
Likewise,

d(a,a) < d(z,a) +d(z, q)
and thus

d(a,a) —d(z,a) < d(z,a).
Putting these together gives
|d(a,a) —d(z,a)| < d(z,a) <d=¢

as desired.



