
Topology – MA 564 – Spring 2015 – R. Pollack
HW #3 Solutions

Complete each of the following exercises.

1. Prove that if U is open and F is closed then U − F is open. Is F − U closed?

Solution: We first show U − F is open. Take x ∈ U − F . Then since U is open there exists r > 0
such that Br(x) ⊆ U . Since F is closed and x 6∈ F , there is some s > 0 such that Bs(x) ∩ F = ∅. If
t = min{r, s} > 0, then Bt(x) ⊆ U and Bt(x)∩F = ∅; thus, Bt(x) ⊆ U −F and we deduce that U −F
is open.
Here’s a second proof. By definition, U − F = U ∩ F c where F c is the complement of F . Since F is
closed, F c is open. Thus U ∩ F c is open (as intersections of opens are open), and we deduce U − F is
open.
It is also true that F − U is closed. Again F − U = F ∩ U c which is clearly closed as F is closed and
U c is closed.

2. Prove that in R2 under the usual metric that the sequence {(1/n, 1/n)} converges to (0, 0). Now prove
that the same sequence converges to (0, 0) under the taxi-cab metric.

Solution: Take ε > 0. Then set N =
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Thus, {(1/n, 1/n)} converges to (0, 0) under the usual Euclidean metric on R2.
For the taxi-cab metric, fix ε > 0 and set N = 2

ε . Then, for n > N , we have
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Thus, {(1/n, 1/n)} converges to (0, 0) under the taxi-cab metric on R2.

3. Prove that if x is a limit point (defined in HW #2) of a set Y , then there is a sequence {xn} converging
to x with xn ∈ Y and such that {xn} is not eventually constant.

Solution: For each n ≥ 1, consider B1/n(x). Since x is a limit point, we have B1/n(x) ∩ Y contains
some point different from x. Pick such a point and call it xn. Then (as proved in class) {xn} converges
to x. We just need to check that {xn} is not eventually constant. To see this, assume the opposite
— that is, assume that there is some y ∈ X and some N such that if n > N then xn = y. Then
y = xn ∈ B1/n(x) for every n > N , and hence d(x, y) < 1/n for all n > N . But then d(x, y) = 0 and
y = x. This is a contraction since by construction y = xn 6= x.

4. Let f : X → Y be a function. Let A and B be subsets of X, and let C and D be subsets of Y . Consider
each of the following statements. If they are true, prove them. If they are false, give a counter-example.

(a) f(A ∪B) = f(A) ∪ f(B)

Solution: True.

y ∈ f(A ∪B) ⇐⇒ y = f(x) with x ∈ A ∪B
⇐⇒ y = f(x) with x ∈ A or x ∈ B
⇐⇒ y ∈ f(A) or y ∈ f(B)
⇐⇒ y ∈ f(A) ∪ f(B)



(b) f(A ∩B) = f(A) ∩ f(B)

Solution: False! Take X = Y = R and f(x) = x2. Let A = (−∞, 0] and B = [0,∞). Then
f(A) = [0,∞) = f(B) and so f(A)∩f(B) = [0,∞). However, A∩B = {0} and so f(A∩B) = {0}.

(c) f−1(C ∪D) = f−1(C) ∪ f−1(D)

Solution: True.

x ∈ f−1(C ∪D) ⇐⇒ f(x) ∈ C ∪D
⇐⇒ f(x) ∈ C or f(x) ∈ D
⇐⇒ x ∈ f−1(C) or x ∈ f−1(D)

⇐⇒ x ∈ f−1(C) ∪ f−1(D)

(d) f−1(C ∩D) = f−1(C) ∩ f−1(D)

Solution: True.

x ∈ f−1(C ∩D) ⇐⇒ f(x) ∈ C ∩D
⇐⇒ f(x) ∈ C and f(x) ∈ D
⇐⇒ x ∈ f−1(C) and x ∈ f−1(D)

⇐⇒ x ∈ f−1(C) ∩ f−1(D)

(e) f(A−B) = f(A)− f(B).

Solution: False. Take X = Y = R and f(x) = x2. Let A = R and B = [0,∞). Then
A−B = (−∞, 0) and so f(A−B) = (0,∞). However, f(A) = f(R) = [0,∞) and f(B) = [0,∞)
so that f(A)− f(B) = ∅.

(f) f−1(C −D) = f−1(C)− f−1(D).

Solution: True.

x ∈ f−1(C −D) ⇐⇒ f(x) ∈ C −D
⇐⇒ f(x) ∈ C and f(x) 6∈ D
⇐⇒ x ∈ f−1(C) and x 6∈ f−1(D)

⇐⇒ x ∈ f−1(C)− f−1(D)

6. Freiwald, Chapter 2: E22, E26, E31

E26 Solution: Note that χ−1
A ({1}) = A and moreover, A = χ−1

A (B1/2(1)). If χA is continuous, then

this pre-image is open as B1/2(1) is open, and thus A is open. The same argument using B1/2(0) shows
that Ac is open and thus A is closed. Hence, if χA is continuous, then A is clopen (closed and open).
The only subsets of R which are clopen are ∅ and R.

E31(a) Solution: Assume R and R2 are isometric with f : R2 → R being an isometry. Then all points



on the unit circle of R2 need to map to points at distance 1 from f((0, 0)). But in R there are only two
points at distance 1 from any given point. Since the unit circle is infinite this means that f cannot be
one-to-one which is a contradiction.

E31(b) Solution: Clearly, f(x) = x is an isometry that fixes a. Further, f(x) = 2a − x is also an

isometry (think of it as first negating x and then translating by 2a) which fixes a. To see that these
are the only isometries, first consider f(a+ 1). We must have that f(a+ 1) is at distance 1 from a and
is thus a+ 1 or a− 1.

Let’s first consider the case where f(a+ 1) = a+ 1. Now consider f(a+ b) where b 6= 0, 1. Then, since
a + b has distance b from a we must have that f(a + b) has distance b from f(a) = a. In particular,
f(a+ b) = a+ b or a− b. But a+ b also has distance b− 1 from a+ 1. Thus f(a+ b) has distance b− 1
from f(a + 1) = a + 1 which implies f(a + b) = a + 1 + b − 1 = a + b or a + 1 − (b − 1) = 2 + a − b.
Thus, the only possibility is f(a+ b) = a+ b and thus f(x) = x for all x.

Let’s now consider the case where f(a+ 1) = a− 1. Now consider f(a+ b) where b 6= 0, 1. Then, since
a + b has distance b from a we must have that f(a + b) has distance b from f(a) = a. In particular,
f(a+ b) = a+ b or a− b. But a+ b also has distance b− 1 from a+ 1. Thus f(a+ b) has distance b− 1
from f(a + 1) = a − 1 which implies f(a + b) = a − 1 + b − 1 = a + b − 2 or a − 1 − (b − 1) = a − b.
Thus, the only possibility is f(a+ b) = a− b and thus f(x) = 2a− x for all x.

E31(c) Solution: Let X = [0,∞) with the usual metric. Then f : X → X by f(x) = x + 1 is an

isometry of X with a proper subset of itself.

7. Let f : X → Y be a function. Let A ⊆ X and B ⊆ Y . Consider each of the following statements. If
they are true, prove them. If they are false, give a counter-example.

(a) f(f−1(B)) ⊆ B

Solution: True. For y ∈ f(f−1(B)), we have y = f(x) for some x ∈ f−1(B). Thus, y = f(x) ∈ B.

(b) f(f−1(B)) ⊇ B

Solution: False. Take X = Y = R and f(x) = x2. Let B = R. Then f−1(B) = R, and
f(f−1(B)) = f(R) = [0,∞) 6⊇ B.

(c) f−1(f(A)) ⊆ A

Solution: False. Take X = Y = R and f(x) = x2. Let A = [0,∞). Then f(A) = [0,∞), and
f−1(f(A)) = R 6⊆ A.

(d) f−1(f(A)) ⊇ A

Solution: True. For x ∈ A, to check if x ∈ f−1(f(A)) we simply need to see if f(x) ∈ f(A) which
is obviously true.

8. Let (X, d) and (Y, s) be metric spaces, and let f : X → Y be a continuous function. Let A ⊆ X and
B ⊆ Y . Consider each of the following statements. If they are true, prove them. If they are false, give
a counter-example.

(a) f(int(A)) ⊆ int(f(A))

Solution: False. Take X = Y = R and let f(x) be the constant function which is identically 0.
Let A = R. Then int(A) = R and f(int(A)) = {0}. However, f(A) = {0} and int(f(A)) = ∅.



(b) f(int(A)) ⊇ int(f(A))

Solution: False. Take X = R2, Y = R and let f : R2 → R be given by f(x, y) = x (which is a
continuous function). Let A = {(x, 0) ∈ R2}. Then int(A) = ∅ and so f(int(A)) = ∅. However,
f(A) = R so that int(f(A)) = R.

(c) f−1(int(B)) ⊆ int(f−1(B))

Solution: True. Take x ∈ f−1(int(B)). Then f(x) ∈ int(B). So there exists ε > 0 such that
Bε(f(x)) ⊆ B. By continuity, there is some δ > 0 such that Bδ(x) ⊆ f−1(Bε(f(x))) ⊆ f−1(B).
Thus, x ∈ int(f−1(B)).

(d) f−1(int(B)) ⊇ int(f−1(B))

Solution: False. Take X = Y = R and let f be the constant function sending everything to
0. Let B = {0}. Then int(B) = ∅ and so f−1(int(B)) = ∅. However, f−1(B) = R and thus
int(f−1(B)) = R.

(e) f(A) ⊆ f(A)

Solution: True. Take y ∈ f(A). Then there is some x ∈ A with f(x) = y. As proven in class,
there is some sequence {xn} converging to x with each xn ∈ A. Then, by the continuity of f , we
have {f(xn)} converges to f(x). Hence, y = f(x) ∈ f(A) since each f(xn) ∈ f(A).

(f) f(A) ⊇ f(A)

Solution: False. Take X = R2 and Y = R and f : R2 → R by f(x, y) = x. Let A by the
hyperbola, {(x, y) ∈ R2 | xy = 1}. Then f(A) = R−{0} and f(A) = R. But A is closed and thus
A = A. We then have f(A) = f(A) = R− {0} 6⊇ f(A) = R.

(g) f−1(B) ⊆ f−1(B)

Solution: False. Take X = R and Y = R and f : R → R by f(x, y) = 0. Let B = (0, 1). Then
B = [0, 1] and f−1(B) = R. However, f−1(B) = ∅ and thus f−1(B) = ∅.

(h) f−1(B) ⊇ f−1(B)

Solution: True. Take x ∈ f−1(B). Then (by a theorem in class) there exists a sequence {xn} → x
with each xn ∈ f−1(B) (i.e. f(xn) ∈ B). Since f is continuous, we have {f(xn)} → f(x) which
implies f(x) ∈ B and thus x ∈ f−1(B).

9. Let (X, d) be a metric space and fix α ∈ X. Consider the function f : X → R defined by f(x) = d(x, α),
in words the “distance to α” function. Prove that f is a continuous function.

Solution: Take a ∈ X and fix ε > 0. Set δ = ε. Then for x satisfying d(x, a) < δ = ε, we have

d(x, α) ≤ d(x, a) + d(a, α)

and thus
d(x, α)− d(a, α) ≤ d(x, a).

Likewise,
d(a, α) ≤ d(x, a) + d(x, α)

and thus
d(a, α)− d(x, α) ≤ d(x, a).

Putting these together gives
|d(a, α)− d(x, α)| ≤ d(x, a) < δ = ε

as desired.


