Topology – MA 564 – Spring 2015 – R. Pollack HW #4

Complete each of the following exercises.

- 1. Let $X = \mathbb{R}$ and set $\mathcal{T} := \{(a, \infty) \mid a \in \mathbb{R}\} \cup \{\emptyset\} \cup \{\mathbb{R}\}.$
 - (a) Prove that \mathcal{T} forms a topology on \mathbb{R} . We call this the "right ray topology".
 - (b) Is $(\mathbb{R}, \mathcal{T})$ a T_0 space? a T_1 space? a T_2 space?
 - (c) Is $(\mathbb{R}, \mathcal{T})$ metrizable?
 - (d) For $\alpha \in \mathbb{R}$, what is $\{\alpha\}$? That is, what is the closure of a singleton set?
 - (e) Consider the sequence {1, 2, 3, 4, ...}. What elements of ℝ does this sequence converge to in the right ray topology?
 - (f) Consider the sequence $\{-1, -2, -3, -4, ...\}$. What elements of \mathbb{R} does this sequence converge to in the right ray topology?
 - (g) Consider the sequence $\{0, 0, 0, 0, ...\}$. What elements of \mathbb{R} does this sequence converge to in the right ray topology?
- 2. Let X be any set and put $\mathcal{T} := \{X \{\alpha_1, \dots, \alpha_n\}\} \cup \{\emptyset\}$, that is, \mathcal{T} is the collection of sets with finite complement together with the empty set.
 - (a) Prove that \mathcal{T} forms a topology on X. We call this the "cofinite topology" on X.
 - (b) Is (X, \mathcal{T}) a T_0 space? a T_1 space? a T_2 space?
 - (c) Is (X, \mathcal{T}) metrizable?
 - (d) For $\alpha \in X$, what is $\{\alpha\}$? That is, what is the closure of a singleton set?
 - (e) Consider an arbitrary sequence $\{x_n\}$. What elements of X does this sequence converge to in cofinite topology? Does it depend on whether X is infinite or not?
- 3. Let (X, \mathcal{T}) be a topological space and let $Y \subseteq X$. We endow Y with the subspace topology to make it into a topology space.
 - (a) Let $S \subseteq X$ and write $\overline{S \cap Y}^Y$ for the closure of $S \cap Y$ as a subset of Y under the subspace topology. Prove that $\overline{S \cap Y}^Y \subseteq \overline{S} \cap Y$.
 - (b) Find an example where $\overline{S \cap Y}^Y$ is strictly smaller than $\overline{S} \cap Y$.
 - (c) If $U \subseteq Y$ is open in Y (under the subspace topology) is U necessarily open in X?
- 4. Freiwald, Chapter 3: E4(a,b,c,d), E6, E8
- 5. Let X and Y be two topological spaces and let $f: X \to Y$ be a continuous map.
 - (a) Prove that if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed in X.
 - (b) If Z is another topological space and $g: Y \to Z$ is continuous, prove that the composite $g \circ f: X \to Z$ is continuous.