Topology – MA 564 – Spring 2015 – R. Pollack HW #5

Complete each of the following exercises.

- 1. Let X be a set and equip it with the cofinite topology. Prove that X is compact.
- 2. Let X be a discrete topology space. Find a necessary and sufficient condition on X so that X is compact.
- 3. Determine whether each of the following subsets of \mathbb{R} are compact under the right-ray topology. Justify your answer:
 - (a) [0,1]
 - (b) (0,1]
 - (c) [0,1)
- 4. Let X be a topological space with the following property: if $\{F_{\alpha}\}$ is a collection of closed subsets such any finite intersection of the F_{α} is non-empty, then $\bigcap_{\alpha} F_{\alpha}$ is non-empty. Prove that X is compact. (Hint: take complements and think about open covers.)
- 5. Let K be a compact subset of \mathbb{R}^n (under the standard topology). Prove that K is closed. (Hint: If K is not closed, there is some limit point x of K not in K. Show that $\{B_{1/m}(x)^c\}_{m\geq 1}$ is an open cover of K with no finite subcover.)
- 6. Let K be a compact subset of \mathbb{R}^n (under the standard topology). Prove that K is bounded. (Hint: If K were unbounded, then $B_N(0)$ would not contain K for any $N \ge 0$.)
- 7. Let X be a T_2 topological space and let K_1 and K_2 be compact subsets. Prove that $K_1 \cap K_2$ is compact. Does this remain true for infinite intersections?

Additional questions:

- 1. Does question 7 still hold if we no longer assume that X is T_2 ?
- 2. Let K_1 and K_2 be compact subsets of a T_2 topology space X. Find disjoint open sets U and V such that $K_1 \subseteq U$ and $K_2 \subseteq V$. (Hint: use the Theorem proven in class that a point and a compact set can be separated by open sets.)