Algebraic Number Theory MA844 (aka MA743) Spring 2014 HW #1

Field theory: Let L/K be an extension of fields. That is, L and K are both fields and K is a subfield of L. (Note that the symbol "/" in this context has nothing to do with quotients!)

(1) Verify that L is a K-vector space.

Since L is a K-vector space, we can consider the dimension of L over K. When this dimension is finite we denote it by [L:K], and we say L/K is a *finite extension* of degree [L:K].

- (2) Let α be in some algebraic extension of K and set $L = K(\alpha)$. That is, L is the smallest field which contains both K and α . Explicitly, elements of L are all of the form $f(\alpha)/g(\alpha)$ where f(x), g(x) are polynomials in K[x].
 - (a) Consider the homomorphism

$$K[x] \longrightarrow K(\alpha)$$
$$f(x) \mapsto f(\alpha).$$

Let I_{α} be the kernel of this map. Since K[x] is a PID, we can write $I_{\alpha} = (\pi_{\alpha}(x))$ where $\pi_{\alpha}(x)$ is a monic polynomial.

Verify that $\pi_{\alpha}(x)$ is an irreducible polynomial. We call this polynomial the *minimum polynomial* of α over K.

(b) We thus have an induced injective map:

$$K[x]/(\pi_{\alpha}(x)) \longrightarrow K(\alpha).$$

Verify that this map is an isomorphism.

- (c) Conclude that $\{1, \alpha, \alpha^2, \dots, \alpha^{d-1}\}$ where $d = \deg(\pi_{\alpha}(x))$ is a basis of $K(\alpha)$ over K, and thus $[K(\alpha) : K]$ is the degree of the minimum polynomial of α over K.
- (3) Compute the degree of each of the following fields:
 - (a) $\mathbb{Q}(\sqrt{d})$ for d a squarefree integer
 - (b) $\mathbb{Q}(\sqrt[3]{2})$
 - (c) $\mathbb{Q}(e^{2\pi i/p})$ for p a prime number
- (4) For a finite extension L/K, and $\alpha \in L$, consider the multiplication by α map:

$$m_{\alpha}: L \longrightarrow L$$
$$x \mapsto \alpha \cdot x$$

This map is clearly K-linear (check it!), and thus we can take the determinant and trace of this map. Define

$$N_{L/K}(\alpha) := \det(m_{\alpha}),$$

the norm of α from L to K, and

$$\operatorname{Tr}_{L/K}(\alpha) := \operatorname{trace}(m_{\alpha}),$$

the trace of α from L to K.

- (a) Compute $N_{\mathbb{Q}(i)/\mathbb{Q}}(a+bi)$ and $\operatorname{Tr}_{\mathbb{Q}(i)/\mathbb{Q}}(a+bi)$.
- (b) Compute $N_{\mathbb{Q}(\sqrt{d})/\mathbb{Q}}(a+b\sqrt{d})$ and $\operatorname{Tr}_{\mathbb{Q}(\sqrt{d})/\mathbb{Q}}(a+b\sqrt{d})$.
- (c) Verify that

•
$$N_{L/K}(\alpha\beta) = N_{L/K}(\alpha) \cdot N_{L/K}(\beta)$$

•
$$\operatorname{Tr}_{L/K}(\alpha\beta) = \operatorname{Tr}_{L/K}(\alpha) + \operatorname{Tr}_{L/K}(\beta)$$

- if $r \in K$, then $\operatorname{Tr}_{L/K}(r\alpha) = r \operatorname{Tr}_{L/K}(\alpha)$
- if $\alpha \in K$, then $N_{L/K}(\alpha) = \alpha^{[L:K]}$ and $\operatorname{Tr}_{L/K}(\alpha) = [L:K] \cdot \alpha$.

(d) Is it true that there exists an element $\alpha \in L$ such that $N_{L/K}(\alpha) \neq 0$? How about $\operatorname{Tr}_{L/K}(\alpha) \neq 0$? (5) Consider $\mathbb{Q}(\alpha)$ where α is some algebraic element over \mathbb{Q} . Let M denote some algebraically closed field containing \mathbb{Q} (e.g. \mathbb{C}).

- (a) How many field embeddings of $\mathbb{Q}(\alpha) \to M$ are there?
- (b) Consider the field $L = \mathbb{Q}(\sqrt[3]{2})$. Write down all embeddings of L into \mathbb{C} .
- (c) If we no longer assume that we are working over \mathbb{Q} , but instead consider $K(\alpha)$ mappings to M an algebraically closed field containing K where K is any field, does the answer to (a) change?
- (d) Consider $K = \mathbb{F}_p(t)$ and set $L = \mathbb{F}_p(t)(t^{1/p})$. That is, $L = \mathbb{F}_p(t)[X]/(X^p t)$. Write down all embeddings of L into an algebraically closed field containing K.
- (6) Returning to norm and trace, now consider the case of $L = K(\alpha)$ and simply write $N(\alpha)$ for $N_{K(\alpha)/K}(\alpha)$ and $\operatorname{Tr}(\alpha)$ for $\operatorname{Tr}_{K(\alpha)/K}(\alpha)$. Consider again the multiplication by α map $m_{\alpha} : K(\alpha) \to K(\alpha)$.
 - (a) Write down the matrix for this map in terms of the basis $\{1, \alpha, \dots, \alpha^{d-1}\}$ where $d = [K(\alpha) : K]$.
 - (b) Show that the characteristic polynomial of m_{α} equals the minimum polynomial of α over K. (Hint: Use the Cayley-Hamilton theorem)
 - (c) Let K denote a fixed algebraic closure of K. Show that

$$N(\alpha) = \prod_{\sigma: K(\alpha) \to \overline{K}} \sigma(\alpha)$$

and

$$\operatorname{Tr}(\alpha) = \sum_{\sigma: K(\alpha) \to \overline{K}} \sigma(\alpha).$$

Here σ is ranging over all embeddings of $K(\alpha)$ into \overline{K} .

(d) If α is integral over K, show that $N(\alpha)$ and $\operatorname{Tr}(\alpha)$ are in \mathcal{O}_K .

Commutative algebra Let R be a commutative ring (with identity because my rings always have an identity).

- (7) We say an ideal $\mathfrak{p} \subseteq R$ is a *prime ideal* if \mathfrak{p} is a proper ideal and whenever $ab \in \mathfrak{p}$, then either $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. Prove that \mathfrak{p} is a prime ideal iff R/\mathfrak{p} is an integral domain.
- (8) We say an ideal $\mathfrak{m} \subseteq R$ is a *maximal ideal* if \mathfrak{m} is a proper ideal and is not contained in any other proper ideals. Prove that \mathfrak{m} is a maximal ideal iff R/\mathfrak{m} is a field.
- (9) We say $z \in R$ is a zero divisor if there exists $w \neq 0$ such that zw = 0. Is it true that the sum and product of zero divisors is again a zero divisor?
- (10) We say that $u \in R$ is a *unit* if there exists $v \in R$ such that uv = 1.
 - (a) Is it true that the sum and product of zero divisors is again a zero divisor?
 - (b) Find all units in \mathbb{Z} .
 - (c) Find all units in $\mathbb{Q}[x]$.
 - (d) Find all units in $\mathbb{Z}[i]$.
 - (e) Find all units in \mathbb{Q} .
 - (f) Find all units in $\mathbb{Q}[x]/(x^2)$.
- (11) We say x in R is *irreducible* if x is not a zero divisors nor a unit and whenever x = ab with $a, b \in R$ then either a or b is a unit.
 - (a) Is -3 irreducible in \mathbb{Z} ?
 - (b) Is 7 irreducible in \mathbb{Q} ?
 - (c) Is 1 + i irreducible in $\mathbb{Z}[i]$?
 - (d) Is 1 + 3i irreducible in $\mathbb{Z}[i]$?
 - (e) Is $1 + \sqrt{5}$ irreducible $\mathbb{Z}[\sqrt{5}]$?
 - (f) Is x irreducible in $\mathbb{Q}[x]/(x^2)$?
- (12) We say π in R is a prime element if the principal ideal (π) is a prime ideal.
 - (a) Prove that prime elements are irreducible.
 - (b) Is 1 + i a prime element of $\mathbb{Z}[i]$?

- (c) Is 1 + 3i a prime element of $\mathbb{Z}[i]$?
- (d) Is $1 + \sqrt{-5}$ a prime element of $\mathbb{Z}[\sqrt{-5}]$?
- (13) We say that x and y in R are associates if x = yu with u a unit of R.
 - (a) Are 1 + i and 1 i associates in $\mathbb{Z}[i]$?
 - (b) Are 1 + 2i and 1 2i associates in $\mathbb{Z}[i]$?
 - (c) Are $5 + \sqrt{2}$ and $5 \sqrt{2}$ associates in $\mathbb{Z}[i]$?
 - (d) Let a, b, c, d be prime elements of R. If ab = cd prove that either a and c are associates or a and d are associates.
- (14) We say a ring is a PID if every ideal is a principal ideal. Prove that irreducible elements in a PID are prime elements.
- (15) Is the following a counter-example to unique factorization into irreducibles in $\mathbb{Z}[i]$?

$$(1+3i) \cdot (1-3i) = 2 \cdot 5$$

Explain.

Algebraic integers

- (16) Let d be a square-free integer. Let $K = \mathbb{Q}(\sqrt{d})$. Determine the ring of integers \mathcal{O}_K .
- (17) Let $K = \mathbb{Q}(\sqrt[3]{2})$. Show that $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{2}]$.
- (18) We saw or at least we will see that unique factorization domains are always integrally closed. Explain why $\mathbb{Z}[2i]$ is not integrally closed (directly from the definitions) and then give an explicit counterexample to unique factorization in this ring.
- (19) Let C/B/A be extensions of rings. If C/B is an integral extension and B/A is an integral extension, prove that C/A is an integral extension.
- (20) Let A be a domain. Show that the integral closure of the integral closure of A is simply the integral closure of A.