Algebraic Number Theory MA844 (aka MA743) Spring 2014 HW #5

- (1) Recall the *p*-adic valuation $\operatorname{ord}_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$. (Here we are extending its definition so that $\operatorname{ord}_p(0) = \infty$.) Prove:
 - (a) $\operatorname{ord}_p(a+b) \ge \min\{\operatorname{ord}_p(a), \operatorname{ord}_p(b)\};$
 - (b) if $\operatorname{ord}_p(a) \neq \operatorname{ord}_p(b)$, then $\operatorname{ord}_p(a+b) = \min\{\operatorname{ord}_p(a), \operatorname{ord}_p(b)\}$.
- (2) Recall the *p*-adic absolute value $|\cdot|_p : \mathbb{Q} \to \mathbb{R}^{\geq 0}$.
 - (a) Let $D(a,r) := \{x \in \mathbb{Q} : |x-a|_p < r\}$ denote the "open" disc in \mathbb{Q} . Show that D(a,r) is open. Show that D(a,r) is closed.
 - (b) Let $\overline{D}(a,r) := \{x \in \mathbb{Q} : |x-a|_p \leq r\}$ denote the "closed" disc in \mathbb{Q} . Show that $\overline{D}(a,r)$ is closed. Show that $\overline{D}(a,r)$ is open.
 - (c) Show that "every triangle is isoceles" in \mathbb{Q} under $|\cdot|_p$.
 - (d) Show that any point in D(a, r) is a center. That is, if $b \in D(a, r)$ then D(a, r) = D(b, r).
- (3) Neukrich, Chapter 2, section 1: 4,5
- (4) Neukrich, Chapter 2, section 2: 5,6
- (5) Prove $\mathbb{Q}_p(\zeta_p) \cong \mathbb{Q}_p(p^{1/(p-1)}).$
- (6) How does the 7-th cyclotomic polynomial factor in \mathbb{Q}_{11} ? Explain.
- (7) Show that \mathbb{Q}_p^{un} is not complete under the *p*-adic norm.
- (8) Let K/\mathbb{Q} be a number field. Any embedding from K to $\overline{\mathbb{Q}}_p$ induces a non-archimedian absolute value on K (by restriction).
 - (a) Show that this absolute value on K is equivalent to the absolute value associated to some (unique) prime ideal sitting over p.
 - (b) Is this association of embeddings of K into $\overline{\mathbb{Q}}_p$ to primes of K over p bijective?
- (9) Show that maximal abelian extension of $\mathbb{Q}(i)$ is larger than the $\mathbb{Q}^{ab}(i)$. (Hint: find an abelian extension of $\mathbb{Q}(i)$ which is not abelian over \mathbb{Q} .) Can you generalize your argument to any quadratic extension? How about any number field? How about replacing \mathbb{Q} by \mathbb{Q}_p ?