ON COSTELLO’S CONSTRUCTION OF THE WITTEN GENUS:
L_∞ SPACES AND DG-MANIFOLDS

RYAN E GRADY

1. L_∞ SPACES

An L_∞ space is a ringed space with a structure sheaf a sheaf L_∞ algebras, where an L_∞ algebra is the homotopical enhancement of a differential graded Lie algebra.

1.1. L_∞ algebras. Let A a differential commutative graded algebra and $I \subset A$ a nilpotent ideal. Let $A^\#$ denote the underlying graded algebra i.e. we forget the differential.

Definition 1.1. A curved L_∞ algebra over A consists of a locally free finitely generated graded $A^\#$-module V, together with a cohomological degree 1 and square zero derivation $d : \widehat{\text{Sym}}(V^*[−1]) → \widehat{\text{Sym}}(V^*[−1])$

where V^* is the $A^\#$-linear dual and the completed symmetric algebra is also over $A^\#$.

There are two additional requirements on the derivation d:

1. The derivation d makes $\widehat{\text{Sym}}(V^*[−1])$ into a dga over the dga A;
2. Reduced modulo the nilpotent ideal $I \subset A$, the derivation d preserves the ideal in $\widehat{\text{Sym}}(V^*[−1])$ generated by V.

Note that our dualizing convention is such that $V^*[−1] = V[1]^*$.

We can decompose the derivation d into its constituent pieces

$$d_n : V^*[−1] → \text{Sym}^n(V^*[−1])$$

and after dualizing and shifting we obtain maps

$$l_n : \Lambda^n V[2−n] → V.$$

The maps $\{l_n\}$ satisfy higher Jacobi relations. In particular, if $l_n = 0$ for all $n ≠ 2$, then V is just a graded Lie algebra. Similarly, if $l_n = 0$ for all $n ≠ 1,2$, then V is a differential graded Lie algebra. If $l_n = 0$ for $n ≠ 1,2,3$ then l_3 is a contracting homotopy for the Jacobi relation, i.e.

$$(−1)^{|x||z|}l_2(l_2(x,y),z) + (−1)^{|y||z|}l_2(l_2(z,x),y) + (−1)^{|x||y|}l_2(l_2(y,z),x) =$$

$$(−1)^{|x||z|+1}(l_1l_3(x,y,z) + l_3(l_1x,y,z) + (−1)^{|x|}l_3(x,l_1(y),z) + (−1)^{|x|+|y|}l_3(x,y,l_1z)).$$

If V is a L_∞ algebra over A, then $C^*(V)$ will denote the differential graded A-algebra $\widehat{\text{Sym}}(V^*[−1])$. Our convention will be that V is concentrated in non-negative degrees, so that $C^{>0}(V)$ is a (maximal) ideal of $C^*(V)$.
1.2. \(L_\infty \) spaces. Let \(X \) be a manifold and consider the nilpotent ideal \(\Omega_X^0 \subset \Omega_X^\ast \).

Definition 1.2. An \(L_\infty \) space is a manifold \(X \) equipped with a sheaf \(\mathfrak{g} \) of \(L_\infty \) algebras over \(\Omega_X^\ast \) which is locally free of finite total rank (as graded \(\Omega_X^\ast \)-modules).

Definition 1.3. Given an \(L_\infty \) space \((X, \mathfrak{g}) \), the reduced structure sheaf \(\mathfrak{g}_{\text{red}} \) is defined by

\[
\mathfrak{g}_{\text{red}} = \mathfrak{g} / \Omega_X^0.
\]

One should think of the reduced structure sheaf as something like the dual to the cotangent complex and hence a measure of the “niceness” of the \(L_\infty \) space \((X, \mathfrak{g}) \).

Proposition 1.4. Given an \(L_\infty \) space \((X, \mathfrak{g}) \), the reduced structure sheaf \(\mathfrak{g}_{\text{red}} \) has no curving i.e. \(\ell_1^2 = 0 \).

Proof. From the \(L_\infty \) relations we know that \(\ell_1^2 = \ell_0 \). Now \(\ell_0 : C \rightarrow V \) i.e. \(\ell_0 \) is just an element of \(V \) which is dual to the map \(d_0 : V^\vee [-1] \rightarrow C \). The condition that reduced modulo the nilpotent ideal \(I \) the derivation \(d \) preserves the ideal generated by \(V \) implies that \(\ell_0 \in V \otimes_A I \). Therefore reduced modulo \(I, \ell_0 = 0 \). \(\square \)

1.3. **Morphisms of \(L_\infty \) spaces.** A map \(\alpha : \mathfrak{g} \rightarrow \mathfrak{h} \) of \(L_\infty \) algebras given by a sequence of linear maps

\[\text{Sym}^n(\mathfrak{g}[1]) \rightarrow \mathfrak{h} \]

of degree 1 satisfying certain quadratic identitites. If \(\mathfrak{h} \) is finite dimensional, then the map \(\alpha \) is exactly a map of differential graded algebras

\[C^*(\mathfrak{h}) \rightarrow C^*(\mathfrak{g}) \]

which takes the maximal ideal \(C^{>0}(\mathfrak{h}) \) to the maximal ideal \(C^{>0}(\mathfrak{g}) \). Alternatively, we can view \(\alpha \) as an element \(\alpha \in C^*(\mathfrak{g}) \otimes \mathfrak{h} \) satisfying the Maurer-Cartan equation

\[d\alpha + \sum_{n>1} \frac{1}{n!} l_n(\alpha, \ldots, \alpha) = 0 \]

and which vanishes modulo the maximal ideal \(C^{>0}(\mathfrak{g}) \).\footnote{The idea is that we have the following subspace}

\[\text{hom}_{\text{dgAlg}}(C^*(\mathfrak{h}), C^*(\mathfrak{g})) \subset \text{hom}_{grAlg}(C^*(\mathfrak{h}), C^*(\mathfrak{g})) \cong \text{hom}_{grVect}(\mathfrak{h}^\vee, C^*(\mathfrak{g})) \cong (C^*(\mathfrak{g}) \otimes \mathfrak{h})_1. \]

That the map determined by \(\alpha \in (C^*(\mathfrak{g}) \otimes \mathfrak{h})_1 \) respects the differential is exactly the Maurer-Cartan equation.
Let \((X, g_X)\) be an \(L_\infty\) space and \(Y\) is a smooth manifold. Given a smooth map \(\phi : Y \to X\) we have the pull back \(L_\infty\) algebra over \(\Omega_Y^*\) given by

\[
\phi^* g_X \overset{d{f}}{=} \phi^{-1} g_X \otimes \Omega_Y^*.
\]

Here \(\phi^{-1} g_X\) denotes the sheaf pull back.

Definition 1.5. Let \((X, g_X)\) and \((Y, g_Y)\) be \(L_\infty\) spaces, then a morphism

\[
\phi : (Y, g_Y) \to (X, g_X)
\]

is given by a smooth map \(\phi : Y \to X\) and a map of curved \(L_\infty\) algebras over \(\Omega_Y^*\)

\[
g_Y \to \phi^* g_X.
\]

We also have the notion of equivalence for \(L_\infty\) algebras as cochain homotopy equivalence of the reduced algebras which leads to a definition of equivalence on the space level.

Definition 1.6. An \(L_\infty\) map \(\phi : (Y, g_Y) \to (X, g_X)\) is an equivalence of \(L_\infty\) spaces if the underlying map \(Y \to X\) is a diffeomorphism and if the map of curved \(L_\infty\) algebras \(g_Y \to \phi^* g_X\) is an equivalence i.e. the map

\[
(g_Y)_{red} \to (\phi^* g_X)_{red}
\]

is a cochain homotopy equivalence of sheaves \(C^\infty_Y\) modules.

This notion of equivalence is quite strong. If \(g\) and \(h\) are equivalent as curved \(L_\infty\) algebras over \(\Omega_Y^*\), then \(C^*(g)\) and \(C^*(h)\) are homotopy equivalent, but the converse is not necessarily true. Note that \(C^*(g)\) (and similarly for \(C^*(h)\)) are filtered by powers of the ideal generated by \(\Omega_Y^{>0}\) and \(g^\lor\), the associated graded is \(\text{Sym}(g^\lor_{red}[-1])\). The definition of equivalence implies that we have an equivalence at the first page of the associated spectral sequences². One reason why this stronger definition is desirable is if we consider \(L_\infty\) spaces with underlying manifold a point, then there are \(L_\infty\) algebras (even just Lie algebras) that have quasi-isomorphic Chevalley-Eilenberg complexes yet that are quite different; for instance, it is well known that \(H^*(\mathfrak{sl}_2(\mathbb{C}))\) is an exterior algebra on one generator in each degree \(3n\) for \(n \geq 0\), but the rank 1 free Abelian lie algebra concentrated in degree -2 has the same cohomology.

²Recall that for a filtered complex \((F^*, C^*, d)\) with \(F^{p+1}C^* \subseteq F^pC^*\) we have an associated (cohomological) spectral sequence with \(E_0\)-page given by

\[
E_0^{p,q} = \frac{F^pC^{p+q}}{F^{p+1}C^{p+q}}, \quad d_0 = d : C^{p+q} \to C^{p+q+1}.
\]

If the spectral sequence converges (e.g. for bounded filtered complexes) then we have

\[
E_\infty^{p,q} = \text{Gr}_p H^{p+q}(C^*).
\]
Remark 1.7. Note that the category of \(L_\infty \) spaces can be simplicially enriched. The \(n \)-simplices of the set of maps \((Y,g_Y)\) to \((X,g_X)\) are smooth maps \(\phi : Y \to X \) and a map of curved \(L_\infty \) algebras over \(\Omega_Y \)

\[
g_Y \to \phi^* g_X \otimes \Omega^*_\Delta
\]

where the right hand side makes sense as \(L_\infty \) algebras are tensored over cdgas. One advantage of this perspective is that it allows us to define families of \(L_\infty \) structures and a natural notion of homotopy. It is non trivial, yet true (as shown in [?]) that the simplicial structure is compatible with the definition of equivalence in \(L_\infty \) spaces. i.e if \(\phi : (Y,g_Y) \to (X,g_X) \) is an equivalence then for any other \(L_\infty \) space \((Z,g_Z)\) the induced maps of of simplicial sets

\[
\text{Maps}((Z,g_Z),(Y,g_Y)) \to \text{Maps}((Z,g_Z),(X,g_X))
\]

\[
\text{Maps}((X,g_X),(Z,g_Z)) \to \text{Maps}((Y,g_Y),(Z,g_Z))
\]

are weak homotopy equivalences.

2. GEOMETRIC CONSTRUCTIONS ON \(L_\infty \) SPACES

Definition 2.1. Let \((X,g)\) be an \(L_\infty \) space.

- A vector bundle \(V \) on \((X,g)\) is a locally free sheaf of \(\Omega_X \) modules such that \(V \oplus g \) has the structure of a curved \(L_\infty \) algebra over \(\Omega_X \) satisfying
 - The maps \(g \hookrightarrow V \oplus g \) and \(V \oplus g \to g \) are maps of \(L_\infty \) algebras;
 - The Taylor coefficients \(l_n \) vanish on tensors containing two or more sections of \(V \).
- The sheaf of sections of \(V \) is given by \(C^*(g,V[1]) \) as a sheaf of dg modules over \(C^*(g) \).

The \(L_\infty \) space \((X,V \oplus g)\) is the total space of the vector bundle given by \(V[1] \) formally completed along the zero section.

2.1. (Co)Tangent bundle. Let \(V \) be a vector space (finite dimensional or topological) which we can think of as a dg-manifold with underlying manifold a point. We define functions on \(V \) by the (completed) symmetric algebra of the dual. Now functions on the tangent bundle \(T(V) \) are given by

\[
\mathcal{O}(TV) = \mathcal{O}_V \otimes_{\mathcal{O}_V} \text{Sym}_{\mathcal{O}_V}(\text{Der}(\mathcal{O}_V)^\vee).
\]

Hence, the tangent bundle \(T(X,g) \) is given by the \(g \) module \(g[1] \). Vector fields are sections of the tangent bundle and hence as a sheaf are \(C^*(g,g[1]) \). Another way to see this is as follows. Consider any graded vector bundle \(E \to X \), then for any \(U \subset X \) open we have an identification of vector spaces

\[
\text{Der}(\mathcal{O}(E(U))) \cong \mathcal{O}(E(U)) \otimes E(U).
\]

This equivalence follows from the fact that any such derivation is determined by its value on the generators and hence is determined by a map

\[
E(U)^\vee \to \mathcal{O}(E(U)).
\]
We define the cotangent bundle $T^*(X, g)$ to be the dual module to the tangent bundle i.e. $g^\vee[-1]$. A k-form on (X, g) is a section of the kth exterior power of the cotangent bundle, where

$$\Lambda^k T^*(X, g) = \Lambda^k (g^\vee[-1]) = \text{Sym}^k (g^\vee)[-k].$$

So a k-form is a section of the sheaf $C^*(g, \text{Sym}^k (g^\vee)[-k])$.

The total space of the tangent bundle is given by $T(X, g) = (X, g \oplus g)$, while the total space of the cotangent bundle is given by $T^*(X, g) = (X, g \oplus g^\vee[-2])$.

We also have the shifted version of the tangent and cotangent bundles. Of note, we have

$$T^*[-1](X, g) = (X, g \oplus g^\vee[-3]) \text{ and } T[-1](X, g) = (X, g[e])$$

where e is a square zero parameter of degree 1.

3. DG RINGED MANIFOLDS

Definition 3.1. A dg ringed manifold is a manifold M, together with a sheaf \mathcal{A} of differential graded unital Ω^*_M-algebras such that

1. As a sheaf of Ω^0_M-algebras, \mathcal{A} is locally free of finite total rank;
2. \mathcal{A} is equipped with a map of sheaves of Ω^*_M-algebras $\mathcal{A} \to C^\infty_M$, the kernel of this map must be a sheaf of nilpotent ideals;
3. For sufficiently small open subsets U of M, the cohomology of $\mathcal{A}(U)$ must be concentrated in non-positive degrees.

Note that the conditions imply that the Ω^0_M-module \mathcal{A} is given by the sections of a graded vector bundle of finite total rank on M.

Example 3.2.

1. Let M be any manifold and let $\mathcal{A} = \Omega^*_M$ equipped with the de Rham differential. The resulting dg ringed space is denoted M_{dR}.
2. Let M be any manifold and let $\mathcal{A} = C^\infty_M$. We denote the resulting dg ringed space by M.
3. Let M be a complex manifold. There is a complex (i.e. we work over $\Omega^*_M \otimes_R \mathbb{C}$) dg ringed space $M_{\overline{\partial}}$ with $\mathcal{A} = \Omega^0_{\overline{\partial}}(M)$ and differential $\overline{\partial}$.
4. If (X, g) is an L_∞ space, then $(X, C^*(g))$ is a pro-dg ringed manifold.

Definition 3.3. A map of dg ringed manifolds $(M, \mathcal{A}) \to (N, \mathcal{B})$ is a smooth map $f : M \to N$, together with a map of sheaves of dg $f^{-1}\Omega^*_N$-algebras $f^{-1}\mathcal{B} \to \mathcal{A}$, such that the
If \((M, \mathcal{A})\) is a dg ringed manifold, then the sheaf \(\mathcal{A}\) is filtered by the powers of the nilpotent ideal \(\mathcal{I} \subset \mathcal{A}\) which is the kernel of the map \(\mathcal{A} \to \mathcal{C}^\infty_M\). Let \(\text{Gr} \mathcal{A}\) denote the associated graded sheaf of dg algebras over \(\Omega^*_{M}\).

Definition 3.4. A map \((M, \mathcal{A}) \to (N, \mathcal{B})\) of dg ringed manifolds is an equivalence, if the map of smooth manifolds \(M \to N\) is a diffeomorphism, and the induced map of sheaves \(\text{Gr} \mathcal{A} \to \text{Gr} \mathcal{B}\)
is a quasi-isomorphism.