Homework Set 4

- (1) Let c be a convex closed curve in \mathbb{R}^2 (i.e., c is a simple closed curve which is the boundary of a convex set.) Let n = n(s) be the unit outward pointing vector to c (so n = c' if c is travelled clockwise). Set $\beta(s) = c(s) + rn(s)$ for some r > 0. (β is called a parallel curve to c.)
 - (a) Prove that the length $\ell(\beta)$ of β satisfies $\ell(\beta) = \ell(c) + 2\pi r$.
 - (b) Prove that the area $A(\beta)$ enclosed by β satisfies $A(\beta) = A(c) + r\ell(c) + \pi r^2$.
 - (c) Prove that $\kappa_{\beta}(s) = \frac{\kappa_c(s)}{1+r}$.
- (2) Let $c : [a, b] \to \mathbb{R}^3$ and $\tilde{c} : [a, b] \to \mathbb{R}^3$ be regular curves. Let e_1, e_2, e_3 and $\tilde{e}_1, \tilde{e}_2, \tilde{e}_3$ be Frenet frames for c, \tilde{c} , respectively. \tilde{c} is a *Bertrand mate* of c if the normal lines of c(t) and $\tilde{c}(t)$ are the same for all $t \in [a, b]$. (The normal lines are the span of $e_2(t)$ and $\tilde{e}_2(t)$.) Thus we can write $\tilde{c}(t) = c(t) + r(t)e_2(t)$, for some $r(t) \in \mathbb{R}$. Assume that both the curvature $\kappa(t)$ and the torsion $\tau(t)$ of c are never zero.
 - (a) Prove that r(t) is in fact a constant. Thus the Bertrand mate \tilde{c} is the \mathbb{R}^3 version of a parallel curve to c.

Hint: Reparametrize c by arclength. Compute that

$$\tilde{e}_1 = \frac{d\tilde{c}}{ds} = (1 - r\kappa)e_1 + r'e_2 - r\tau e_3.$$

Since $\tilde{e}_1 \cdot e_2 = 0$ (why?), conclude that r' = 0.

(b) Prove that there exist $A, B \in \mathbb{R}$, with $A, B \neq 0$, such that $A\kappa(t) + B\tau(t) = 1$ for all $t \in [a, b]$.

Hint: Let s be the arclength parameter for c, and let \tilde{s} be the arclength parameter for \tilde{c} . Use $d\tilde{e}_1/ds = (d\tilde{e}_1/d\tilde{s})(d\tilde{s}/ds)$ and the product rule to compute

$$\frac{d}{ds}(e_1 \cdot \tilde{e}_1) = 0.$$

Thus $e_1 \cdot \tilde{e}_1 = \cos(\theta)$ for some constant angle θ for all s. Now use $\tilde{c} = c + rn$ (with r constant by (a)) to compute that

$$\cos(\theta) = e_1 \cdot \tilde{e}_1 = \frac{d\tilde{c}}{ds} \frac{ds}{d\tilde{s}} \cdot e_1 = \frac{ds}{d\tilde{s}} (1 - r\kappa)$$
$$|\sin(\theta)| = |\tilde{e}_1 \times e_1| = \left| \frac{ds}{d\tilde{s}} \left(e_1 + r \frac{de_2}{ds} \right) \times e_1 \right| = \left| \frac{ds}{d\tilde{s}} r\tau \right|.$$

From these equations, we get that $(1 - r\kappa)/r\tau$ is a constant, which we fix to be

$$\frac{1-r\kappa}{r\tau} = \frac{B}{r}$$

Set A = r and conclude that $A\kappa + B\tau = 1$.