
Chapter 6

Conics

We have a pretty good understanding of lines/linear equations in R2 and RP2.
Let’s spend some time studying quadratic equations in these spaces. These
curves are called conics for the very good reason that they arise as the intersec-
tion of a plane in R3 with a cone.

Recall that a cone on the origin has the equation x2 + y2 = α2z2 for some
α > 0. (Why is this a cone?) The angle formed between the positive z-axis and
the side of the cone is tan−1(α−1) (Why?); this is called the cone angle, but
sometimes we’ll just say the cone angle is α.

Set α = 1 for convenience. If we intersect the cone C with the vertical plane
P : a�x + b�y = c�, c� �= 0, you can check that we get a hyperbola in (x, z)
coordinates (as long as a� �= 0). Note that this really means that the projection
of C∩P into the (x, z)-coordinate plane is a hyperbola; a further check is needed
to show that C ∩ P itself is a hyperbola. Note that if c� = 0, the intersection is
a pair of lines.

Exercise. Show that (a) if we intersect a general cone C with a horizontal plane,
we get a circle or a point; (b) if we intersect C with a plane that is parallel to
a generating line of C (a line lying on C), then we get a parabola; note that
the angle this plane makes with the xy-plane equals the cone angle; (c) if we
intersect C with a plane whose angle with the xy-plane is less than the cone
angle, then we get an ellipse or a point; (d) if we intersect C with a plane whose
angle with the xy-plane is more than the cone angle, then we get a hyperbola.
In all cases, it’s not hard to check that the projection of the intersection into a
coordinate plane is an ellipse/parabola/hyperbola, but it’s harder to check that
the intersection itself is of this type.

When you do this Exercise, you will see that the intersections are of the form

ax2 + bxy + cy2 + ex+ fy + g = 0, (1)

with at least one of a, b, c nonzero, as long as c� �= 0 in the plane P : a�x+ b�y+
c�z = 0. (What happens if c� = 0?) This is the general expression of a quadratic
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equation in two variables, so we’re justified in saying that
the set of conics is the same as the set of curves in R2

satisfying a quadratic equation.

This definition of conics allows a single point and a pair of intersecting lines
to be a conic; these are called degenerate (= stupid) conics. If b = 0 (no
“cross term”), you learned in high school how to complete the square to see
what conditions on a, c, e, f, g determine whether (??) is an ellipse, parabola or
hyperbola. If b �= 0, you may or may not have seen how to rotate the xy-plane
so that the equation in (??) in the rotated coordinate has no cross term.

Exercise. Let Rθ be the matrix which rotates the plane counterclockwise by
the angle θ. Define new coordinates/axes x�, y� on the plane by

Rθ

�
x�

y�

�
=

�
x
y

�

Given the equation (??), find θ in terms of a, b, c, d, e, f such that (??) in x�, y�-
coordinates has no cross term.

Exercise. PODASIP: Every ellipse can be obtained by intersecting the stan-
dard cone (α = 1) with a plane. Every parabola can be obtained by intersecting
the standard cone (α = 1) with a plane. Every hyperbola can be obtained by
intersecting the standard cone (α = 1) with a plane.

Let’s say we want to prove a concordance theorem about ellipses. Fix an
ellipse E . Find a cone C and a plane P such that E = C∩P . Note that C∩{z = 1}
is a circle. In fact, the concordance theorem holds for E iff it holds for the circle.
Note that there is a bijection between points on the circle and points on the
ellipse just by seeing that every generating line of the cone contains exactly one
point of the circle and one point of the ellipse.

Let’s try the same argument for a parabola. Now the bijection breaks down
at exactly one point of the circle, which has no corresponding point on the
parabola. However, if we extend the α map of Chapter 5 to a map (also called)
α : R3 \ {0} → RP2 by α(x, y, z) = [x, y, z], then we see that α of the circle
in the z = 1 plane is a circle on S2 and hence topologically a circle on RP2,
while α of the parabola is a the same circle on S2 minus a point. It is pretty
natural to add this point in, so we can say that the circle and the parabola
are “projectively equivalent.” (This is a non-standard use of this term.) (What
happens when we do the same argument with a hyperbola?)

In all cases, we see that to prove a concordance theorem about conics, it’s
enough to prove the concordance theorem for circles. Once again, there is a
technical issue with the “missing” point on a parabola or hyperbola which we’ll
gloss over.

From this point of view, Pappus’ Theorem is a result about points on a de-
generate conic, a pair of lines. It’s a great leap, one that took over a millennium,
to think that this result should hold on any conic. (Sorry for the double labeling
of points.)
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Theorem. [Pascal’s Theorem] (≈ 1600) Let A = Q2, B = P3, C = Q1, D =
P2, E = Q3, F = P1 be six points on a nondegenerate conic. Set

T = P1Q2 ∩ P2Q1, S = P3Q1 ∩ P1Q3, R = P2Q3 ∩ P3Q2.

Then R,S, T are collinear.

As above, we may assume that the conic is a circle.
The proof is taken from Barager, where it is taken from other sources. We

begin the proof with a lemma. (Draw a picture.)

Lemma. Let Γ1,Γ2 be circles with intersect at E,F . Take C,D ∈ Γ1 and set
A = CE ∩ Γ2, B = DF ∩ Γ2. Then AB�CD.

Proof. Let O1 be the center of Γ1. Set ∠α = ∠DO1E on the side facing C, and
set ∠β = ∠DO1E on the side facing F . Then

∠ECD + ∠EFD =
1

2
∠β +

1

2
∠α = π.

This implies ∠ECD = π − ∠EFD = ∠EFB. But by a similar argument,
∠EFB = π−∠EAB. Thus ∠ECD = π−∠EAB, which implies the result.

Proof of the Theorem. (Draw a picture to make the proof comprehensible.) Set
G = AB ∩ CD,H = DE ∩ FA. Let Γ be the circle on E,F,H. (Recall that
such a circle exists and is unique provided E,F,H are not collinear. Can they
be?) Set P = BE ∩ Γ, Q = CF ∩ Γ. The Lemma implies

(BG = BA)�PH, (CD = CG)�QH,BC�PQ.

Therefore ∆BGC ∼ ∆PHQ and the corresponding sides of these two triangles
are parallel. Put another way, the corresponding sides of these triangles meet on
the line at infinity. By the converse to Desargues’ Theorem, these triangles are in
perspective from a point O. (Draw a picture: O is probably “between” the two
triangles.) In other words,HG,BP,QC meet atO. SinceQC = FC,BP = BE,
we get that ∆BGC,∆EHF are also in perspective from O. So by Desargues’
Theorem,

HF ∩GC = AF ∩DC = T,HE ∩GB = DE ∩AB = R,EF ∩BC = S

are collinear. �

Exercise. Can you prove Pascal’s Theorem by moving TS to infinity? In other
words, assume that P1Q2�P2Q1, S = P3Q1�P1Q3, and prove that P2Q3�P3Q2.
Of course, you can assume that the conic is a circle. Warning: I haven’t worked
this out.
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Cryptic Remarks. We used Desargues’ Theorem about triangles to prove
a theorem about conics. However, a triangle is a degenerate cubic curve. Is
Desargue’s Theorem a degenerate case of a theorem about pairs of cubics,
or a theorem about degree six curves? If Desargues fails, the underlying co-
ordinate ring (assuming it exists) has no zero divisors, and Pappus exists iff
the coordinate ring is commutative. The failure of commutativity is presum-
ably measured by an �∞ structure. How does that translate into higher de-
gree versions of Pappus? What is the algebraic interpretation of higher de-
gree versions or failures of Deargues? Ref: Artin’s Geometric Algebra and
http://en.wikipedia.org/wiki/Desargues’ theorem.

Duality for Conics

Duality takes lines to points and vice versa. Take a conic C in e.g. the z = 1
plane. Each tangent line � to C has a pole P�. We claim that the set of all
such P� themselves lie on a conic C�, the dual conic to C. This is worked out in
coordinates in the Geometry text.

Example. Let C be the circle x2 + y2 = α2. (This is a conic/circle in the cone
with cone angle α.) Take a point Q = (x0, y0, 1) on C. Since (−y0, x0, 0) is
perpendicular to Q (thought of as a vector in R3 – Why?), the tangent plane to
the cone at Q contains the origin, Q and any vector Q� = Q+µ(−y0, x0, 0). Take
e.g. µ = 1. After some nasty algebra (or if you know that a normal vector to this
plane is given by the cross productQ×Q�), we get that the tangent plane satisfies
x0x+ y0y − α2z = 0. Thus the polar point for this projective line �[x0,y0,−α2] is
[x0, y0,−α2] = [x0/α2, y0/α2, 1], which lies on the conic x2 + y2 = α−2. This is
the dual conic C� to C. Note that the dual of C� is C.

Thus duality for conics is a little tricky, as it takes a tangent line to C to a
point of the dual conic C�. It is not clear that the dual of C� is always C, but
this does work out. In particular, duality for conics implies that a configuration
theorem for points on a conic C� has a dual configuration theorem for tangent
lines on the dual conic C. (Note that his procedure generalizes duality for points
and lines, as the tangent line to a line is always just the line itself.)

Example. Let’s dualize Pascal’s Theorem. In the hypothesis of Pascal’s Theo-
rem, the six points Pi, Qi, I = 1, 2, 3 on C� dualize to six tangent lines �Pi , �Qi on
the dual conic C. The line P1Q2 = P1∪Q2 dualizes to �P1 ∩ �Q2 = PP1Q2 , so the
intersection point P1Q2 ∩Q1P2 = T dualizes to PP1Q2 ∪ PP2Q1 = �T . The con-
clusion that R,S, T are collinear, or T ∪S = R∪S, dualizes to �T ∩�S = �R∩�S ,
i.e., �T , �R, �S are concurrent. Thus we have proved

Theorem (Branchion’s Theorem). Let �Pi , �Qi , i = 1, 2, 3 be six distinct tangent
lines on a conic C. Set PP1Q2 = �P1 ∩ �Q2 , etc. Then the three lines

PP1Q2 ∪ PP2Q1 = �T , PP1Q3 ∪ PP3Q1 = �S , PP2Q3 ∪ PP3Q2 = �R

are concurrent.
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Constructing Conics

We know that two general (or “generic”) points determine a unique line,
where in this case “generic” just means “distinct.” How many generic points
determine a unique conic? It’s tempting to say three, since three points deter-
mine a unique parabola, but this assumes the parabola is upwards/downwards
pointing, which is an added condition. In fact, since a hyperbola and ellipse
can intersect in four points, we certainly need at least five generic points to
determine a conic.

We can solve this problem algebraically. As a warm-up, take the equation
of a line ax + by + c = 0. This has three unknowns a, b, c. Take two distinct
points (x1, y1), (x2, y2) and plug them into this equation. Of course, we don’t
get a unique solution for a, b, c, as we would need three points for a unique
solution. We are not saying that three points determine a line! If you check the
algebra, after you plug in the two points, you get that (a, b, c) are unique up to
multiplication by a constant: if (a, b, c), (a�, b�, c�) are solutions of

ax1 + by1 + c = 0, ax2 + by2 + c = 0,

then there exists λ ∈ R with a� = λa, b� = λb, c� = λc (except in the stupid case
a = b = c = 0). Now the algebra matches up with our geometric insight: the
set of points in the plane lying on the line ax+ by+ c = 0 is the same set as the
line λax+λby+λc = 0, as long as λ �= 0. So two points determine a unique line,
but the equation of this line is unique only up to multiplication by a nonzero
real number.

As a check. If you try to solve the system axi+byi+c = 0, i = 1, 2, 3 for three
non collinear points (xi, yi), you will see that the only solution is a = b = c = 0,
and of course 0x + 0y + 0 = 0 is an equation satisfied by all points in R2, not
just a line of points.

Similarly, take a general conic ax2 + bxy + cy2 + ex + fy + g = 0 with
(a, b, c, ) �= (0, 0, 0) and take five points (xi, yi), i = 1, . . . , 5. Since there are six
unknown constants a, b, c, e, f, g, we expect to be able to solve for the unknowns
up to a scalar multiple, which is fine. Of course, we need some genericity
condition on the five points.

Exercise. PODASIP. We can solve for the six constants up to a scalar multiple
iff no three of the points (xi, yi) are collinear.

In summary, five (generic) points determine a unique conic.
Warning: For cubic and higher degree curves, determining the number of

points is trickier. This is called Cramer’s paradox; see
http://www.mathpages.com/home/kmath207/kmath207.htm.

Now we give an incredible straightedge (alone) construction of arbitrarily
many points on a conic. Take five generic points A,B,C,E, F . We want to
construct more points D on the unique conic determined by the five points.

We’ll need the converse of Pascal’s Theorem. Take six pointsA,B,C,D,E, F
such that the appropriate diagonals (“P1Q2∩P2Q1”, etc.) intersect at collinear
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points R,S, T . (Draw a picture.) Take the unique conic C on A,B,C,D,E,
assumed to be generic. Set F � = CR ∩ C. By Pascal’s Theorem applied to
A,B,C,D,E, F �, S = AE ∩RT ∈ BF �. Thus F, F � both lie on BS and CR, so
F = F �. Thus A,B,C,D,E, F lie on the conic C.
(Ref: http://www.maths.gla.ac.uk/wws/cabripages/conpascal.html)

Back to the five points A,B,C,D, F lying on a unique conic C. For any line
� on B, we expect to find a unique point D on � ∩ C. (Can you justify this
algebraically?) Take S = BF ∩AE as usual, and set T = �∩CE,R = CF ∩ST .
Finally, set D = � ∩ AR. (Draw a picture.) Then by the converse of Pascal’s
Theorem, D must lie on C.


