ST112 Notes for Week V Spring 2011

Trig functions – sine and cosine

Sin and Cos convert circular motion to linear motion. Physical examples of sin: (i) looking at the height of a red dot on the edge of a spinning unit radius circular disk as a function of time – in particular, think of the height of a piston as a function of time; (ii) plotting the amplitude of a sound/electomagnetic wave a function of time. Physical examples of cos: (i) same as the first example above, but looking at the x-displacement of the red dot as a function of time; (ii) as sin with a "lag time of $\pi/2$."

The periodicity of sin and cos – why do we measure radians the way we do?

The role of amplitude and frequency/period: $A\cos(k\theta)$ has amplitude A, period $2\pi/k$, frequency $k/2\pi$. $A\cos(k\theta - \psi)$ has a phase shift/lag time of ψ .

Trig functions – tangent

 $\tan \theta = \sin \theta / \cos \theta$. If a line y = mx + b cuts the x-axis making an angle θ with the positive x-axis, then $\tan \theta = m$.

Inverse trig functions

Arcsin or \sin^{-1} answer the question: If my red dot is at height y, what is the angle formed by a horizontal line, the center of the disk, and the dot? Arccos or \cos^{-1} answers the same question for the x-displacement. Arctan or \tan^{-1} answers the question: What is the angle θ that a line with slope m makes with the x-axis?

What are (good) domains/ranges for \sin^{-1} , \cos^{-1} , \tan^{-1} ?

Trig formulas

Which ones are important? $|\cos \theta| \le 1; |\sin \theta| \le 1.$ $\cos(\theta + 2\pi) = \cos \theta; \sin(\theta + 2\pi) = \sin \theta.$ $\cos^2 \theta + \sin^2 \theta = 1.$ $\cos(\theta - \pi/2) = \sin \theta; \sin(\theta + \pi/2) = \cos \theta.$ The addition formulas

 $\cos(\theta + \psi) = \cos(\theta)\cos(\psi) - \sin(\theta)\sin(\psi); \ \sin(\theta + \psi) = \cos(\theta)\sin(\psi) + \sin(\theta)\cos(\psi).$

Note that a number on the unit circle has coordinates $(\cos \theta, \sin \theta)$ for some θ . Write this as $\cos \theta + i \sin \theta$. Check that $(\cos \theta + i \sin \theta) \cdot (\cos \psi + i \sin \psi) = \cos(\theta + \psi) + i \sin(\theta + \psi)$. So complex multiplication codes up the addition formulas.