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Probability and Statistics

Goals: (i) A bare bones understanding of probability and conditional probability; (ii)
An understanding of margin of errors in polls/sampling.

Probability basics

Given an experiment or observation, the sample space is the set S of all possible out-
comes.

Examples: (1) Flip a coin four times. S = {HHHH,HHHT, ..., TTTT}.
(2) Measure the temperature in Boston. S = {t : −25 ≤ t ≤ 105}.

Let S be the set of all subsets of S. A probability measure is a function P : S → [0, 1]
with

P (A) = 1, P (Ac) = 1−P (A), A ⊂ B ⇒ P (A) ≤ P (B), A∩B = ∅ ⇒ P (A∪B) = P (A)+P (B).

Think of P (A) as the probability that the outcome of your experiment lies in A.

Examples: (1) For a fair coin, P (A) = 1/16 if A has one element, e.g. A = {HTHH}. This
is a uniform distribution.

(2) Maybe P ({t : 50 ≤ t ≤ 70}) = .65. We usually just write P (50 ≤ t ≤ 70) = .65

Conditional probabilities
This keeps track of prior information. We want to compute P (B|A), which informally

is the probability of B occurring knowing that A has occurred.

Defintion: The conditional probability of B given A is

P (B|A) =
P (B ∩A)
P (A)

.

For a uniform distribution, this computes the fraction of A taken up by B ∩ A, those
outcomes lying in both B and A.

Examples: (!) (1) If you’ve flipped a fair coin three times and gotten HHH, what are
the chances you’ll get H on the fourth flip? Many people will say, “Very small.” So let
B be the subset of S consisting of those outcomes with an H on the last flip, and let
A = {HHHH,HHHT} be the subset consisting of all outcomes with three heads in the
beginning. Then

P (heads on the 4th flip |heads on the first 3 flips)

= P (B|A) =
P (B ∩A)
P (A)

=
P (all heads)

P (heads on first 3 flips)
=

1/16
1/8

=
1
2
.



Note that P (B|A) = P (B), so the outcome on the 4th flip is independent of what happened
on the first three flips – there is always a 50-50 chance of getting H on any given flip. Since
you can compute P (A|B) = P (A), A and B just don’t care if the other happens or not. So
if P (B|A) = P (B) = P (A|B), we call A and B independent sets/events.

(2) I estimated I’ve commuted 3000 days to BU. Since I don’t always commute at rush
hour, I think that 60% of the time there’s a traffic jam (TJ) during my commute. If there
is a traffic jam, the chances that I get to work on time (WOT) is 35%. If there isn’t a traffic
jam (NTJ), chances of WOT jump to 90%. What is P (WOT )?

Answer: By the definition of conditional probability,

P (WOT ) = P ((WOT ∩ TJ) ∪ (WOT ∩NTJ))
= P (WOT ∩ TJ) + P (WOT ∩NTJ)
= P (WOT |TJ)P (TJ) + P (WOT |NTJ)P (TJ)
= (.35)(.6) + (.9)(.4)
= .576

Note that TJ and NTJ break the sample set of 3000 commutes into two distinct subsets.
We can turn this process around to predict the chances that there was a traffic jam from
observing if I get to work on time.

Here’s the abstract but not difficult theorem:
Bayes’ Theorem: If S is partitioned into disjoint sets B1, ...Bk, then for any r,

P (Br|A) =
P (Br)P (A|Br)

P (B1)P (A|B1) + ...+ P (Bk)P (A|Bk)
.

Example: If I get to work on time, the chances that there was a traffic jam is

P (TJ |WOT ) =
P (TJ)P (WOT |TJ)

P (TJ)P (WOT |TJ) + P (NTJ)P (WOT |NTJ)
=

(.6)(.35)
(.6)(.35) + (.4)(.9)

≈ .365

Random Variables

A random variable is just a function X : S → R on the sample space. We think of X as
a measurement applied to our observed set of elements S.

Examples: (1) For the coin flip, X of any sequence of 4 H’s and T’s could be the number
of H’s.

(2) If S is the set of people in the US, for p ∈ S, set X(p) to be the height of person p
in feet and inches.

The probability distribution of X is a function f : (range of X)→ [0, 1] given by

f(x0) = P ({p ∈ S : X(p) = x0}) = P (X = x0).

(This is for the case where the range of X is a discrete set of real numbers – see below).



Examples: (1) Draw the probability distribution for the 4 coin flip, where X counts the
number of heads.

(2) Do the same for the US population, where X measures the height.
(3) If S is the set of all times between 1850 and now, and X(t0) is the temperature at

time t0 in Boston, then the range of X is the whole interval [−25, 105]. So this is the opposite
of the discrete case. Almost surely the probability distribution has f(x0) = 0, so we’ll define
the cumulative distribution to be F (x0) = P (X ≤ x0), so now F : [−25, 105] → [0, 1] is an
increasing function. For example F (55) = 1/2 (maybe), and F (105) = 1.

In the continuous case (3), for nice X, we can find a function f with

F (x0) = P (X ≤ x0) =
∫ x0

−∞
f(x)dx.

f is called the probability density of F . In the discrete case, this f coincides with the
previous f .

Expectation values

The expectation value or mean of a random variableX with probability distribution/density
f is

µ =
∑

xf(x)
(

=
∫ ∞
−∞

xf(x)dx
)

depending on whether we’re in the discrete or continuous case. The expectation is the
expected/average output from the measurement X.

Example: For the 4 times coin flip, let’s say I get one dollar for every H. The expected pay
off, or average payoff in the long run (doing a 4 coin flip experiment a thousand times) is

0(1/16) + 1(1/4) + 2(3/8) + 3(1/4) + 4(1/16) = 2.

So if the person running this game charges me more than $2 per 4 coin flip, I should decline.

The variance of a random variable is

σ2 =
∑

x2f(x)
(

=
∫ ∞
−∞

x2f(x)dx
)
,

and σ > 0 is the standard deviation. A small σ means that f is concentrated near its mean
µ, and a small σ means f is smeared out.

The normal distribution

The most important probability distribution is the normal distribution with mean µ and
variance σ2, which has probability density

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )2

.

The standard normal distribution (µ = 0, σ2 = 1) is the bell curve f(x) = 1√
2π
e−

x2

2 .



So for a random variable X with standard normal distribution,

P (a ≤ X ≤ b) =
1√
2π

∫ b

a
e−

1
2
x2
dx,

which we can only compute via tables.
Note: If X has a normal distribution with mean µ, variance σ2, then Z = X−µ

σ has a
standard normal distribution.

Random Sampling

If S = {people in the US}, and X : S → R is the height function, in practice we can’t
compute X on all of S. We can take sample sets e.g. {p1, p2, ..., p100} ⊂ S and compute X
on this subset. To guard against a poor choice of this sample set, let’s pick 20 such subsets
S1, ...S20, and 20 random variables X1 : S1 → R, ..., X20 : S20 → R. To make sure we’re
sampling and measuring wisely, we assume

(i) The probability distributions of each Xi are the same. (This wouldn’t be the case if
we stupidly picked S17 to consist of only basketball players and measured their heights.)

(ii) The Xi are independent, i.e. P (Xi = a,Xj = b) = P (Xi = a)P (Xj = b) for i 6= j.
(This wouldn’t be the case if we stupidly picked Si to be the same as Sj .

Given these conditions, X1, ..., X20 are called a random sample of X.
We are then interested in

X̄ =
X1 + ...+X20

20
,

which is the sample average. So we can think of X̄ : {1, 2, ..., 100} → R, with e.g.

X̄(7) =
1
20

(X1(seventh person in S1) + ...+X20(seventh person in S20)) .

The Central Limit Theorem: Let X1, ..., Xn have the same probability distribution functions
with mean µ and variance σ2. Assume that the Xi are all independent. Then in the limit
as n→∞, the random variable

X̄ − µ
σ/
√
n

goes towards the standard normal distribution.

This means that as we sample more and more often, the average of the samples looks
more and more like a normal distribution with mean µ, and which is concentrated more
and more near µ. So our sampled average is looking more and more like a only slightly
smeared version of the true average.

Confidence Intervals

We feel that by sampling techniques, we should be able to measure e.g. the mean µ of
a random variable X on a sample space S which is too big for practical purposes. We start
by taking e.g. 20 samples, and produce an average sample function X̄. We would like to
ensure that |X̄ − µ| is small, but we can’t. There’s always the possibility that our samples
produce an X̄ that is very far from µ. (It could happen that although we tried to pick



S1, ..., S20 “randomly,” they all consisted of NBA players.) On the other hand, coming up
with such a bad result seems highly unlikely.

So we compromise, and ask for some interval [a, b] such that P (µ ∈ [a, b]) ≥ .95. Then
[a, b] is called the 95% confidence interval. Of course, we can change .95 to any number we
want in [0, 1]. In concrete terms, this says that the odds are greater than 95% that the true
mean lies in [a, b].

Warmup example: Let X have probability distribution the standard normal distribution.
Using tables, we see that

1√
2π

∫ 1.96

−1.96
e−

1
2
x2
dx = .95.

Thus P (X ∈ [−1.96, 1.96]) = .95, so [−1.96, 1.96] is the 95% confidence interval for X. In
summary, if a measurement X on a sample space S has P (X ∈ [a, b]) = 1√

2π

∫ b
a e
− 1

2
x2
dx,

then 95% of the time X(s) ∈ [−1.96, 1.96] for s ∈ S.

Back to our sampling situation, the Central Limit Theorem says that for n� 0 (usually
n > 30 is good enough)

P

(
X̄ − µ
σ/
√
n
∈ [−1.96, 1.96]

)
= .95,

up to some small error, so a little algebra and the (nontrivial) theory of estimators give

Theorem: If a random variable X has a normal distribution with mean µ and variance σ2,
then

P

(
X̄ − 1.96

σ√
n
< µ < X̄ + 1.96

σ√
n

)
= .95.

(This is unrealistic, as we’re trying to estimate µ, so why should we know σ? There are
more refined versions when σ is unknown.)

Example: We want to sample the age of the senior population in the US. Somehow we know
that σ2 = 225. We take 20 samples and observe an average sampled age of X̄ = 64.3. Then

64.3− 1.96
15√
20

= 57.7, 64.3 + 1.96
15√
20

= 70.9,

so
P (57.7 < µ < 70.9) = .95.

In other words, with 95% confidence, the average age of the senior population lies in
[57.7, 70.9].
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