ST112, SOLUTIONS FOR PS 2

CHAN-HO KIM
ROSS SWEET

When you write down your answer, you should try to CONVINCE your readers
(Chan-Ho, Ross, and Prof. Rosenberg) by writing your argument carefully. Don’t
forget this UHC is a WRITING class. Please “try this at home” before turning in your
work —i.e. don’t just write down the first thing that occurs to you and turn it in.

PROBLEM 1

I do not accept this picture for a rigorous proof of the commutativity of multiplication
of natural numbers. Perhaps the largest issue is the fact that a picture can only show
a single case of this identity. For a proof, the result should follow for all possible
combinations of natural numbers, and this single picture cannot encapsulate all of the
possibilities. We are limited by our ability to draw only a finite number of pictures, so
we must conclude that this picture does not demonstrate a proof. In fact, we will end
up taking this result as an axiom of multiplication on N.

Note that in general, pictures are a fantastic way to obtain an intuitive understanding
of a result, but they rarely suffice for a rigorous proof. So draw lots of pictures, but be
critical and remember that an over-simplified picture can lead you astray.

PROBLEM 2

First, note that this problem is asking for a ”picture proof,” not a rigorous proof, so
we do not necessarily run into the same difficulties we had in P1.

Unfortunately, a picture proof for commutativity of multiplication in Q is unreliable.
Previously, the picture proof for N relied on adding up boxes. However, Q includes
negative rational numbers, as well as 0, and the concept of negative, or zero, length is
not one a picture is well-equipped to deal with. If we happen to restrict ourselves to
positive rational numbers, however, there is a picture we can draw. Try this for yourself!
Be careful, as rational numbers can be larger than one. How should your picture deal
with this?

Recall that multiplication of rational numbers is defined as follows

a ¢ _a-c
b d b-d

Assume that multiplication on N is commutative. Then, if all of a,b,c,d > 0, by our

assumption,
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So for positive rational numbers, commutativity of multiplication follows from commu-
tativity of multiplication on N. However, if either rational number is zero or negative,
we cannot apply our assumption. If we want to mirror the argument we used above,
we need to know that multiplication on Z is commutative. To prove this, we need a
definition for multiplication on Z. What follows is a candidate definition, justify to
yourself that this is a good definition.

Definition 0.1. Let =,y € Z. Then,

(1) If x,y > 0, then z - y is defined by multiplication in N

(2) If x < 0, write z = —x¢ for p € N by the definition of Z. If y > 0, define
z-y=—(20y).

(3) If y < 0, write y
z-y=—(x-yo)

(4) If z,y < 0, write z = —xg, = —yo as above. Define = -y = z¢ - yo.

—1yo for yg € N by the definition of Z. If x > 0, define

Now that we have a definition for multiplication in Z, work out the proof for yourself
that multiplication in Z is commutative. Note that for zero, the identity follows the
proof we did in class. Then, applying the argument above, we see that multiplication
in Q is commutative.

Assume that multiplication in Q is commutative. To prove commutativity in R, first
we need a definition for multiplication in R. Recall that if x € R, then z = lim,,_, a,
where {a,} is a converging sequence of rational numbers.

Definition 0.2. Let z,y € R be given by limits of {a,} and {b,}, respectively. Then
define

£y = Jim o o)

where the multiplication a,, - b, is multiplication in Q.

Now, this definition is a bit more tricky, since a given real number can be written as
the limit of many, in fact infinitely many, sequences of rational numbers. So you should
justify to yourself that this product does not depend on the choice of sequence. Further,
we haven’t proven any properties about limits, so justify to yourself that it makes sense
to move limits through products like this. With this definition, we should be in a good
position to prove commutativity of multiplication.

ey = gl b)
= lim (b, - ay,)

n—o0

g y -

Here, the first and third equalities are our definition of multiplication in R, and the
second is commutativity of multiplication in Q.

PROBLEM 3

The exponent 3 in this identity is suggestive of volume, so we draw a cube with sides
of length a + b. Further, we divide each side into segments of length a and b, then

connect each segment to obtain the following picture.
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Note that this has divided the cube into eight boxes. There is one box with dimensions
a X a X a, one of b x b x b, three of a x b X a, and three of b x a x b. The equation for
the volume of a rectangular prism is length times width times height, so these boxes
have volumes a3, b®, a®b, and ab?, respectively. From the picture, you can see that none

of the boxes overlap, so the sum of their volumes equals the volume of the large cube.
Thus,

(a+0b)* = a® + 3a*b + 3ab® + b°

PROBLEM 4

Draw a series of boxes where each column has height corresponding to a term in the
sum in the identity. This is shown below with solid lines. Take the same picture, reflect
across a diagonal line, and place on top of the original picture. This second piece is
shown with dotted lines. These fit together nicely to form a rectangle with dimensions
n X (n+1). The sum on the left hand side of the identity is the area of the region with
solid lines. From the picture, we can see that this is half of the area of the rectangle.
Therefore,

1
1+2+3+...+n=@
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n+1

PROBLEM 5

Start with a single box corresponding to the 1 in the sum. Corresponding to the
3, add 3 blocks to the previous picture in an upside-down ”"L” shape. This creates a
square with sides of length 2. Repeat this process with each term in the sum to obtain
a square with sides of length n. Then, the sum must be equal to the area of the cube.

1+3+5+...+(2n—1)=n?
4
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PROBLEM 6

e The complement of N in 7Z is the set of “non-positive” integers, i.e. the set
consisting of zero and negative integers.

N¢={0,-1,-2,---}

Note that any negative integer of zero gives an example.
e The complement of Z in Q is the set of “non-integers” in the rational numbers;
we can write down this set more precisely.

Z¢={a/be Q:a,be Z with a#0,b# 0,+1,and ged(a,b) = 1}

Note that any nonzero reduced fraction with the denominator # +1 gives an
example. (A fraction a/b € Q (a,b € Z) is called reduced if gcd(a,b) = 1.)

e The complement of Q in R is the set of “non-rational” numbers in the real
numbers. You may write down as follows:

{z € R: x cannot be expressed as any fraction. }

Considering this problem, you may have this big question: what is the real
definition of the real numbers? Have you thought of this? The possible examples
are T, e, \/any square-free positive integer, but it seems not so easy to prove all
they are really not rational numbers. Here is the standard proof of the irrational
property of v/2. Assume that v/2 is a rational number. Then v/2 = a/b for some
a,b € 7Z. Without loss of generality, we may assume that gcda,b = 1. Squaring
the both sides, we have




S0 we obtain
20° = a?

Since LHS has 2 as factor, the both sides are even. This imples that 2 divides
a?, so 2 also divides a. Hence RHS is divisible by 4. This implies that b is also
divisible by 2. However, we assumed gcd(a,b) = 1, so contradiction. Q.E.D.

PROBLEM 7
Let X,Y be subsets in a set Z. The claim is that
(XUY)=X°nYe
We first prove
(XuY)cxenvye
Let a € (X UY)¢. Then
ag XUY,
so a cannot be in X and also cannot be in Y. This implies
a¢ X anda &Y
This is equivalent to
a€ Xanda€eY®
Finally, we have
a€ X°NY*©

Thus, any element in (X UY)¢is also in XN Y we have the one inclusion.
The other direction is as follows: Let b € XN Y* Then b € X¢ and b € Y This is
as same as

b X and b €Y.

Thus, b cannot be an element in X and also cannot be an element in Y, so b cannot be
an element in X UY. This is just

bg X UY,
so we have
be (XUY).

Therefore, we have the other inclusion, so we have the conclusion.

PROBLEM 8

We use the same notation as Problem 7. The claim is as follows:

Claim 0.3.
(XNY)=Xuyvye

We first prove (X NY) C X°UY*“ Leta € (XNY)° Thena & XNY. Thus, a ¢ X
ora¢ Y. Wehavea € X¢oraeY® soae X°UY".
Let’s consider the other direction. Let b € X°UY*“. Thenbe X¢orbe Y sob¢g X
orbY. Then b ¢ X NY, and we have b € (X NY)°
6



PROBLEM 9
Our claims are

Claim 0.4.
AN(BUC) = (ANnB)U(ANCQC)
AU(BNC) = (AUB)N(AUC)

Consider the first one: Let a € AN (BUC). Then a € A and a € BUC. Thus,
a€ ANBorae ANC. We have a € (AN B)U (ANC). The other direction: Let
be (ANB)U(ANC). Thenbe (ANB)orbe (ANC). Thus,be Aandbe BUC.
We have be AN (BUC).

Move to the second one: Let ¢ € AU(BNC). Then ¢ € Aor ¢c € BNC. Thus,
ce AUB and c € AUC. We have ¢ € (AU B) N (AUC). The other direction: Let
de (AuB)N(AUC). Thend € (AUuB) andd € (AUC). Thus,d€ Aord e BUC.
We have d € AU (BNC).

PROBLEM 10

First, recall the definitions of injective and bijective functions. Let f : R — R be a
function. Say f is injective if f(xq1) = f(xq) implies z1 = x9. Say f is surjective if for
any y € R there exist x € R such that y = f(z).

e Give an example of a function f : R — R which is injective but not surjective.

flz) =€
can be an example because if we have
e(El — 6%2
then we have
€$1 — 61'2
loge(e™) = loge(e*?)
1 = X9

so the exponential function is injective. But it is not surjective since e” is positive
for all z € R,i.e. it cannot have negative values.
f(x) = arctan(z)

is also an example.
e Give an example of a function f : R — R which is surjective but not injective.

f@)=z(z—1)(z+1)
For any given yy € R, there exists zy € R such that yo = z(xg—1)(xo+ 1) using
the vertical line test. But it is not injective because all x=0, 1, and -1 map to

f(x) = 0.
e Give an example of a function f : R — R which is neither injective nor surjective.
fla) =
This function cannot have negative values, so not surjective. Moreover, +a have

the same value a? , so not injective.
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e Give an example of a function f : R — R which is bijective:

f@) =2

We will prove this in the next problem.

PROBLEM 11

Let f: R — R be a linear function. Then it can be written as
f(z)=mz+b

for some m,b € R with m # 0. We first prove the injectivity of f. Let x; and z»
be different numbers. Assume the values f(x1) and f(zy) are same. (We will derive
contradiction with this assumption.) Then

f(x1) = f(z2)
mx,+b = mxy+b
mri = 1Ty

ry = x5 (Here we used m # 0.)

so contradition. To prove the surjectivity, we do as follows. Let y € R and consider the
number ‘%b € R. Then

=ty =y,

m

SO surjective.

PROBLEM 12

We already gave a counterexample:

f(x) =2’

is neither injective nor bijective.

PROBLEM 13A

Let f(z) =2z —3,9(z) = Va? + 5, h(z) = z%7. Then we compute the compositions
as follows

fog = 2vVa?2+5-3
T \2
(fog)oh = 2\/(952“) +5-3
r N2
goh = \/<$2+1> o

Folgen = 2 /(557) w53
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So we see that (fog)oh = fo(goh).

2 — 3
hof = —— 2
°f = mroarta
2vVx?2+5—3
(hof)og =

(2vVa?+5-3)2+1
fog = 2Va2+5-3
2Vx?2+5-3
ho(fog) = > ;
(2va2?2 +5—-3)2+1

Again, we have associativity (ho f)og=ho (fog).

PROBLEM 13B

Let € X. Then we use the definition of composition, following order of operations
defined by the parenthesis.

((hog)o f)(x) = (hog)(f(z))
= h(g(f(x)))
For the other case, we have
(holgof))(z) = h(lgo f)(z))
= h(g(f(2)))

Thus, we see that ((hog)o f)(z) = (ho(go f))(z). However, since we picked an
arbitrary x € X, this must hold for all z € X. Since the functions agree on every
point in the domain, they must be the same. Convince yourself of this! Therefore,

(hog)of=ho(gof).
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