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RIEMANNIAN GEOMETRY ON LOOP SPACES
YOSHIAKI MAEDA, STEVEN ROSENBERG, AND FABIAN TORRES-ARDILA

ABSTRACT. A Riemannian metric on a manifold M induces a family of Riemann-
ian metrics on the loop space LM depending on a Sobolev space parameter. In
Part I, we compute the Levi-Civita connection for these metrics. The connection
and curvature forms take values in pseudodifferential operators (¥DOs), and we
compute the top symbols of these forms. In Part II, we develop a theory of Chern-
Simons classes CSY,_, € H?*=1(LM?F~1 R), using the Wodzicki residue on ¥DOs.
For parallelizable manifolds these “Wodzicki-Chern-Simons” classes are defined for
all metrics and are independent of the framing. We use CS}V to distinguish some
classical circle actions on S3.
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A.2 Proof Of Theorem 3.4

References

1. Introduction

The loop space LM of a manifold M appears frequently in mathematics and math-
ematical physics. In this paper, using an infinite dimensional version of Chern-Simons
theory, we develop a nontrivial, computable theory of secondary characteristic classes
on certain infinite rank bundles including the tangent bundles to loop spaces.

The theory of primary characteristic classes on infinite rank bundles was treated
via Chern-Weil theory in [24]. While these classes can be nonzero, the Pontrjagin
classes vanish for loop spaces (Corollary 5.14).

As in finite dimensions, the suitably interpreted Pontrjagin form Tr(QF) vanishes on
the loop space of a (2k — 1)-manifold, which is the precondition for defining Chern-
Simons classes. In this paper, we define Chern-Simons classes for loop spaces of
parallelizable manifolds (e.g. 3-manifolds). These “Wodzicki-Chern-Simons” classes
CSY , € H* 1(LM?*~1 R) are somewhat stronger than their finite dimensional
counterparts in that (i) they are frame independent, and hence give real (as opposed
to R/Z) classes (Proposition 5.12) ; (ii) they are potentially nontrivial in all odd di-
mensions (Remark 5.4). As an application, we use C'S}’ to homologically distinguish
some classical circle actions (rotations, the Hopf action, the trivial action) on S%. We
know no other method that proves these actions cannot be homotoped to each other.

Since Chern-Weil and Chern-Simons theory are geometric, it is necessary to under-
stand connections and curvature on loop spaces. Ideally, one would like to work with
smooth loops, but this Frechét manifold is difficult to treat. Instead, we work with
Sobolev spaces of highly differentiable loops. A Riemannian metric g on M induces a
family of metrics ¢° on LM parametrized by a Sobolev space parameter s > 0, where
s = 0 gives the usual L? metric, and the smooth case should be some sort of limit as
s —» 0o. Thus we think of s as a regularizing parameter, and look for the parts of
the theory which are independent of s.

In Part I, we compute the connection and curvature forms for the Levi-Civita
connection for g®. These forms take values in zeroth order pseudodifferential operators
(¥DOs) acting on a trivial bundle over S, as first shown by Freed for loop groups [12].
We calculate the principal and subprincipal symbols of the Levi-Civita connection
one-form for integer Sobolev parameter; the noninteger case is more technical and
will be treated in a subsequent paper.

In Part II, we develop a theory of Chern-Simons classes on loop spaces. The
structure group for the Levi-Civita connection for (LM, ¢°) is a group of ¥DOs, so
we need invariant polynomials on the corresponding Lie algebra. We could use the
standard polynomials Tr(Q2*) of the curvature Q = Q°, where Tr is the operator
trace. However, QF is typically zeroth order and hence not trace class, and in any
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case the operator trace is impossible to compute in general. Instead, as in [24] we
use the Wodzicki residue, the only trace on the full algebra of ¥YDOs. Following
Chern-Simons [7] as much as possible, we build a theory of Wodzicki-Chern-Simons
(WCS) classes. The main difference from the finite dimensional theory is the absence
of a Narasimhan-Ramanan universal connection theorem. As a result, we do not
have a theory of differential characters as in [6], and we only define WCS classes for
parallelizable manifolds.! We define parameter-free or regularized WCS classes by
taking the large s limit of our formulas (Definition 5.3). In contrast to the operator
trace, the Wodzicki residue is locally computable, so we can write explicit expressions
for the WCS classes. In the last section, using computer calculations we prove the
result on circle actions on S® mentioned above.

The paper is organized as follows. Part I treats the family of metrics ¢° on LM
associated to (M, g). §2 discusses the Levi-Civita connection for s € Z*. After some
preliminary material, we compute the Levi-Civita connection one-form for ¢* (Theo-
rem 2.1) and show that the one-form takes values in ¥DOs of order zero (Proposition
2.3).

In §3, we compute the principal and subprincipal symbols of the Levi-Civita con-
nection one-form and the curvature two-form for the ¢g® metric. The long proofs are
in the Appendix. §4 compares of our results with Freed’s for loop groups [12].

Part II covers Wodzicki-Chern-Simons classes. In §5.1 we review finite dimensional
Chern-Weil and Chern-Simons theory for O(n)-bundles. In §5.2 we replace the or-
dinary matrix trace by the Wodzicki residue to define characteristic and secondary
classes on LM. An alternative trace given by the leading order symbol is discussed
in §5.3. In §5.4, WCS classes are defined for parallelizable manifolds, and we show
these classes are independent of the framing. We also define the regularized WCS
classes. In §5.5, we show that the Wodzicki-Pontrjagin classes vanish on LM and
more generally on Maps(N, M), the space of maps from one Riemannian manifold
to another.

In §6, we define when two circle actions on M are homologically distinct. We use
the first WCS class to show that a rotational action, the Hopf action and the trivial
action on S? are all homologically distinct.

Our many discussions with Sylvie Paycha are gratefully acknowledged.

Part I. The Levi-Civita Connection on the Loop Space LM

In this part of the paper, we compute the Levi-Civita connection on LM associated
to a Riemannian metric on M and a Sobolev parameter s € Z*. The main result
is Theorem 2.1, which computes the Levi-Civita connection explicitly except for one
term denoted AxY. This term is analyzed more concretely in Proposition 2.3.

LWCS classes are defined for all manifolds in a subsequent paper.
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Part I is organized as follows. In §2, we review background material on LM and
pseudodifferential operators on manifolds, and prove Theorem 2.1. In §3, we compute
the relevant symbols of the Levi-Civita connection one-form and the curvature two-
form. In §4, we compare our results with earlier work of Freed [12] on loop groups.

2. The Levi-Civita Connection for Integer Sobolev Parameters

This section covers background material and computes the Levi-Civita connection
on LM for integer Sobolev parameter. In §2.1, we review material on LM, and in
§2.2 we review pseudodifferential operators and the Wodzicki residue. In §2.3, we
give the main computation of the connection one-form for the Levi-Civita connection
on LM. In §2.4, we give a more complete calculation of the Levi-Civita connection
for integer Sobolev parameter. In §2.5, we prove a technical lemma allowing us to
reduce local coordinate computations on LM to local computations on M. In §2.6,
we discuss the necessary extension of the structure group of LM from a gauge group
to a group of bounded invertible ¥DOs.

2.1. Preliminaries on LM. Let (M,{ , )) be a closed oriented Riemannian n-
manifold with loop space LM = C*(S!, M) of smooth loops. LM is a smooth
infinite dimensional Fréchet manifold, but it is technically simpler to work with the
smooth Hilbert manifold of loops in some Sobolev class s > 0, as we now recall. For
v € LM, the formal tangent space T, LM is I'(y*T'M), the space of smooth sections
of the pullback bundle v*TM — S'. For s > 1/2, we complete I'(y*TM ® C) with
respect to the Sobolev inner product

2m
(XY = 5 [ {0+ A)X(@), V@wdo, X.Y €T(TN)
Here A = D*D, with D = D/d~y the covariant derivative along . (We use this
notation instead of the classical D/dt to keep track of 7.) We need the complexified
pullback bundle, denoted from now on just as v*T'M, in order to apply the pseudo-
differential operator (1 + A)®. The construction of (1 + A)® is reviewed in §2.2. We
denote this completion by H*(y*T'M).

A small real neighborhood U, of the zero section in H*(y*TM) is a coordinate
chart near + in the space of H® loops via the pointwise exponential map

exp, : Uy — LM, X = (a— €XP1y(q) X(a)) . (2.1)

The differentiability of the transition functions exp;l1 -exp,, is proved in [9] and [13,
Appendix A]. Here 71,7 are close loops in the sense that a geodesically convex
neighborhood of 7;(6) contains ~,(f) and vice versa for all 6. Since v*T'M is (non-
canonically) isomorphic to the trivial bundle R = S x R®* — S!, the model space
for LM is the set of H® sections of this trivial bundle.
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The tangent bundle TLM has transition functions d(expy;' oexp,,). Under the
isomorphisms T',, LM ~ R ~ T.,, LM, the transition functions lie in the gauge group
G(R), so this is the structure group of TLM.

2.2. Review of YDO Calculus. We recall the construction of classical pseudodiffer-
ential operators (UDOs) on a closed manifold M from [14, 27], assuming knowledge
of ¥DOs on R*. We emphasize how to calculate global symbols in local coordinates,
since subprincipal terms are coordinate dependent (e.g. (2.2)).

A linear operator P : C*°(M) — C*°(M) is a ¥DO of order d if for every open
chart U C M and functions ¢, 9 € C*(U), ¢Pv is a YDO of order d on R", where
we do not distinguish between U and its diffeomorphic image in R*. Let {U;} be
a finite cover of M with subordinate partition of unity {¢;}. Let ¢; € C°(U;) have
Y; = 1 on supp(¢;) and set P; = ¢, P¢;. Then ). ¢; Ptp; is a WDO of M, and P differs
from ). ¢; P;3; by a smoothing operator, denoted P ~ . ¢;P;3;. In particular, this
sum is independent of the choices up to smoothing operators. All this carries over to
WUDOs acting on sections of a bundle over M.

An example is the ¥DO (1 + A — \)~! for A a positive order nonnegative elliptic
WDO and ) outside the spectrum of 1 + A. In each U;, we construct a parametrix
P; for A; = ¥;(1 + A — X\)¢; by formally inverting o(4;) and then constructing a
UDO with the inverted symbol. By [1, App. A], B = ). ¢; Pi¢); is a parametrix for
(1+A—=X)"1 Since B~ (1+A =X (1+A—X)"tisitself a YDO. For z € U;,
by definition

o((1+A =N (&) = a(P)(x,&) = o(6P¢)(z,£),
where ¢ is a bump function with ¢(x) = 1 [14, p. 29]; the symbol depends on the
choice of (U, ¢;).

The operator (1+A)® for Re(s) < 0, which exists as a bounded operator on L?(M)
by the functional calculus, is also a YDO. To see this, we construct the putative
symbol o; of 9;(1 + A)*¢; in each U; by a contour integral [, Ao[(1+ A — X)~]dA
around the spectrum of 1 + A. We then construct a DO @); on U; with o(Q;) = oy,
and set Q = ), $;Q;%;. By arguments in [27], (1+ A)* ~ @, so (1 + A)* is a YDO.

Fora = (a,...,an),let 02 = (0 /0z$") ... (0% /0x&™) in some local coordinates.
For any WDO P ~ ). ¢; Pjt); and fixed z € Uy, the symbol of P in U;, coordinates is

o(P)(z,6) = o(6(}_éiPibi)9) Z¢ )$i(x)o(Pii)
= 2 0@)6i(z) Y |a| T e o (PO (4:9)
= iqu(x)wa (P) (2, O)vi(2)d(w)
= Z@ z,€),
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where we use ¢; = 1 on supp(¢;), 0%¢(z) = 0 and 9% = 0 on supp(¢) for a # 0.
Thus symbols can be calculated locally.

Recall that the Wodzicki residue of a DO P on sections of a bundle £ — M™ is
/ tr o_o(P)(z, €)déds,
“ M

where S*M is the unit cosphere bundle for some metric. The Wodzicki residue is
independent of choice of local coordinates, and up to scaling is the unique trace on
the algebra of ¥DOs if dim(M) > 1 (see e.g. [10] in general and [25] for the case
M = S'.). It will be used in Part II to define characteristic classes on LM.

If the U; are diffeomorphic to precompact open balls in R", (P) extends smoothly
to QU; after possible shrinking of the Us;. Let Vi=U,V; = U UZ Uj. As with any
differential form, letting ¢, equal one on “more and more” of U, and letting the other
¢; equal one on “a little more than” V;, we get

/ L, o) fdéde = Z / 9i(2) tr o_(P,)(z, €)déda
Z / tr o_n(P;)(x,€)déds;

the invariance of the Wodzicki residue makes the right hand side well defined.

Therefore, for Wodzicki residue calculations we can sum up the integrals of the
locally defined symbols. In particular, for a bundle E over S! with DO P, we can
find a closed cover I; = [a;, a;+1] with E|;, trivial, and then

)d€dd = dédzx. 2.2
[omo e oen=3 [ wo.r)w o (2

C’w,,CbH—l

2.3. Computing the Levi-Civita Connection. The H® metric makes LM a Rie-
mannian manifold. The H?® Levi-Civita connection on LM is determined by the six
term formula
AV X, Z)s = XY, Z),+Y(X,Z), — Z(X,Y), (2.3)
X, Y], Z)s + (2, X], Y}, — ([, Z], X)s.
Recall that
(X, Y]*=X(Y*)0, — Y(X)0, = dx(YV) — oy (X) (2.4)
in local coordinates on a finite dimensional manifold. Note that X‘0;(Y*) = X(Y?) =
(0xY)® in this notation.
(2.4) continues to hold for vector fields on LM, even though the index a does not

refer to coordinates on LM. To see this, one checks that the coordinate-free proof
that LxY (f) = [X,Y](f) for f € C®(M) (e.g. [29, p. 70]) carries over to functions
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on LM. In brief, the usual proof involves a map H(s,t) of a neighborhood of the
origin in R? into M, where s,t are parameters for the flows of X,Y, resp. For LM,
we have a map H(s,t,6), where 6 is the loop parameter. The usual proof uses only
s, t differentiations, so # is unaffected. The point is that the Y are local functions on
the (s,t,6) parameter space, whereas the Y are not local functions on M at points
where loops cross or self-intersect.

Fix a loop 7 and choose a cover {(a;, b;)} of S' such that there is a coordinate cover
{U;} of an open neighborhood of Im(v) in M with
With these covers fixed, (2.5) holds for all loops near 7. Let {¢;} be a partition of

B

unity on S* subordinate to the cover {(a;,b;)}, and let g, = galb) be the metric tensor

on U;. The first term on the right hand side of (2.3) is

X(Y, (Z / ;- g1+ A)® Y]“Zb) (2.6)

’L}l

Since ¢; is independent of v, we have

Z/ | i - Oxg (1 + A)°Y]* 2
+Z/ i - g ([0x (1 + A)]Y) 2
+Z/ ¢i - gD (1 + A)*6xY)e- 20 (2.7)

. b
+Z/(aib)¢, 01+ APY) - 652

We will abbreviate terms like =, [, ;. @i - SxgD(1 + A)*Y]*ZP by Jo1 0x9a[(1 +
A)*Y]*Z°, and terms like [(6x (1 + A)*)(Y)]* by dx(1 + A)*Y®. For example,

Y, Z), = Z /( ’ di - g ((1+ APY) 2t = /51 gas((1+ A)*Y)e 20,

Collecting all terms from the six term formula similar to the last two terms in (2.7)
gives

/ Jap(L+A)° [0xY*- Z° + Y- 0x 2"+ 6y X*- Z° + X - 6y Z° — 6, X* - Y"  (2.8)
Sl
— X 67Y  + (6xY — 6y X)* - 20+ (62X — 6xZ2)* - Y' — (6v Z — 67Y)* - X'

= 2/ gar(1 + A)*6xY - 20,
Sl
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The three terms in the six term formula corresponding to the first term on the right
hand side of (2.7) contribute

/ 5Xgab - (]_ + A)sya - Zb + 5Ygab - (1 + A)sXa - Zb - 5Zga,b - (]_ + A)SXa - Yb
S1

= / Sxgap - (L +A)Y* Z° + 0y gap - (1 + AP X Z°
’ — Z7'0,gap - (1 + A)PX*- YV (2.9)
= /51 Sxap - (1 + DY Z° 4+ 6y ge - (1 + A X2 20
— g Z° 9" Oyger - (1 + A)XC- YT

The three terms in the six term formula corresponding to the second term on the
right hand side of (2.7) contribute

/ gab [Ox (L + AYY*- 20 + 6y (1 + APX*- 20 = 5,(1+ A X*-YP] . (2.10)
S1

The last term in (2.10) is linear in Z. If it is continuous in Z € H*(y*T'M), then
it is of the form

621+ A)VX, Yo = (Ax(Y), Z)q (2.11)

for some Ax(Y') which is a prioriin H *(y*TM). In §2.4 we will find AxY for s € Z*.
By (2.7) - (2.11),

2<VXY) Z)s
= / (2gap(1 + A)*6x Y« Z° + 6xgap - (L + A)*Y - Z° + gupdx (1 + A)*Y* - Z°
Sl
+6y gap(1 + AP X Z° + gy (1 + A)* X Z° (2.12)
—9ab[9"0rger - (L+ A XY + Ax (V)] 2°) .
The second term on the right hand side of (2.12) is
Oxgap* (1+AYY* 2 = g Z°g* 53 gey - (1 + A)*YE,

so for g, = gé?, we get,

/ Sxgas((1+ A)PY) 2
Sl

=y / $i0x gap((1 + A)*Y)® - 20 (2.13)
i J{aibi)

— Z/( " d)z'gab [(1 + A)S(l -+ A)*S(gtféXgef((l + A)SY)eat)}aZb‘
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In the last line, we take a diffeomorphism of (a;, b;) to R, and compute the various
WUDOs in these local charts as in §2.2.
The last expression in (2.13) is not of the form (W, Z),, since

(1+ A)_s(gtf’(i)éxgé?((l + A)°Y)¢0;) depends on i. In fact, all the other terms on
the right hand side of (2.12) are of the form [ ¢;gas(f*)*Z° for some locally defined
vector fields f?, since e.g. dxY® also depends on coordinate choices along . Since the
left hand side of (2.12) is global, the apparently local terms on the right hand side
must sum to a global expression. With this understanding, we have

Theorem 2.1. Assuming (2.11) defines AxY, the Levi-Civita connection V = V(¥
for the H®-metric on LM 1is given by

1
(VxY)* = ox(Y*)+5(1+4)" [9%76x ge - (L 4+ A)*YC + 5x (1 + A)° Y]
1
+o(14+A)7 [gY6vge - (14 A)PPX+ 6y (1+ A)*X?] (2.14)

— N

_5(1 +A)7 [g“tatgef (1+A)°Xe. v/ +Ax(Y)a} )

In the theorem, §x (1 + A)*Y® is shorthand for [(dx(1 + A)%)(Y)]*, and similarly
for the other terms.

2.4. Integer Sobolev Parameters. If s is a positive integer, it is easy to understand
the terms on the right hand side of Theorem 2.1, and in particular to calculate AxY.

Of the six terms on the right hand side of Theorem 2.1 involving the ¥DO (1+A)~*,
the first, third and fifth are standard ¥YDOs acting on Y.

For the second and fourth terms, we have to analyze the variation of (1 + A)®.
Let Z € T,LM = H*(v*TM). If f : M — R is a (locally defined) function on
M, then 6z f(x) = Z'0;f(z) in local coordinates near x = (), since dzf(x) =
(/1) -0 f (a(2)), where a(0) = 2,(0) = Zyg)

The situation is different for (locally defined) functions on S* x LM, such as 4*. Let
7 :[0,2n] x (—&,€) — M be a smooth map with 5(,0) = (), and £|,_o5(0,7) =
Z(0). Since (0, 7) are coordinate functions on S x (—¢,¢), we have

0,7 = 02" = Z".

0 0 0 0

Z W) = Z (AV = — —(~ v = —
) =00 =571, (ae (78,7) ) 96 07 |-=o

(2.15)

The covariant derivative along 7 is the operator on W € I'(v*T'M) given by

DW
dy

= (Y'V")a, (W) = 0sW + (v'w")(9p) (W)

= 0(W"0; +4'W'T},0;,
where VM is the Levi-Civita connection on M, w™ is the connection one-form in

local coordinates {8;} on M, and I} are the Christoffel symbols. For A = (&) &

M
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an integration by parts gives
(AY)F = —gY* — 2TF 37 0pY" — (0pTsy” + Ths¥” + Tk TH4°5") Y.
Therefore, by (2.15)
(0z8)Y)" = (=22'0,T%, 5" — 208, 2" — (20553 + 200, Tl + 40Tl 2"
+ Z'OTkAY + Tk 2V + Z'0,T% THA3" + Tk Z' 0,47y
FTh Tl 255 4+ T8, TA5 27 ) Y. (2.16)

Thus (67A)Y, resp. 0z(1 4+ A)*Y, are second, resp. 2s, order differential operators in
7 and first, resp. 2s — 1, order differential operators in Y.

In summary, the second term in (2.14) is order —1 in Y.
We now consider the fourth and sixth terms (1+A)~* [0y (1+A)°X], (1+A)*[AxY]
n (2.14).

Lemma 2.2. (i) 6y (1 + A)°X is order 2s in Y.
(ii) AxY is order 2s in Y.

Proof. (i)
Sy(1+A)¥X = Zs:(l + AR5y (14+A) - (1+A)PFX.

k=1
The term with £ = s contains the term
(—03)° (-Th;Y"X%)0,
which contains the term
T*:X°(—07)°Y" 0.
This is the only term of order 2s in Y.

(ii) Recall (AxY,Z)y = (0z(1 + A)*X,Y)o. The highest order term in Y in the
right hand side term is

[ a0 Tz~ [ gart 2oy
N /S a2 X (=Y
= (—1)5/ uag gLy X YD 27
= (D) TR XY, 2y,

where ~ denotes highest order term in Y. a

We summarize this section:
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Proposition 2.3. Fors € Z*, the term AxY in Theorem 2.1 is a differential operator
of order 2s acting on Y. The last six terms on the right hand side of Theorem 2.1
are YVDOs in'Y of order 0, —1,—2s,0, —2s, 0, respectively.

2.5. The Levi-Civita Connection One-Form. In local coordinates on a manifold

N, the Levi-Civita connection can be written as V = d + w. For a vector field Y

and a tangent vector X, dx(Y) = 0xY in the notation of §2.3, and w(X)(Y') is the

Levi-Civita connection one-form. In Theorem 2.1, the right hand side is not in the

form d + w, since 0x(Y?) is computed in local coordinates on M, not on N = LM.
Nevertheless, we make the following definition:

Definition 2.1. The Levi-Civita connection one-form for the H® metric on LM 1is
the sum of the last siz terms on the right hand side of (2.14) and is denoted w = W),

In this section, we prove a technical local lemma that justifies using this Levi-Civita
connection one-form to compute symbols in §3 below.

As just mentioned, for a vector field Y on LM and a tangent vector X € T, LM,
(65MY)® #£ 6x (V) in local coordinates along a portion of 7. Indeed, in local coordi-
nates (¢4)2, of LM near v, 6%™Y can only mean X (Y *)1,, while Y are components
with respect to a finite set of coordinates of M near some 7(6y). Of course, we can
still substitute V = 0 +w from Theorem 2.1 into Q(X,Y) = VxVy —VyVx — Vixy]
to compute the curvature on LM; as usual, we obtain {2 = dw + %[w, w], where dw is
defined by the Cartan formula in the a-coordinates. This is very useful for computing
symbols of 2, whereas a decomposition V = dp s+ wra in coordinates on LM would
be useless for symbol computations.

For Chern-Simons theory in Part II, we have to compute terms of the form x*6,
where x is a local section of the frame bundle F'LM and 0 is a Lie algebra valued con-
nection one-form on F'LM. We have to compare x*0 for LM with the M-coordinate
expression w'®), as we can only compute symbols for w-like expressions.

The following lemma relates x*6 to w.

Lemma 2.4. Given vy € LM, there exists an open neighborhood V- C LM of v, a
local frame x : V. — FLM, and local coordinates {U;} on M covering Im(7y,) such
that x*0,(X)(Y) = wy(X)(Y) on each U;, for all y € V.

PRroOF: For any local frame y, x*6 is the connection one-form in the y trivialization
of TLM, so VxY = X(Y*)¢o + x*0(X)(Y), where x(7) = (o) for v € V. Let {p;}
be a partition of unity for a cover {U;} as in (2.5), and let p;Y = Y%, = Y, %42 0;.
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Then
VxY = Vyx (Z mY) = ZVX(Y;“%) = ZX (Yi*)ha + X 0(X)(Y)
= D X0 + X 0X)(Y)

= DX + X BX)(Y) = VX ()9,

i

= X (Z(p,y)j) 0+ X 0(X) (V) = D VX (¥])9;
= X(Y7)0; +x"0(X)(Y) = > _ Y X(41)0;

= ox(Y)9; + X" O(X)(Y) = 3 VX (V)05

Since VxY = 0x(Y7)d; + w(X)(Y), we get
w(X)(Y) = x"0(X)(Y) - ZYiaX(l/Jﬁ;)aj-

The lemma follows if we can find x and U; (with coordinates) such that X (¢2)(v)(6) =
0 whenever v(0) € U;.

Let (2) be a basis of H*(y;TM), and let {e;} be a global frame of 73T M. Fix
P = (). For short vectors V,, = {v € T,M : |v| < €}, exp,V is a coordinate
neighborhood U, with coordinate vectors 0; = dexp,e; (thinking of e; € T, T,M).
At p, 0; = e;. {&; = dexp,e;} is a global frame of v*T'M for v close to vy. We can
trivialize TLM on some neighborhood V' of 7y by writing 92 = 1/*e;, and setting

H(MTM) xV =5 TLM|y, (Ya,7) — 2.

For the section x : v — (¢,) = (Ygéx), we have ¢, = gé, = g0, near p, and so
X(¢a) = X(wg)ak = 0. ]

Remark 2.1. (i) The metric on M used to define the exponential coordinates and
the local frame y in the proof need not be the fixed metric on M.

(ii) If M is parallelizable with global frame {e;} as in Part II, this frame also
trivializes v*T'M for all v € LM.

To end this section, we check that the local section in Lemma 2.4 can be extended to
a global section if the frame bundle F'LM is trivial. This justifies using the localized
symbol calculations of §3 in the global setting of Part II.

Lemma 2.5. Assume FLM is trivial. Let V. C LM be an open set with a local
section x : V. —> FLM. There exists an open subset V' C V', and a global section
X: LM — FLM with X|y» = X-
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ProoF: Let x; be a global section of FLM. There exists a gauge transformation
g:V — Aut(R) with g o x; = x. It suffices to extend g to g1 : LM — G = G(R).
Let V' be an open subset of V with C = V' C V. By [8], g|c has a continuous extension
g2 from the metric space LM to the locally convex vector space Hom(R). Identifying
R with v*T'M at a loop v and composing g, with the pointwise exponential map on
gl(n,C) gives a continuous extension g3 : LM — G.

For a cover {U,} of G, set V, = g5'(U,). Since LM is a Hilbert manifold, each
component function of gs|y, _¢ can be uniformly approximated by a smooth function
g1 [3]- Since LM admits a smooth partition of unity, these local approximations
can be glued to a smooth function g; which agrees with g on V. g

2.6. Extensions of the Frame Bundle of LM. In this subsection we discuss the
choice of structure group for the Levi-Civita connections on LM.

Let H be the Hilbert space H*(y*TM) for a fixed s and . Let GL(H) be the
group of bounded invertible linear operators on H; inverses of elements are bounded
by the closed graph theorem. G L(#H) has the subset topology of the norm topology on
B(H), the bounded linear operators on H. GL(H) is an infinite dimensional Banach
Lie group, as a group which is an open subset of the infinite dimensional Hilbert
manifold B(H) [22, p. 59], and has Lie algebra B(H). Let ¥YDOj, ¥DOp denote
the algebra of classical YDOs of nonpositive order and the group of invertible zeroth
order ¥DOs, respectively, where all ¥DOs act on H. Note that YDO; C GL(H).

Remark 2.2. The inclusions of YDO;, YDO«, into GL(H), B(#) are trivially con-
tinuous in the subset topology. For the Fréchet topology on ¥DO<, the inclusion is
not, continuous.

We recall the relationship between the Levi-Civita connection one-form 6 on the
frame bundle F'N of a manifold N and local expressions for the Levi-Civita connection
on TN. For U C N, let x: U — FN be a local section. A metric connection V on
TN with local connection one-form w determines a connection Oy € AY(FN,0(n))
on FN by (i) Orn is the Maurer-Cartan one-form on each fiber, and () Opn(Yy) =
w(X,), for Y, = x.X, [28, Ch. 8, Vol. II], or equivalently

This applies to N = LM. The frame bundle FLM — LM is constructed as in
the finite dimensional case. The fiber over  is isomorphic to the gauge group G of R
and fibers are glued by the transition functions for TLM. Thus the frame bundle is
topologically a G-bundle.

However, for s € Z*, the connection form and hence the curvature form for the
H? Levi-Civita connection take values in ¥DO«,. These forms should take values in
the Lie algebra of the structure group. Thus we should extend the structure group to
the ILH Lie group ¥DOQy, since the Lie algebra is ¥DO<q. This leads to an extended
frame bundles, also denoted F'LM. The transition functions are unchanged, since
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G C ¥DOg. Thus (FLM,6°) as a geometric bundle (i.e. as a bundle with connection
6° associated to V?) is a WDOg-bundle.
In summary, for the Levi-Civita connections we have

G — FLM UDO: —s (FLM,6°)
! l
LM LM

Remark 2.3. For s € Z*, if we extend the structure group of the frame bundle
with connection from ¥YDO] to GL(H), the frame bundle becomes trivial by Kuiper’s
theorem. This would allow us to define Chern-Simons forms for the trivial connection
on LM by the procedures of §5.4. However, there is a potential loss of information if
we pass to the larger frame bundle.

The situation is similar to the following examples. Let E — S' be the GL(1,R)
(real line) bundle with gluing functions (multiplication by) 1 at 1 € S and 2 at —1 €
S!. E is trivial as a GL(1,R)-bundle, with global section f with limy__, .+ f(e?) =
1, f(1) = 0,limy_,.- f(e?) = 2. However, as a GL(1,Q)*-bundle, E is nontrivial,
as a global section is locally constant. As a second example, let £ — M be a
nontrivial GL(n,C)-bundle. Embed C" into a Hilbert space #, and extend E to an
GL(H)-bundle £ with fiber H# and with the same transition functions. Then & is
trivial.

3. Local Symbol Calculations

In this section, we write down the 0 and —1 order symbols of the connection
one-form and the curvature two-form of the H*® Levi-Civita connection for s € Z™.
Some of the proofs are in Appendix A. These results are used in the calculations
of Wodzicki-Chern-Simons classes in §6. The formulas show that the s-dependence
of these symbols is linear, which will be used to define regularized Wodzicki-Chern-
Simons classes (see Definition 5.3).

Throughout this section, we denote the last six terms on the right hand side of
(2.14) by ax through fx, so their sum is the Levi-Civita connection form wx as an
operator on Y.

3.1. The 0 Order Symbols of the Connection and Curvature Forms.

Lemma 3.1. The Levi-Civita connection form wx = wg‘;) 15 a zeroth order W DO with
zeroth order symbol

oo(wx)e =T6X" = (wy)e- (3.1)

PRrOOF: The only terms in (2.14) contributing to the zeroth order symbol of wx are
ax,dx, fx. We have op(ax)? = %g“leaigef. From the identity 0,94 = %, 9n +
I Gan, We get oglax)? = %(ng + g“fgenF}‘i)Xi. By Lemma 2.2, 0¢(dx)? = %ngXi,
oo(fx)e = —%g“fgenF?in. Adding these three terms gives the result. O
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Corollary 3.2. 0o(Q2¥(X,Y)) = Qu(X,Y).

This follows from Q®)(X,Y) = [V, v¥] — V(jcy and the product formula for
UDOs. (Here it is understood that we only take symbols of the connection forms w®
on the right hand side, as the curvature is tensorial.) For example, UO(VS?)ng)) =
o0(VE) oo (V) = V¥V with the obvious abuse of notation.

3.2. The —1 Order Symbols of the Connection and Curvature Forms. We
state the results, with the proofs in Appendix A. These unpleasant formulas are used
in computer calculations in §6. For convenience, we write ig%lo_l(wx)g = A for

O'_l(LL)X)g' = Z'filA.
Proposition 3.3.

1

i{:—_10_1(wx)2
= 590,9% X'8;95c + 59/ X'Oigse + 59°/ X0, g s
—s X' 4" — s, XV — 59 X0, g T4 + sT4 A" g X0;g.
+0.I%Y X2+ Te Thy X0
-1 Fa;fyeX -0 Fw')f
+(=25 — 1)g" gV T i X" + (45 — 3)g" giel 45 X° (3.2)
+(4s — 1)g gteFMX‘s + (4s — 2)g£“gteF way X0
+9% g0t 57 X°
+9% 91 Dhs7” X + 2508, 7 g™ g1 L5 X°
—25%7 g Tl 91T hs X° — 255 9T Gueg™ g1l s X
Theorem 3.4.
1 a
1:5—,10—1(9()(, Y))e
i 4s — 1 . 4s o ; (45 — 1 . 4s o
= (DX/dy)'Y? 3 Riej - ?Rjei — X'(DY/dy)’ 3 Rjei T g e
+X'Y74" [(85 — 4) Ryj e, * + (—40s + 28) R, %, + (20s + 14)R,,°;
_(208 + 14)Ruze ] (48 2)RI/]Z€ a - (48 Q)RVlje, a (3-3)
+(16s - 12)R]eu " (168 — 12)Rwu ;T (48 6)Reyj“i

—(4s — 6)R,,;%; + (—20s + 18)R,,,*, — (—20s + 18)R,,;*,] .
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4. The Loop Group Case

In this section, we relate our work to Freed’s work on based loop groups QG [12].
We find a particular representation of the loop algebra that controls the order of the
curvature of the H' metric on QG.

QG C LG with base point e.g. e € G has tangent space T,QG = {X € T,LG :
X(0) = X(27) = 0} in some Sobolev topology. Instead of using D?/dv?* to define the
Sobolev spaces, the usual choice is Agi = —d?/df? coupled to the identity operator
on the Lie algebra g. Since this operator has no kernel on T,Q2M, 1+ A is replaced by
A. These changes in the H® inner product do not alter the spaces of Sobolev sections,
but they do change the Levi-Civita connection. In any case, for X, Y, Z left invariant
vector fields, the first three terms on the right hand side of (2.3) vanish. Under the
standing assumption that G has a left invariant, Ad-invariant inner product, one
obtains

VY = [X, Y]+ AT X, A'Y] + ATV, AX]
[12].
It is an interesting question to compute the order of the curvature operator as a

function of s. For based loops, Freed proved that this order is at most —1. For the
case s = 1, we have a much stronger result.

Proposition 4.1. The curvature of the Levi-Civita connection for the H' inner prod-
uct on QG associated to —% ®1Id is a YDO of order —oo.

PROOF: We give two proofs.
By [12], the H' curvature operator 2 = Q(!) satisfies

(QX,Y)Z, W), = (/Sl[y, Z'],/SI[X, W])g (X oY),

where Z = 857 as usual, and the inner product is with respect to the Ad-invariant
form on the Lie algebra g. We want to write the right hand side of this equation as
an H'! inner product with W, in order to recognize Q(X,Y) as a ¥DO.

Let {e;} be an orthonormal basis of g, considered as a left-invariant frame of TG
and as global sections of v*T'G. Let cf; = ([e;, e;], ex)g be the structure constants
of g. (The Levi-Civita connection on left invariant vector fields for the left-invariant
metric is given by VxVY = %[X , Y], so the structure constants are twice the Christoffel
symbols.) For X = X'e; = X*(f)e;, Y = Ye;, etc., integration by parts gives

QX,Y)Z,W), = ( /5 1 Yizjde) ( . X‘mecw) ki CprOkn — (X > Y).

Since

1

/Sl C?mXeWm = /51 (5mcc?chem’ Wbeb>g = <A—1(5mcc?chem)’ W> ,
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we get

(QX,Y)Z, W), = <[ /S IYiZJ} & Send™ A (X ), W>1—(X<—>Y)

_ <[ /5 a0, 0’)Zj(0’)d0’] ek,W>l,

a5 (0.0) = V()67 (A7 (Xle)) " (6) = (X 5 V).

with

We now show that Z — ([, a¥(6,6')Z7(6')d¢") ey is a smoothing operator. Apply-
ing Fourier transform and Fourler inversion to Z7 yields

/ at(0,6') 27 (¢')d6' = / ak(0,0")e" =" 71 (0")do" dEdo’
St S1xRx St

- / [af(é’, 9’)e—i<9—9'>'f} eO=0")€ 73 (") dg" dedy,
STxRx ST
so Q(X,Y)Z is a YDO with symbol

50,9 = [ ak(0.0)¢0 %y

with the usual mixing of local and global notation.

For fixed 6, the integral is the Fourier transform of Y#(#') (resp. X?(¢')), the only
piece of the first (resp. second) term in a%(6, ') depending on ¢'. Since the Fourier
transform is taken in a local chart with respect to a partition of unity, and since in
each chart V" and X* times the partition of unity function is compactly supported,
the Fourier transform of af in each chart is rapidly decreasing. Thus bf(&, €) is the
product of a rapidly decreasing function with ¢?¢, and hence is of order —oo

We now give a second proof. For all s

1 1 1
VXy = E[X, Y] - EA_S[ASX, Y] + iA_s[X, ASY]

Label the terms on the right hand side (1) — (3). As an operator on Y for fixed X,
the symbol of (1) is o((1))% = 3X°c?,. Abbreviating (%) * by £ %%, we have

2s
O_((2))a ~ __Cgu |:€_28A8X€ _ 7£_28_189A5X€

N (—28) (=25 — 1) ... (=25 — L+ 1) oy popnsoe
+Z i & 0y A° X

a4

X€+Z —2s—1)...(— 25_£+1)§£8£X5].
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Thus
a 1 a € —25 ASVE 2s —2s5—1 S VE
O'(Vx)u ~ ECE!‘ 2X —f A’ X +7§ 89AX
- ( 28)( 28—1) ( 28—€+1) —25—L Al A SYVE
> o E2EAXE (4.1)
=2
2 (—28) (=25 —1)... (=25 —£+1) __,.,
X°.
+; ite! &0

Set s =1 in (4.1), and replace £ by £ — 2 in the first infinite sum. Since A = —03,
a little algebra gives

o(Vx)i~ e,y ;) sXeet = ad (Z( ij) agxg—f> : (4.2)
=0

Denote the infinite sum in the last term of (4.2) by W(X,0,£). The map X +—
W (X, 0, &) takes the Lie algebra of left invariant vector fields on LG to the Lie algebra
Lg[[¢71]], the space of formal ¥DOs of nonpositive integer order on the trivial bundle
S! x g — S!, where the Lie bracket on the target involves multiplication of power
series and bracketing in g. We claim that this map is a Lie algebra homomorphism.
Assuming this, we see that

o (QX,Y) = o (V. Vsl = Vixy) ~ 0 (ad W (X),ad W (V)] ~ ad (X, V]))
= o (ad (W(X),W(Y)]) —ad W([X,¥])) =0,

which proves that Q(X,Y’) is a smoothing operator.
To prove the claim, set X = z%e™%¢,,Y = ¢ ¢/™e,. Then

W([X, Y]) — W(xnymez(n+m)eclgbek) — ( Z-g) Clgbaz ( ?Lyb ez n+m)0)§ er
=0
P‘H] . .
w0, W) = 305 EU g () o (s,6m0) ¢ wHcey,
£=0 p+q={ ’
and these two sums are clearly equal. O

It would be interesting to understand how the map W fits into the representation
theory of the loop algebra Lg. In [17], it is shown that the order of 2 is exactly —2
for all s # 1/2,1 on both QG and LG.

Part II. Characteristic Classes on LM

In this part of the paper, we construct a general theory of Chern-Simons classes
on infinite rank bundles including the frame/tangent bundle of loop spaces, following
the construction of primary characteristic classes in [24]. The primary classes vanish
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on the tangent bundles of loop spaces, which forces the consideration of secondary
classes. We discuss the frame dependence of these Wodzicki-Chern-Simons (WCS)
classes, and give examples of nontrivial WCS classes on LS3. The key ingredient is to
replace the ordinary matrix trace in the Chern-Weil theory of invariant polynomials
on finite dimensional Lie groups with the Wodzicki residue on invertible bounded
UDOs.

In §5, the general theory is developed for parallelizable manifolds, and we prove a
vanishing result for the Pontrjagin classes of LM and more general spaces of maps.
In §6, we associate to every circle action on M"™ an n-cycle in LM. Using computer
calculations, we compute that the three dimensional WCS class in LS? integrates to
different values on cycles associated to different actions on S3. Thus these cycles are
nonhomologus, and the WCS class distinguishes these actions.

5. Chern-Simons Classes on Loop Spaces

We begin this section with a review of Chern-Weil and Chern-Simons theory in
finite dimensions (§5.1), following the seminal paper [7]. In §5.2, we discuss Chern-
Simons theory on a class of infinite rank bundles including the frame bundles of loop
spaces. Since the geometric structure group of these bundles is ¥DOg, we need traces
on the Lie algebra WDO«( to define invariant polynomials. There are two types of
traces, one given by taking the zeroth order symbol and one given by the Wodzicki
residue [18].

In §5.3, we discuss the zeroth order symbol theory. Chern classes are pullbacks
of finite dimensional Chern classes, and the same holds for Chern-Simons classes.
Thus these primary and secondary classes are not really new. In §5.4, we consider
the richer Wodzicki-Chern-Simons theory. On a (2¢ — 1)-manifold M with trivial
tangent bundle, the WCS class CS), (LM, R) is defined, and is independent of the
frame/trivialization of the tangent bundle. As a result, the WCS classes are real, not
just R/Z classes. We can identify the dependence of the WCS class on the Sobolev
parameter s, and this enables us to define regularized WCS classes. In §5.5, we prove
that the corresponding Wodzicki-Pontrjagin classes vanish for the tangent bundle to
Maps(N, M) for Riemannian manifolds N, M.

5.1. Chern-Weil and Chern-Simons Theory for Finite Dimensional Bun-
dles. We first review the Chern-Weil construction. Let GG be a finite dimensional Lie
group with Lie algebra g, and let G — E — M be a principal G-bundle over a
manifold M Set g' = g® and let

I'(G) = {P: ¢ — R |P symmetric, multilinear, Ad-invariant}
be the Ad-invariant polynomials on g.

Remark 5.1. For classical Lie groups G, I'(G) is generated by the polarization of
the Newton polynomials Tr(A!), where Tr is the usual trace on finite dimensional
matrices.
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For ¢ € A¥(E,g!), P € I'(G), set P(¢) = Po ¢ € A¥(E). Two key properties are:
e (The commutativity property) For ¢ € A¥(E, g!),

d(P(¢)) = P(dg). (5.1)
e (The infinitesimal invariance property) For 1; € A¥(E, g), ¢ € A'Y(E,g) and
P e I'(G),
!
S (=1F P A A, G A ) = 0. (5.2)

i=1

Theorem 5.1 (The Chern-Weil Homomorphism [16]). Let E — M have a connec-
tion 0 with curvature Qi € A%(E,g). For P € I'(G), P(QE) is a closed invariant real
form on E, and so determines a closed form P(Q) € A2(M,R). The Chern-Weil
map

@lzljl(G) — H*(Ma R)7 P [P(QM)]
1s a well-defined algebra homomorphism.

[P(2)] is called the characteristic class of P.
We now review Chern-Simons theory. A crucial observation is that P(Qg) is exact,
although in general P(2;/) is not.

Proposition 5.2. [7, Prop. 3.2] Let G be a finite dimensional Lie group. For a
G-bundle E — M with connection 0 and curvature Q = Qg, and for P € IY(G), set
1 1
¢y =t + é(tQ —1)[0,60], TP(9) = 1/ P(O A ¢ 1)dt.
0

Then dTP(0) = P(Q) € A*(E).

Proof. We recall the proof for later purposes. Set f(t) = P(¢}), so P(Q) = fol f(t)dt.
We show f'(t) =1-dP(0 A ¢}™*) by computing each side. First, we have

F1(t) = % (P(é}) =P (%Qﬁi) = (%¢t 4 ¢l_1) 5.3
= IP(QAG ) +1 (t - %> P (.01 A 7)), "

where we have used the commutativity property (5.1). On the other hand, we have
L-dP(OAGTY) = IP(dONGT) —1(1—1)P(OAdd; A ¢,2) (5.4)
1
= IP@A )~ SIP(0,6) A )~ 10~ )P A dgy A 67,

by (5.1) and the structure equation Q = df+ 36, 0]. Since d¢, = t[¢;, 6], the last term
in (5.4) equals

(1= 1)POAdgy A$L2) = 1(1 — 1)P(8 A t[gr, 0] A §\72).
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Using the invariance property (5.2) with ¢ =0, ¢y = 6 and ¢y =¥y, k=2,...,1—1,
we obtain
1(1=1)P(O A tlr, 0] A ¢ 7%) = —1LP(10,0] A ¢y 7).

This implies (5.4) equals (5.3). O

Setting ' = EG, M = BG in Theorem 5.1 gives the universal Chern-Weil homo-
morphism

W I(G) — H*(BG,R).

We write P € I}(G) if W(P) € H*(BG,Z). For this subalgebra of polynomials, we
obtain more information on T'P(#).
Theorem 5.3. [7, Prop. 3.15]. Let E — B be a G-bundle with connection . For

P e I(G), let TP(0) be the mod Z reduction of the real cochain TP(0). Then there
ezists a cochain U € C*~'(B,R/Z) such that

—~—

TP(0) = n*U + coboundary.
In Theorem 5.10 below, we rework the proof of this theorem in our context.

Corollary 5.4. [7, Thm. 3.16] Assume P € I}(G) and P(Qg) = 0. Then there ezists
CSp(0) € H*~Y(B,R/Z) such that

[7P(0)] = 7*(CSe(0)).

Proof. Choose U € C?"1(B,R/Z) as in Theorem 5.3. Since P(2};) = 0, Proposition
5.2 implies 0T P(0) = dTP(f) = 0, where § is the coboundary map. By Theorem 5.3,
7*U and T P(#) are cohomologous. Set C'Sp(f) = [U]. O

Notice that the secondary class or Chern-Simons class CSp(6), is defined only when
the characteristic form P(€y) vanishes. This definition of C'Sp(f) depends on the
choice of U, and this dependence is treated systematically in the theory of differential
characters [6, viz. Prop. 2.8].

This ambiguity is not an issue for trivial bundles, and the following corollary will
be taken as the definition of Chern-Simons classes for trivial YDOg-bundles (see
Definition 5.2).

Corollary 5.5. Let (E,0) —— B be a trivial G-bundle with connection, and let x be
a global section. For P € I}(G),

—~—

CSp(0) = x*[TP(0)].
Proof. 'This follows from Corollary 5.4 and 7y = Id. g
If we do not reduce coefficients to R/Z, this corollary fails; cf. Prop. 5.12.
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5.2. Chern-Simons Theory on Loop Spaces. In [24], Chern forms are defined
on complex vector/principal bundles with structure group YDOJ and with WDOg-
connections, where the YDOs act on sections of a finite rank hermitian bundle £ —
N over a closed manifold (e.g. v*TM ® C — S* for loop spaces). The key point is
to find suitable polynomials P € I'(¥DQO}). We single out two analogs of the Newton
polynomials Tr(A!): for A € ¥DO}, define

PO(4) = k(1) / tr oo(A)(z, ) deds. (5.5)

S*N
Here S* N is the unit cosphere bundle of N and k(I) = (27i)~*(Vol S*N)~!. Note that
d; = (2mi) ! is the normalizing constant such that d;[tr((Q%*)")] € H*(BU(n), Z) for a
connection 6* on EU(n) — BU(n)?. In [23], PI(O) is called a Leading Order Symbol
Trace.
The second analog is

PY(4) = k() /S oy (A) (2, €) dsda, (5.6)

P (A) is a multiple of the Wodzicki residue of A'. As usual, Pl(o) , PV determine

polynomials by polarization.

For both Pl(o), P the commutativity and invariance properties hold because (5.5)
and (5.6) are tracial [24]: tr[og([A4,B])] = 0 for A,B € ¥DO«y, and the Wodz-
icki residue vanishes on commutators. Thus P”, P/ are in both I'(G), I'(¥DO})
(although trivially PV = 0 on the gauge group G).

The proof of Proposition 5.2 to carries over to YDOg-bundles with connections. In
particular, it applies to the H*-frame bundle of the loop space with the Levi-Civita
connection. Thus, we have

Proposition 5.6. For a YDOj-bundle with connection (€,0) — B, and for P €
I'(¥DOS), set

by =t + %(ﬁ —1)[6, 9],
1 (5.7)
TP(9) = z/ PO A gL Hdt

Then dTP(0) = P(%). We can replace ¥DO}, by G.

Remark 5.2. By Chern-Weil theory, Pl(o) (Q), PV () are closed forms with coho-
mology class independent of the connection #. The cohomology classes for Pl(o), Al
are the components of the so-called leading order Chern character and the Wodzicki-

Chern character. Using Newton’s formulas, the Chern characters define Chern classes

2We often omit this normalizing constant in the rest of the paper.



RIEMANNIAN GEOMETRY ON LOOP SPACES 23
cl(o), /" as well as Pontrjagin classes for real bundles. Examples of nontrivial lead-
ing order Chern classes are given in [24], and examples of nontrivial Wodzicki-Chern
classes are given in [26].

5.3. Leading Order Chern-Weil and Chern-Simons Theory. In this section,
we show that Theorem 5.3 extends to the R/Z secondary classes associated to the

characteristic forms P = PI(O) built from the leading order symbol of a connection on
a G-bundle. We also show that leading order Chern and Chern-Simons classes are
essentially pullbacks of finite dimensional Chern classes, and hence contain limited
new information.

For FLM, only the L? = H° Levi-Civita connection is a G-connection. One easily

checks that the L? connection one-form wn(yo) (X)(0) = wfy‘/(fe) (X)) on LM acts point-

wise, as does the curvature two-form. Thus P”(Q©), = ix |, tr P(Q) db, so the
theory of leading order characteristic forms is a straightforward generalization of the
finite dimensional case.

As we now explain, the case of gauge bundles over Maps(N, M) which arise from
finite rank bundles over NV is similar. This class of bundles includes T Maps(N, M),
where the finite rank bundle is £ = ev*TM — N, as shown below. For most of
this section, we assume that G is the gauge group of an oriented real bundle E, but
the arguments carry over to e.g. hermitian bundles.

By [2], BG = CF:S(M, BSO(n)) = {f : M — BSO(n)|f*ESO(n) ~ E}. For
N closed and connected, let ev : C®(N,M) x N — M be the evaluation map
ev(f,n) = f(n). The bundle ev* E' determines an infinite rank bundle 7, ev* E —
C>®(N, M), where 7, ev* E|; = ['(f*E — N), with I' denoting some Sobolev space
of sections. (Here 7 : C*°(N, M) x N — C*(N, M) is the projection.) For n € N,
define ev,, : C*°(N, M) — M by ev,(f) = f(n).

It is well known that connections push down under m,. For the gauge group case,
this gives the following:

Lemma 5.7. The universal bundle EG — BG is isomorphic to m,ev* ESO(n). EG
has a universal connection 879 defined on s € T(EG) by

(0779)(7) (@) = ((ev™ 0)(z0yus) (7, ).

Here 0" is the universal connection on ESO(n) — BSO(n), and us : C*®°(N, M) x
N — ev* ESO(n) is defined by us(f,n) = s(f)(n).

Proof. See [23, §4]. O
Corollary 5.8. The curvature QF9 of 0F9 satisfies

Q"(Z,W)s(f)(n) = ev* Q"((Z,0), (W, 0))us(f, ).
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Proof. This follows from
Q"9(Z,W)s(f)(n) = V2OV = ViV = V2 ls(f)(n)
and the previous lemma. Il

Lemma 5.9. Let G be the group of gauge transformations acting on sections of a
finite rank bundle E — N. Then P € I}(G).

Proof. For all ny € N, the maps ev,,, are homotopic, so the cohomology class
[P (ev;, 04| € H™(BG x {no}, R) = H*(BG,R)

is independent of ny. Thus

_d N _ dy . sl
{Vol SN Jon o ((92 ))dfdaz} = WS Joy [tr oo ((evi, QU)!)] dedz,
= [dl evy tr og ((Q“)l)} , (5.8)

evy, [dl tr ((Q“)l)} ,

since Q" is a multiplication operator. By the choice of d;, the last term in (5.8) lies
in ev: H?(BSO(n),Z) C H*(BG),Z). Thus

w(P") = [P (QF%)] € H*(BG, 7).
]

Remark 5.3. Let (£,0) — B be a G-bundle with connection, where G is the gauge
group of the rank n hermitian bundle £ — N, and let f : B — BG be a geometric
classifying map. The argument above shows that the [*! leading order Chern class
equals f*evy ¢;(EU(n)). Thus all leading order Chern classes are pullbacks of finite
dimensional Chern classes, although the effect of ev; may be difficult to compute.
(This argument was developed with S. Paycha.)

As in [7], we have

Theorem 5.10. Let (£,0) — B be a G-bundle with connection § and assume

P(Q2) =0. Let TP(8) be the mod Z reduction of TP(f). Then there exists a cochain
U € C?Y(B,R/Z) such that

—~——

TP(#) =n*(U) + coboundary.

Proof. By Lemma 5.7, EG — B@G has a universal connection 0 (with curvature Q)
Thus there exists a geometric classifying map ¢ : B — BG: i.e. (£,0) ~ (¢*EG, ¢*0).
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By Lemma 5.9, P € I}(G), so its mod Z reduction is zero. From the Bockstein
sequence

mod Z
—

... — H(BG,7) —s H'(BG,R) H(BG,R/Z) —s H*'(BG,Z) —> - -

—_——
A A

we deduce that P(£2) represents an integral class in BG. Thus P(f2) as a cochain
vanishes on all cycles in BG, and hence is an R/Z coboundary, i.e. there exists @ €

C?~1(BG,R/Z) such that 6@ = P(2). We have

o~ —_— —~—
~

57 (i) = 7 (6u) = 7*(P(Q)) = dTP(0) = 5(TP(6)).

A

The acyclicity of EG implies TP(0) = n*(@) + coboundary. Now set U = ¢*(@). O

Definition 5.1. Let (£,0) — B be a G-bundle with connection 6 and curvature 2,
and assume PI(O)(Q) = 0. In the notation of Theorem 5.10, define the Chern-Simons
class CSY (8) € H2=Y(B,R/Z) by

CSy) 1 (0) = [U].

As before, there is a dependence on the choice of @ for nontrivial bundles. For
a trivial bundle, Definition 5.2 below removes this dependence. However, as in the
previous Remark, the Chern-Simons class will be a pullback of a finite dimensional
Chern-Simons class via the evaulation map.

We can also define leading order Chern-Simons classes for ¥YDOg-bundles with
connection. If DOy acts on E — N, the top order symbol is a homomorphism
0o : YDOy — G, where G is the gauge group of 7*E — S*N. A ¥DOj-bundle £ has
an associated G-bundle &’ with transition functions oy(A), for A a transition function
of £. A connection # with curvature €2 on £ gives rise to a connection §' = oy(f) on &’
with curvature oo(€2). Since P{”(2) = P (54(12)), we define CS\ () = CSY (6").

The homomorphism oy may lose information from the original YDOg-bundle. This
indirect definition is forced on us, because we do not know if EUYDO; — BY¥DOj
admits a universal connection.

This lack of a Narasimhan-Ramanan theorem prevents us from defining Chern-
Simons classes on arbitrary ¥YDOg-bundles using the Wodzicki residue. In the next
section, we will define a Wodzicki-Chern-Simons class for F'LM when M is paralleliz-
able.

5.4. Wodzicki-Chern-Simons Classes. In this section, we extend the classical def-

inition of Chern-Simons classes to P for trivial ¥DOj-bundles. In particular, we

define a Wodzicki-Chern-Simons class for loop spaces of parallelizable manifolds.
We use Corollary 5.5 to define secondary classes.
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Definition 5.2. Let (£,0) — B be a trivial YDOj-bundles with connection 6, curva-
ture ) and global section x : B — £. Let P be an Ad-invariant degree | polynomaial on
WDO«. Assume that P()) = 0. The Chern-Simons class CS3,_,(0,x) € H* (B, R)

CSy 1(0,x) = X" [TP(0)].

For the case of a trivial frame bundle FLM — LM for a Riemannian manifold
(M, g) and P = P in (5.6), the corresponding Chern-Simons class is denoted

CSy1(6°(9), x)
and is called the s Wodzicki-Chern-Simons (WCS) class of LM with respect to g.

Remark 5.4. (i) In finite dimensions, the form 7 Py;_3(#) vanishes because the trace
of the product of an odd number of skew-symmetric matrices is zero. Thus the usual
indexing is C'S; € H*='(M,R/Z). On LM, the connection and curvature forms are
skew-symmetric ¥YDOs, but their symbols need not be skew-symmetric. Therefore,
we have to allow for the existence of WCS classes in all odd dimensions.

(ii) We have not taken the mod Z reduction as in finite dimensions, but the a priori
dependence of the WCS class on x will be removed in Proposition 5.12.

(iii) As in Remark 2.3, we can always extend the structure group to GL() so that
a global section x exists whether or not the original DOy bundle is trivial. This
yields a general definition of a Wodzicki-Chern-Simons form, but with a possible loss
of information.

For the rest of this section, we specialize to the frame bundle FF'LM.

Theorem 5.11. Let M be a parallelizable manifold of dimension 2¢ — 1. Then for
any metric g on M, the WCS class CSy,_,(0°,x) € H* (LM, R) is defined. If M
is flat and parallelizable, then WCS classes CSyy, (6%, %) are defined for all k.

Proor: We first check that M parallelizable implies LM is parallelizable, as then
Definition 5.2 is applicable. Let ¢ : TM — M x R" be a trivialization of TM. For
X, €T,LM =T(y*TM), define

U:TLM — LM x T'(S' x R* — S')
Xy = (7, = ma(d(X, (),

where m5 : M X R® — R” is the projection. It is easy to check that « is a smooth
trivialization of TLM in the H® norm.

The Wodzicki-Pontrjagin form P} () vanishes for dimension reasons. At each
loop 7, the integrand in the definition of P}Y(Q) involves a 2k-form on M%*~1 with
values in Hom(T M, T M), and hence vanishes.

By (5.6) with N = S', every term in P}V (Q) contains o_;(Q2). Thm. 3.4 then
implies that P}V () = 0 for flat manifolds. Thus WCS classes are defined in all odd
degrees. O
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To investigate the dependence of the WCS class on the frame whenver it is defined,
we recall the Cartan homotopy formula [21, 30]. For Ay, A; € A'(M, g) for a manifold
M and a Lie algebra g, set A; = Ag+t(A; — Ag), Qy = dA; + Ay A A;. Define [; from
the algebra F' generated by the symbols A;, €, to A*(M x [0,1],¢g) by A, =0, 1, =
(A; — Ap)dt, with [, extended as a signed derivation to F. For a polynomial S(A4, (),
the Cartan homotopy formula is

S(A1, Q1) — S(Ag, Q) = (dk + kd)S(A,, ), (5.9)

where

1
]CS(At, Qt) == / ltS(At, Qt)
0

This formalism implies kP (€);) = TP(Ap) on the total space of a bundle E — M.
In fact, the Cartan homotopy formula is just the standard Cartan formula [28, Ch. 8,
Vol. I] applied to polynomials of A, ).

A frame xy : M — FM determines a “loopified” frame Ly : LM — FLM by

Lx(7)(8) = x(v(#)). Denote Lx just by x.

Proposition 5.12. On a parallelizable manifold M, the WCS class CSy (6, x) €
H?=Y(LM,R) is, when defined, independent of the choice of loopified frame x :
LM — FLM.

Proof. Consider loopified frames x1,xo : LM — FLM. The pullbacks of the con-
nection 6 on FLM are related by

Xi(0) = g7 'x5(0)g + 97 'dg, 9(7) : xo(7) = x1(7),

where g is the loopified gauge transformation taking xo(m) to x1(m). For the family
Ay =tgtx5(0)g + g 'dg and S(A,Q) =TP(A,Q) = x*TPY(0), (5.9) yields

TP(A)) —TP(g7'dg) = (dk + kd)TP(A;) = da + kP () = da + TP(Ay),
with o = kT P(A;). Hence,
CSy 10, x1) — €Sy 1(8,x0) = [TP(A1)] = [TP(Ao)] = [TP(g"dg)].

Since the gauge transformation g is a multiplication operator on T LM, the Wodzicki
residues of the connection g~'dg and its curvature vanish. Thus TP(g~'dg) =0. O

Remark 5.5. (i) For a principal bundle with compact structure group, [T P(g 'dg)]
is an integer class, called the instanton number in [11]. This shows that the R/Z
reduction of x*T'P(f) is frame independent. A more topological proof, valid for
compact structure groups only, is in [7, (6.2)].

(ii) Assume the mod Z reduction of C'SyY (6) = CSY (0, x) € H*(LM,R) vanishes
for a loopified frame on LM for M parallelizable. The Bockstein sequence gives a
(non-unique) class in o € H3*(LM,Z) mapping onto CS3" (). a has a representative,
a gerbe with connection, whose curvature is x*7P(6) [15]. Analogously, for finite
dimensional parallelizable manifolds, there is a gerbe associated to a vanishing three
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dimensional Chern-Simons class. This gerbe functions as a tertiary characteristic
class associated to a connection and a framing.

(iii) It is not difficult to extend the constructions in this section to stably paralleliz-
able manifolds such as S, i.e. manifolds M with TM @ ¥ = ¢" for trivial bundles
ek er.

For M?¢! parallelizable, by Remark 2.1(ii) we can take a global frame so that
Lemma 2.4 applies, which allows us to use the symbol calculations of §3. By the
results of §3, the WCS class on LM?~! involves a product of 2¢ — 1 connection and
curvature forms and hence is a degree 2¢ — 1 polynomial in s. Therefore, we can take
a “large s” limit to remove the choice of the Sobolev parameter. This motivates the
following definition:

Definition 5.3. The regularized WCS class C'S5;®, () is

) 1
Jm 201
It is easy to check that C'S5;® | (6) is closed, and so defines a class in H2*~1(LM?~1 R).
The regularized WCS class is discussed in a subsequent paper.

5.5. Vanishing Results for Wodzicki-Chern Classes. The tangent space T'LM
to a loop space fits into the framework of the Families Index Theorem. In this section,
we show that the infinite rank bundles appearing in this framework have vanishing
Wodzicki-Chern classes, generalizing [20]. This vanishing indicates that WCS classes
could be interesting objects in the more general Families Index Theorem setup.

Recall this setup: there is a fibration Z — M —— B of closed manifolds and
a finite rank bundle £ — M, inducing an infinite rank bundle £ = 7,E — B.
For the fibration N — N x Maps(N, M) — Maps(N, M) and E = ev*TM, £ is
TMaps(N, M).

Theorem 5.13. If £ — B satisfies € = ©,FE as above, then the Wodzicki-Chern

classes c}¥ (€) wanish for all k.

CS;ZV—I (05, X)

Proof. As in Lemma 5.7, £ admits a connection whose curvature € is a multiplication
operator. Q' is also a multiplication operator, and hence ¢}’ () = 0. O

For a real infinite rank bundle, Wodzicki-Pontrjagin classes are defined as in finite
dimensions: p}’ (£) = (—1)kcly (€ ® C).

Corollary 5.14. The Wodzicki-Pontrjagin classes of TMaps(N, M) and of all nat-
urally associated bundles vanish.

Proof. Pick an element fj in a fixed path component Ay of Maps(N, M). For f € Ay,
TrMaps(N,M) ~T(f*TM — N) ~'(f§TM — N) with the second isomorphism
noncanonical. Thus over each component, TMaps(N, M) is of the form w, ev* T M,
and the previous Theorem applies. The vanishing of the Wodzicki-Pontrjagin classes
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of associated bundles (such as exterior powers of the tangent bundle) follows as in
finite dimensions. 0

In finite dimensions, Chern classes are topological obstructions to the reduction
of the structure group and geometric obstructions to the extistence of a flat connec-
tion. Wodzicki-Chern classes for YDOjg-bundles are also topological and geometric
obstructions, but the geometric information is a little more refined due to the grading
on the Lie algebra YDO«.

Proposition 5.15. Let &€ — B be an infinite rank WDOg-bundle, for YDO; acting
on E — N™. If€ admits a reduction to the structure group G(E), then ¢}/ (€) = 0 for
all k. If € admits a YDOg-connection whose curvature has order —k, then c¢,(€) =0
for £ > [n/k].

Proor: If the structure group of £ reduces to the gauge group, there exists a con-
nection one-form with values in Lie(G) = Hom(E), the Lie algebra of multiplication
operators. Thus the Wodzicki residue of powers of the curvature vanishes, so the
Wodzicki-Chern classes vanish. For the second statement, we have ord(Q) < —n for
£ > [n/k], so the Wodzicki residue vanishes in this range. O

6. An Application of Wodzicki-Chern-Simons Classes to Circle Actions

In this section we use WCS classes to distinguish different S* actions on S®. We
also show that WCS classes are not conformal invariants, in contrast to Chern-Simons
classes in finite dimensions.

Intuitively, two smooth S!' actions on a manifold M are homotopic if the orbit
starting at € M for one action can be homotoped to the orbit starting at = for
the second action with this homotopy smooth in z. More precisely, actions ay, as :
Sl x M — M are homotopic if there exists a smooth map F : [0,1]x S'x M — M
with F(0,-,-) = a1, F(1,-,-) = ay. We do not require that F'(t,-,-) be an action for
other ¢.

We now introduce a weaker homological notion of equivalent actions. Let M™ have
a (possibly trivial) S* action a : S' x M — M. The action determines a class
he € H,(LM;Z) by setting

a: M — LM, a(z) = (e — e? - 2), hy = a,[M].

We will say that two actions ay, as are homologically distinct if hy, # ha,.

We will show that the trivial action on S3, the action of rotation in a plane, and the
Hopf action are all homologically distinct. In particular, these actions are homotopi-
cally distinct in the sense above, even though each orbit of each action is contractible.
Indeed, such a homotopy would give a homotopy of the cycles representing the two
action classes in H3(LS?).

To show that these actions are homologically distinct, by the de Rham theorem
for LM [4] it suffices to show that (CSY,a;) # (CSYV,ay) for the standard metric
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on S3. In contrast, the S* index of an equivariant operator cannot distinguish these
actions. If two actions are homotopic, it is easy to check that the S' index of the two
actions is the same. However, the S! index of an odd dimensional manifold vanishes,
as can be seen from the local version of the S! index theorem [5, Thm. 6.16].> In
[19], we interpret the S! index theorem as the integral of an equivariant chracteristic
class over h,.

Recall that on S2, we have

(z,y,2z,w) = (sin(p) sin(¢) cos (), sin(p) sin(¢) sin(#), sin(p) cos(¢), cos(p))

in spherical coordinates (6, ¢, p) € [0, 2] x [0, 7] x [0, 7]. We can also think of S? as
{(z,w) € C* : |2]? + |w|*> = 1}, where the two uses of z,w should cause no confusion.
We set a,, b, : S x S? — S3 by

an (€%, (sin(p) sin(¢) cos(6), sin(p) sin(¢) sin(f), sin(p) cos(¢), cos(p)))
= (sin(p) sin(¢) cos(0.+ nf),sin(p) sin(¢) sin(6 + nf), sin(p) cos(¢), cos(p))
ho (€, (2,w)) = (€™ 2, e™Pw).

Thus a,, is the rotation of S? through 27n times in the zy-planes, and h; is the Hopf
action. Note that ag = hg is the trivial action.
For a fixed Sobolev parameter and a fixed metric on S%, we have

/ CsY(9) = n / csv (o),

han hay

for § = #*, since @,, is the composition of the degree n map e : S' — S! with aj.
Thus the rotational actions are all homologically distinct provided |, hay CS¥V(0) # 0.
The Mathematica notebook ComputationsRotations.nb at

http://math.bu.edu/people/sr/articles/notebook.html computes fhal CSYV(0)

for the standard metric on S? for Sobolev parameters s = 1,2. With good precision,
we get |, he CSY () # 0. This gives the following result:

Theorem 6.1. For all n, the actions a, of rotating S* n times around the zy-plane
are homologically distinct for s =1, 2.

Strictly speaking, this is a theorem “up to machine accuracy.” However, the com-
puted value of [, CS}¥(6) minus the machine error is far enough from zero to trust
al

the result.

3The normal bundle to the fixed point set is always even dimensional, so the fixed point set consists
of odd dimensional submanifolds. The integrand in the fixed point submanifold contribution to the
Sl-index is the constant term in the short time asymptotics of the appropriate heat kernel. In odd
dimensions, this constant term is zero.
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The calculation for the Hopf action is similar, although computationally more in-
volved. The notebook ComputationsHopf.nb at the website above contains the cal-
culations for s = 1, 2. The integrals for n = 1 are nonzero and distinct from the n =1
rotation integrals. Therefore, we have

Theorem 6.2. For s = 1,2, the Hopf actions h,, are pairwise homologically distinct.
For |n|, |k| in a finite range, the h, are homologically distinct from all the xy-plane
rotations ay, except for the trivial action hg = ay.

cs% (e
Because of machine error, we cannot rule out the possibility that 7%1 C’SWEH; € Q.
h1
This forces the restrictions on |n|, |k|.

In finite dimensions, Chern-Simons classes are conformal invariants. In the note-
book ComputationsConformal.nb, we compute [, CS3V(0,9) # [, CSY(0,91),

where g is the standard metric on S® and g; = (1 + sin®(p))g. Thus we conclude

Proposition 6.3. CS}" is not a conformal invariant.

ApPPENDIX A. —1 Order Symbols of Connection and Curvature Forms

We prove Proposition 3.3 and Theorem 3.4. We use the conventions in [14] for
symbol computations.

The zeroth order (i.e. top) symbol of both the connection and curvature forms
are multiplication operators, i.e. the zeroth order symbol does not depend on the
cotangent variable £, as oo(w") = w¥, o(QX, Y)®)) = Q(X,Y)M. By the standard
formulas for the change of symbol under a coordinate transformation, wgﬁ) —w¥ and
QE(X,Y) — QM(X,Y) are well defined —1 order ¥DOs. As a result, the —1 order
symbol of w, 2 can be computed invariantly in any coordinates near a particular (6).
Note that this argument is special to YDOs with leading order symbol a multiplication
operator.

A.1. Proof of Proposition 3.3. Label the terms on the right hand side of (2.14)
by ax, ..., fx. By Prop. 2.3, we have to compute o_; of ax,bx,dx, fx.
e The contributions of ax,bx

Denote the kth order symbol of an operator P by [P]*. To simplify notation, set

o(A) = E26] + ih& + 7.



32 Y. MAEDA, S. ROSENBERG, AND F. TORRES-ARDILA

The contribution from ax is

(lax] )8 = 5 (0+8) > g 5xges (1 + A

+ [(1 +A)—s]—2s[gaf5Xgef(1 4 A)S]Qs—l

i (0 AV T2) g S 1+ AT

=1is§(&%) 7 (30(gaf5nge) + %(gaffsxgmfh;n - ngf(SXgef)) :
The contribution from by is
(1bx]™)2 = 510+ A)7*0x(1+ AP] )8 = Zist(€) oxhe.
Thus
(lax +bx] ™) = is€(€”) 09" oxgse) (A1)
+ 515 (Oxhe + 6 Gxgush" — g oxaer)
where hf = —2I'0,4".

e The contribution of dx

We have dxY = o_1((1 + A) %0y (1 + A)*X).
Fix s € Z*. Set A= (14 A)™*, B =0y(1 + A)*X. Then A has order —2s and B
has order 2s as an operator on Y by Lemma 2.2. We have

o 1(1+A)°0y(1+A)P°X) = 0 95(A)ogs_1(B) + 0_95-1(A)0o2s(B)
+%8§O'_23 (A)Oyoas(B). (A.2)
Label the terms on the right hand side of (A.2) with (1),.., (6). Then
(1) = &%, (4) = 025(B);, = [}, X°¢*
from Lemma 2.2. Differentiating (4) and (1) gives
(6)5 = (FOTys X + Ty X*)e™, (5) = 280 >

where (5) includes the factor + = —i in (A.2).
We now compute (3). From 0 =o_((1+A)~*(1 + A)*) we get

0 = a1+ A)ona (1 +AV) + 050 1(1+ A)Don((1 4 A))
+%8,50_23((1 + A))Bpas (1 + A)).

The last term vanishes, so
(3) = 02-1(4) = =€ ¥ o1 (1 +A)°). (A.3)



RIEMANNIAN GEOMETRY ON LOOP SPACES 33

Recall that o, (A)! = ihlé = =217, 47€. Then

Oas-1(L+ A))] = o1 (L+A) (1 +A)*)
= 0a(1+ A)ozs—3((1+A)") + 011+ A)ozs—o((1 + A)*7)
(as 69025_2((1 -+ A)S_l) = 0)
— ihi€28_1+€20'2573((1+A)5_1).

Continuing, we get
051 ((1 4+ A)®*)] = ish]g?!
and hence (A.3) is

(3)] = —ishle™271 = 25T, Ave~ 3L, (A.4)

Finally, we compute (2). The idea is that to get 2s — 1 differentiations in Y in
dy (1 + A)*, we must have Y “far to the right” in

Sy(14+A)¥X = i(l + ARGy (14+A) - (14 A)F X,

k=1
since the last term is zeroth order in Y.
For example, one term in o9, 1(dy (1 + A)*) X is

> oana((1+ A o1 By A)os ok (1 + A)7FX).

The last term is nonzero only if 2s — 2k =0, i.e. s =k. So as an operator on Y = -,
this term only contributes

5720, (8.A)F X
= i€ (—2Tk, X0 — 9, T4 X% — 4Tk, X0 — T Ihd X% — Tk ITha X 0)

using (2.16) and looking for the terms that are first order in Z.
As another example, a potential term in og;_1(dy (1 + A)*) X is

Z Jzk_g((l + A)k_lgz(dyA)O'Qs_gk_l((l + A)S_kX).

Again, the last term must have 2s — 2k — 1 = 0, which is impossible. So this term
does not appear.
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In the end, we get

(2)13 = |:0'25_2((1 + A)S_I)O'l((éyA)X) —+ %850'25_2((1 -+ A)S_l)agag((éyA)X)

+02s5((1+ A)Noa((GvA) X))
= >t [( Tk, X0 — 9, T4 X° — 40,18, X0 — Tk A X0 — Tk T%4°X7)
—(25 — 2)(Tk, X0 + 49,7k, X?)
—(2s — 2)TF b4 X%)]
— Z§2s 1 [ QSFICJXJ ( ) za deth Fk: P557€X5
(=

+(—2s + DIE LX) — 8,57 X°] .

We now have computed (1) — (6), so as an operator on Y = -, dy is

o (1+A)70(1+A)X)s = ! [—QSF’“JXJ — (25— 1)4'0,Th;X° — T} ThAX?
+(—2s + )IE 5 X%) — 9,ThY' X°
—s(=20¢,7) (I} X°)
+2s(7a0k X0 + F’GJXJ)]
= i [Tk X0 + T L5 X0 (A.5)
T, DA X0 — 8,5 X7

e The contribution of fx

We have fxY =o0_1((1+A)*AxY)
As an operator on Y, we have

1T+ A)TAx) = 0 9(1+A) )02 1(Ax) + 0951 ((1 + A) 7)oz (Ax)
+%8§0_25((1 + A))3p0ms (Ax). (A.6)
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Call these terms (1) — (6) as before. Terms (1), (5) are immediate, (3) is computed
n (A.4), and by Lemma 2.2

(4)p = g gl X€E”
(6)2 — 89 (g'ragsbrs 1528)
£ [470,9" g5 X" + g"4 0,955, X

+ g gV O T3 X" + g7 g TS, XZ]
= 525 [;yj(_ atajgtug )gsbrs XZ + gmvjajgsbl“s AXZ
+ gV O T8 X" + g gl X ]

= 6 [ 7 gat[rt]gwu+ru]gwt]g gsbrs XZ
+g 7 [stgnb + Fbjgns]riin (A7)

+ " gV O, U5 X + g gl X Z]

= & [V g Thgal 3 X" = 9" T gung" g3 X
+9" Y T30l 7 X + g Thigns D0 X
+ gV O3 X" + g g5, X Z]
Thus we have to compute (2) = 09s_1(Ax). Since (AxY, Z)o = (0z(1 + A)*X,Y ),

we need all terms in §;(1+ A)*X with 2s or 2s — 1 derivatives in Z, and then we will
move 2s — 1 of these derivatives to Y.

(i) The term in dz(1 + A)* X with 2s derivatives in Z
As in Lemma 2.2, in (dz(1 + A)*X,Y), this term is

[ w00y T2y
= - / 1 9ar 852" X0 (—03)*'Y?
S
~ (_1)5/1 gabFZJZuXéyb,(Zsfl) + (_1)3 /1 gabfwgéZVXdyb,@sfl)
S S
+(_1)s /Sl gabrg(squdyb,(Qs—l)

= (=1 / 9" 9rvgal 552" XV
S1

— (_1)5<g£rgabrz.6Xéyb,(25—1)ar’ Z>0 + (_1)5<gérgabf\%Xéyb,(23—1)ar’ Z>0
+(_1)s<gfrgabr?6Xdyb,(25—1)ar’ Z>O;
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where ~ indicates the terms of order 2s — 1. Thus the contribution of this term to
(2); is
~i(9" a5 X° + 9" gl 65 X" + g7 9T 55X )€ (A.8)
= —i(9" 4 [Tl 9m + Th9nalTiX° + 67 gl §5X° + g% guT§X0)E5 7,
using gab = 700 gab = V(Lo 9nb + T, Gnal-
(ii) The term in §z(1 + A)*X with 2s — 1 derivatives in Z

Since

Sz(1+APX =) (1+A)F " 6,(1+A) - (1+A) X,
k=1
and dz(14+ A) is order two in Z, we can only get 2s — 1 derivatives in Z if 2k —2+2 >
25 — 1, i.e. if k = s. In this term (1 + A)* 1d,(1 + A) X, to get 2s — 1 derivatives in
Z there are three cases:

(a) The term in (1 4+ A)*~ with 92°~% and the term in 6, (1 + A)X with Z;

(b) The term in (1 + A)*~! with 82°2 and the term in 6,(1 + A) X with Z;

(c) The term in (1 + A)*~! with 32°=2 and the term in (1 + A)X with Z, but
only 2s — 3 of these derivatives act on Z.

Case (a) contributes
(a) = (—1)°(s — 1) (202, 7" TH X %) 2",

This follows from (A.4) and (2.16). _
Case (b) contributes (—03)*~! times the terms in (2.16) with 7, i.e.

(b) = (=1)* "M (=1) (20% X +0L 557" X044 0, X O+, ThA» X042, 4 X0) 2945~ 1g,

Case (c) contributes (—92)*~! applied to —I'%,Z”X?  but with one of the & not
applied to 7, so

(c) = (-1)°(2s — 2)[['4, X% + T4 X 2 Vg,
The final contribution of (a) to (0z(1 + A)*X,Y ), is
2s=2(1)° [ a5, Tz VXY
~ (25— 2)(_1)5(_1)25—1/ gabFUM’YVFgJZEX(;Yb ,(25—1)

S RE SV WL vRE TP S S

— <(28—2)( 1)8 lgérga Fau,yurlrt(sXéyb(Qs 13 Z>
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Thus (a) contributes

(a)z — (28 _ 2)(_1)5 1225 1 Tﬁgabruu,quZFXdé-% 1 (28 _ 2)29 gabr N,YVFZSXJSQS 1
(A.9)

to 025_1(Ax).
Similarly, (b) and (c) contribute

(0 = 099 (204X + OeTys X7 + 470, X°
+I¢ Dhsd X0 + T I i5" X°) (A.10)
(0 = (25— 2)ig"ga[[5X° + g X6
This finishes the contribution of (ii).
Combining (A.8) — (A.10) gives

(2)s

7;525—1

= h V[Pnygnb + nggna]P?JXé - ghgabfdeﬁ - ghgabFZsXé

+(25 — 2)g" ga 5, 7 T X°
+9" 9 (205X + 9T 557" X° + 470, X°
+T¢ Thed” X0 + Tg Th 5" X°)
+(25 — 2)g" ga [T X° + T X7
= —0"9an ¥ TpT5X° + (25 — 3)g" gl X7
+(2s — l)ghgabF%X‘s + (25 — Q)QZ’"gabFa |y X9 (A.11)
+9" 90557 X + g% 9an T3, Tl X°.

By (A.6), (A.7), (A.11), we get
o1 ((1+A)*Ax);

if‘l
= —9"9an ' Th,T5X" + (25 — 3)ge’gabf?5X‘5
+(25 — 1) g7 gap % X% + (25 — 2)g" gop 2 P&;’y"X‘S (A.12)

+9" gab0T 857" X0 + g¥ ga T8, TH7" X
+(2sI7,7" )(gn“gsts X"
—(=25) [ 9" Tl gabT 45 X" — 479" T, gueg"” garT 45 X°
+ gre’yjrzjgabF%Xé + g™ ijgasFMX
+ 9" gV 0T X0 + gregabl“‘;(;X‘s] .
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Label the terms on the right hand side of (A.12) as (1),...,(13). We can combine (1)
+ (11), (2) + (12), (3) + (13), (4) + (10). We get fx equal to

o1((1+48)" " Ax)j

i1
= (—2s— l)ghgan’y”FZ,jFZ;X‘s + (4s — 3)g£’"gabf‘z§X‘5
+(4s — 1) g gap D% X% + (4s — 2)ghgabfﬁuf‘%"}/”X‘s (A.13)
+ghgabaerga"YVX g

+9" 9T, Ty X° + 2517, 77" gy U7 X
_QSWjQTEnggabFZJXJ - zs,ngﬁrzljgweguvgangJXé.
Combining (A.1), (A.5), (A.13) gives Prop. 3.3.

A.2. Proof of Theorem 3.4. As shown in §2.5, we can compute the curvature 2
using the usual formula Q = dppw + w A w is a neighborhood of . Then

U_l(Q(X, Y)) = dO'_l((.U)(X, Y) + O'_l(LL)X) N O'()(u)y) — (X — Y)
+%8§O'O(wx) N 8gao(wy) — (X > Y), (A.14)

where (X < Y) means the previous term with X, Y exchanged. The last line van-
ishes, since op(w) is independent of £&. We can compute the curvature tensor in any
coordinates on M, so in particular we can use normal coordinates centered at a fixed
point in M. The last two terms in the first line of (A.14) vanish, since og(w) vanishes
in normal coordinates by Lemma 3.1. Thus in normal coordinates

o 1(QUX,Y)) = do1(w)(X,Y)) =0_1(dw(X,Y))
= X(O'_l(wy)) — (X < Y) — U_l(LU[X_Y]).
The last term cancels the nontensorial terms containing dxV, dy X, 5XY,5YX from

the first two terms, so we might as well assume dxY = dy X = 0. In other words,
under this assumption,

o_1 (X, Y)) = X(0_1(wy)) — (X © ).

Remark A.1. We can also assume that ¢ XY = 5YX = 0 because these terms cannot
appear in the curvature tensor. More precisely, every term « in (3.2) with X has
Y(a) = ... + Ady X, where A vanishes in normal coordinates.

As in the last subsection, we label the six terms in wy in (2.14) ax, ..., fx and
calculate the contributions from the terms ax, bx, dx, fx.

e The contributions from ax,bx
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Call the right hand side of (A.1) 0_;(wx, a,b). Then

0',1(60)(, a, b)g

i1
= s0(g*s S (5xh® + g 8x grsh™ — hig s
= o (g nge)+ 2( xNe + 97 0xgmsh, 19 Xgef)
= 540,90 X'0igse + 59 X'0igse + 59 X'D,ig e (A.15)
—s XT84 — sTe, X" — 59 X209 ;T4 + sTE, 4 g* X10;ge;-
Thus
1

T (X(o-1(wy,a,0))¢ =Y (0 1(wx, a,0))¢)
= sX"0,9"Y 0igse + 57 X709 Y Digse + 577 0,9 Y XI 0sig e
+5X70,gYY 0,950 + 59 Y0197 X7 + sX70;97Y 0,907
+59Y X70,,ig1Y + 59°TY 0,97 XY — sYIXI9;T0 4
—sY'9,Te, XV — sX'YVOT?, — sX10;g Y 0,9 TTA” — 5g Y X7 0ji g, TTA”
59 Y0, g XIO,T™ A — 59 Y0, g T XY + s X0, 4 g Y0; 901

ve
+5T%¢ XV g V0o + sTC A4 X70,g¥ Y 0,905 + sT¢, 5" g* TV X799,

v

—(X &Y)

= SgafaﬂgerZX‘y + SgainXjajyigfe’yu + SgafyiangfeXu (A16)
—sY X719, T 4" — sX'Y'OIe, — sY'XVO,I',
—(X oY),

in normal coordinates. Call the terms on the right hand side of the last expression
(1),...,(12). Then (1) + (9), (3) + (7), (5) + (12), (6) + (11) cancel. Using
1 a 1 a a 1
Ojiges = 3 (Riejs — Rigej) = Oijges, Ol = 3(Rijp" + Rig;") = 5 (Rijea + Rinja),
(A.17)
we get

ig (X (01 (w0, D)) — ¥ (0-1(wx, 0, D)) ac) (A.18)

= Yin;Yy(ajuigae — OivjGae + 0Ly, — 0;L5,)
= 0,

since in local coordinates mixed partials are equal.
Thus the contribution from ax, by is zero.

e The contribution from dx
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In normal coordinates, we have

1
7 (X(dv)e —Y(dx)g)
= X (8,0%3Y° +T¢, I3 Y°
—Lg, L0537 Y° = 0.T5577Y?)
—(X &Y)
= X'0,T84Y + T4 XY — X'0,T¢4Y? — 0.T4 XY
~Y79;, T84 Xt — 0,T4Y X" + Y10, %4 X" + 9,I'%, VI X"
= X'YI4(0,T% — 0icTe; — 0;,T% + 9;.T'%) (A.19)
+XYI(OTE; — 0.1 + X'V (9.I'}; — 9;T%)
= X'VI4"(0,T% — 0:T%; — 0,1 + 9;eI'%)

where we use (A.17) and the Bianchi identity in the last line.

e The contribution from fx

The explicit formula for fx is (A.13). Call the terms on the right hand side of
(A.13) (1),...,(8). In normal coordinates, only terms (2), (3), (5) have nonzero X or
Y derivatives, as the other terms have two Christoffel symbols. For (2), using 9;ga = 0
in normal coordinates, we get for the symbol with indices -¢ (omiting 4s — 3)

X(glagre ZJYJ) - (X &Y)
= 66, X(¥9,I,)Y7 — (X < Y)

= 096, X0, Y7 + 66,4 X 0, T,V — (X ©Y) (A.20)
I AV a a a INIAY r
= X YI(R,%, + Ry;%) + 66, X' Y749, T}, — (X ¢ Y)

1 YAV a a a AV PV r
= 3XVI(R" + R ) + 66, X' Y48, T); — (X < Y).

J jie
The contribution from (3) is 4s — 1 times
56, X0, T},YT — (X ¢ Y)
1 AVe] a a
= gX YI(Rj* + Rji.") — (X < Y), (A.21)

7

and the contribution from (5) is

X(0%6,e0eL;,7Y7) — (X ¢+ Y)

1 YAV a a a r oAV vVivy
= X VIR, + Rei;®) + 0%6,.00l, 4" XY — (X & Y).  (A22)
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Summing the contributions from (A.20), (A.21), (A.22), the contribution from fx
is

(X(fr))e— (X Y)
i |4s=3_ ., 8s—4_  d4s 1 _
= X’ TRjei + 3 Ry — ?Riej + gReji } - (X V)
+6°0, A XY (45 = 3)0, Ty + 0:Ly;] — (X < Y)
i [8s—4 a . 4s—1 o 4s_ .1
= X'V’ T(Rjei + Rye" — 3 Rjei" — ERiej + 3
+6%6,67 XY [(45 — 3)0u T + 0ul;] — (X < Y)

[8s — 4 o Ads . 4s
3 (_Reij ) — — Bjei — o Rie; ] - (X &Y)

Reji“} —(X«Y)

(A.23)

= X'y
i 3 3
+6%8,.7" XY [(45 — 3)0,,Ty; + 0T5] — (X > Y)
i [4s —4 . 4s .

+6%6,4 XY (45 = 3)0;, 1% + 0pL'y;] — (X < Y).

Putting together the three bullets (A.18) (A.19), (A.23), we get

1
—o_1(Q(X,Y))?
Zfo- 1( ( ) ))e
= Xin"yU(ai,,ng - aiergj - 8jllrzi + 8]"31—‘51')

+XinRieja _ XinRjez'a (A.24)

4s — 4 . 4s a
R, ;" — — Ry ] - (X «Y)

3 €] 3
+6%0,4 XY [(4s — 3)0,, 1% + 0pL'y;] — (X ¢ Y)

+ Xy [

3 e 37 3
+ XYY [a,-urgj — 03l — 0,0 + 0L,
+6%0re[(4s — 3)0, Ty; + 0illy; — (45 — 3)0;, T + 85I -

= X'y [48 Ry EReia} - [%T_leeia - gRieja

We now use the formula in normal coordinates

1
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where S; ; denotes the symmetric sum over i, j. Plugging (A.25) into (A.24) gives

L@ v)):

i€
ciri |45 —1 . 4s a ivri |45 —1 . 4s a
+X'Y74" [(20s + 20)R,;."; + (20s — 1B)R,,,"; — 5R,,";
2Rwe iJ (48 - ]')Rl/ez iJ + (48 3)Rieuaj
+ 4R, + (=20s + 18) R, + (—=20s + 14)R,;,°, (A.26)
_4Rmu e 5Rzu] €+RI/_]Z e

+(4S + Q)Rijue; + (48 - 3)Rujze + 5Rzuge (Z A .7)} .

It is tedious to expand this expression and simplify using the second Bianchi iden-
tity. The result is

o (X Y)):
i | 48— 1 a -1 . 4s
= X7 — ——R } XYJ[ jei" = 5 Rieg”
+X YA [(83 —4)R;;,..* + (—40s + 28)R,;.°, + (20s + 14)R,; *,;
—(20s +14)R,;.°; + (45 = 2)R, ;. * — (45 = 2)R,;;..° (A.27)
+(16s - 12)R,,"; — (165 — 12)R, .. + (45 = 6) R, ",
—(4s — 6)R,,"; + (—20s + 18)R,,;*, — (—20s + 18)R,, ;%] .

The operator A(X,Y) = Q¥(X,Y) — QM (X,Y) on v*TM has order —1, with top
order symbol 0_1(A) = o_1(£2%). Since the top order symbol is invariant, (A.27) must
be tensorial. This is accomplished by replacing X* by (DX/d)" and similarly for Y.
This finishes the proof of Theorem 3.4.

Remark A.2. We recall a short proof of (A.25). For any tangent vector  to M, the
radial line (t) = tZ is the normal coordinates expression for a geodesic. Applying
% to the geodesic equation

d?~P v dvyt dry?

p &7 T
dt? Yodt dt
yields Sy, i, jOmely; = 0. Using Og = Ope and I} = T, this reduces to
Oem L%y + OkmL %y + OuL%,,, + 05Ty, + Oji Ty + O T, = 0. (A.28)

Using Rt = 0%, — 0,7 + Ffurfk — I, and T%, = 0 at the origin in normal
coordinates, we get

R = Opily, — Omy L (A.29)

zyk m



RIEMANNIAN GEOMETRY ON LOOP SPACES 43

at the origin. Using (A.29), a straightforward calculation gives

by

11.
12.
13.
14.

15.
16.

17.
18.
19.
20.
21.

22.
23.

Si,jSk,e(‘BRkjie;p + Rzikp;j)
208gkffj — 48]-,-ka — 48@{‘% — 46&-F§k — 48kiF§j — 46kj1“§i
(A.28).
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