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Introduction

From the basic definitions, differential topology studies the global properties
of smooth manifolds, while differential geometry studies both local properties
(curvature) and global properties (geodesics). This text studies how differential
operators on a smooth manifold reveal deep relationships between the geometry
and the topology of the manifold. This is a broad and active area of research, and
has been treated in advanced research monographs such as [5], [30], [59]. This
book in contrast is aimed at students knowing just the basics of smooth manifold
theory, say through Stokes’ theorem for differential forms. In particular, no
knowledge of differential geometry is assumed.

The goal of the text is an introduction to central topics in analysis on man-
ifolds through the study of Laplacian-type operators on manifolds. The main
subjects covered are Hodge theory, heat operators for Laplacians on forms, and
the Chern-Gauss-Bonnet theorem in detail. Atiyah-Singer index theory and
zeta functions for Laplacians are also covered, although in less detail. The main
technique used is the heat flow associated to a Laplacian. The text can be
taught in a one year course, and by the conclusion the student should have an
appreciation of current research interests in the field.

We now give a brief, quasi-historical overview of these topics, followed by an
outline of the book’s organization.

The only natural differential operator on a manifold is the exterior derivative
d taking k-forms to (k + 1)-forms. This operator is defined purely in terms of
the smooth structure. Using d, we can define de Rham cohomology groups, the
Euler characteristic and the degree of a map of smooth manifolds, all of which
give topological information [32]. With some more work, we can reformulate
intersection theory in terms of integration of closed forms [11], and so in principle
determine the entire real cohomology ring of the manifold.

Once we enter the domain of differential geometry by introducing a Rieman-
nian metric on the manifold, we find a series of differential operators A¥, the
Laplacians on k-forms, associated to the metric. In particular, the Laplacian on
functions generalizes the usual Laplacians on R™ and on the circle.

On a compact manifold, the spectrum {\¥} of A* contains both topological
and geometric information. In particular, by the Hodge theorem the dimension
of the kernel of A* equals the k' Betti number, and so the Laplacians determine
the Euler characteristic x.

The geometric information contained in A* is more difficult to extract. We
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viii INTRODUCTION

consider the heat equation (9; + A¥)w = 0 on k-forms with solution given by
the heat semigroup e_tAkwg, wp being the initial k-form. The behavior of the

trace of the heat semigroup, Tr(e *A") = Ze"‘? t ast — 0 is controlled by

an infinite sequence of geometric data, startiilg with the volume of the manifold
and the integral of the scalar curvature. This is surprising, since the trace is
constructed just from the spectrum of A¥.

Now the kernel of A¥ controls the behavior of e tA" as t — 0o. It turns out
that the sum ) k(—l)kTr(e_tAk) of the traces of the heat kernels is independent
of t. The long time behavior of this sum equals the Euler characteristic, while the
short time behavior is given by an integral of a complicated curvature expression.

If the dimension of the manifold M is two, this equality of long and short
time behavior of the heat flow leads to the Gauss-Bonnet theorem:  x(M) =

K dA, where K is the Gaussian curvature and dA is the area element. Note

t}% remarkable fact that the integrand is independent of the Riemannian metric.
Of course, there are much simpler proofs of Gauss-Bonnet, but this technique
shows that a generalization of Gauss-Bonnet exists in higher dimensions. The
explicit determination of the curvature integrand in this generalization, origi-
nally due to Chern by other methods, is one of the main results of the text. The
proof is a modification of techniques introduced by Getzler around 1985.

The Chern-Gauss-Bonnet theorem, first shown around 1945, can itself be
generalized. The Riemannian metric induces Hilbert space structures on the
spaces of k-forms, and so d has an adjoint § taking (k + 1)-forms to k-forms.
Recall that the index of an operator D on a Hilbert space is given by ind(D) =
dim ker (D) — dim coker (D) when the kernel and cokernel are finite dimen-
sional. From Hodge theory, we find that the index of the first order geometric
operator d + § taking even forms to odd forms is just the Euler characteristic.

This suggests that we look for other geometrically defined operators whose
index is a topological invariant. One example is the signature operator, whose
index, the signature, is an important topological quantity associated to the mid-
dle dimensional cohomology of the manifold. The heat equation approach again
gives the signature as the integral of a curvature expression. Even more gener-
ally, the Atiyah-Singer index theorem, dating from the early 1960s, shows that
the index of any elliptic first order geometric operator D is given by such an
integral, even though the index need not have an obvious topological interpre-
tation. Thus we can state the Atiyah-Singer index theorem schematically as
ind(D,) = [,, R(g), where g denotes a Riemannian metric and R(g) denotes
the curvature expression.

The index of these operators will be independent of the Riemannian metric,
and so [,, R(g) is also metric independent, as in the Gauss-Bonnet theorem.
This implies that these particular curvature integrands represent the same coho-
mology class. As a result, Chern-Weil theory, which constructs representatives
of certain cohomology classes from a Riemannian metric, naturally enters the
picture.

To summarize, the Gauss-Bonnet theorem equates the topological quantity



INTRODUCTION ix

x(M) with the geometric quantity [,, K dA. At the end of the generalization
process, the Atiyah-Singer index theorem equates the analytic quantity ind(D,)
with a topological quantity given by Chern-Weil theory. In fact, the index
theorem applies to all elliptic operators, not just geometrically defined operators.
This reinterpretation of the nature of both sides of the index theorem indicates
the depth of this theory.

To see what lies beyond index theory, we go back to differential topology
and first ask what lies beyond cohomology. If the (twisted) cohomology groups
of a manifold vanish, a subtler or secondary topological invariant, the Reide-
meister torsion, is well defined. In the 1970s, concurrent with the development
of the heat equation approach to index theory, Ray and Singer proposed an an-
alytic analogue of Reidemeister torsion defined from the Laplacians on k-forms.
The definition involves the zeta function of the Laplacian, which encodes the
spectrum of the Laplacian differently from the trace of the heat operator. This
analytic torsion was shown to equal the Reidemeister torsion around 1980. Re-
cent work of Bismut and Lott [8] has clarified the connection between index
theory and analytic torsion.

Index theory and analytic torsion continue to develop in many directions,
including K-theory, operator theory, number theory and mathematical physics.
(For example, in operator theory it is now considered hopelessly old fashioned to
think of the index as an integer.) Hopefully, readers of this book will contribute
to this development.

In more detail, Chapter 1 treats the heat equation approach to Hodge theory.
We discuss heat flow for the Laplacian on R and the circle. Riemannian metrics
are defined, as are the associated Hilbert spaces of k-forms. The Laplacians on
forms are given in terms of the Riemannian metric. After proving the basic
analytic results (Sobolev embedding theorem, Rellich compactness theorem),
we give a heat equation proof of the Hodge theorem, which gives an eigenform
decomposition of the Hilbert spaces of forms generalizing Fourier series on the
circle. This proof assumes the existence of an integral kernel, the heat kernel,
for heat flow for the Laplacians on forms; the construction of the heat kernel
is in Chapter 3. The proof shows that the long time behavior of the heat flow
is controlled by the kernel of the Laplacian. We then use Géarding’s inequal-
ity to prove the standard regularity results for the Laplacians and to give the
Hodge decomposition of the spaces of smooth forms. (The more standard ellip-
tic/potential theoretic proof of the Hodge theorem is given in the exercises.) We
define the de Rham cohomology groups and show that the kernel of the Lapla-
cian on k-forms is isomorphic to the k" de Rham cohomology group. Thus the
long time heat flow is controlled by the topology of the manifold.

Chapter 2 covers just those parts of differential geometry needed to construct
the heat kernel. We introduce the various curvatures associated to a Riemannian
metric and prove that the Riemann curvature tensor is the obstruction to a
metric being locally flat. We define the Levi-Civita connection for a Riemannian
metric, and prove the Bochner formula relating the Laplacian on forms to this
connection and the Riemannian curvature. The Bochner formula is proved
using supersymmetry /fermion calculus methods, and it leads to a quick proof of
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Garding’s inequality used in Chapter 1. We then turn to the study of geodesics
and the exponential map, and give a technical computation of the Laplacian on
functions in Riemannian polar coordinates.

In Chapter 3, we construct the heat kernel for the Laplacians on functions
and forms. We use Duhamel’s formula to motivate the complicated calculations.
The construction shows that the short time behavior of the heat flow is deter-
mined by the geometry of the Riemannian metric. We also show that the heat
kernel on functions is positive.

Chapter 4 discusses the heat equation approach to Atiyah-Singer index the-
ory. The main idea is to compare the long time and short time information
in the heat flows. We first show that the Euler characteristic is given by an
integral of a curvature expression generalizing the Gauss-Bonnet theorem for
surfaces. Following unpublished work of Parker [53], we give a fermion calcu-
lus proof of the Chern-Gauss-Bonnet theorem by showing that the integrand
is the expected Pfaffian of the curvature. There is a brief discussion of Chern-
Weil theory, showing how characteristic classes have representative forms con-
structed from the curvature of a Riemannian metric. This allows us to give a
precise formulation of the Hirzebruch signature theorem. We do not prove this
theorem, as the fermion calculus is more involved, but refer the reader to proofs
in more advanced texts. We briefly discuss the Hirzebruch-Riemann-Roch the-
orem; this discussion assumes familiarity with complex geometry and can be
omitted. (Since the Dirac operator is even trickier to define and is treated ex-
tensively in [5], [30], [59], we do not discuss it at all.) Finally, we define elliptic
operators and state the Atiyah-Singer index theorem.

In Chapter 5, we discuss the zeta function of the Laplacian on forms. We
show that the poles and special values of the zeta function contain the same
information as the short time asymptotics of the heat kernel. For the conformal
Laplacian on functions, we show that {(0) is a conformal invariant given by a
curvature expression, and that ¢'(0) is a subtler conformal invariant. We then
digress to give Sunada’s elegant construction of nonhomeomorphic manifolds
whose Laplacians on functions have the same spectrum. We define Reidemeis-
ter and analytic torsion, which involves interpreting the determinant of the
Laplacian in terms of ¢'(0). We show that analytic torsion is independent of
the Riemannian metric, and so gives a smooth invariant of the manifold. We
finish with a (not self-contained) discussion of the recent work of Bismut and
Lott, which states precisely in what sense analytic torsion arises as a secondary
invariant when no information is available from index theory techniques.

I would like to acknowledge the hospitality of Keio University and the Uni-
versity of Warwick, where much of this text was written. Special thanks are due
to Tom Parker for explaining his proof of the Chern-Gauss-Bonnet theorem, to
Eric Boeckx for a careful reading of the text, and to the NSF and JSPS for their
support. A much different form of support was provided by my wife, Sybil,
and an extremely different form by my children, Sam and Selene. This book is
dedicated to my family.



Chapter 1

The Laplacian on a
Riemannian Manifold

In this chapter we will generalize the Laplacian on Euclidean space to an oper-
ator on differential forms on a Riemannian manifold. By a Riemannian manifold,
we roughly mean a manifold equipped with a method for measuring lengths of
tangent vectors, and hence of curves. Throughout this text, we will concentrate
on studying the heat flow associated to these Laplacians. The main result of
this chapter, the Hodge theorem, states that the long time behavior of the heat
flow is controlled by the topology of the manifold.

In §1.1, the basic examples of heat flow on the one dimensional manifolds
S1 and R are studied. The heat flow on the circle already contains the basic
features of heat flow on a compact manifold, although the circle is too simple
topologically and geometrically to really reveal the information contained in the
heat flow. In contrast, heat flow on R is more difficult to study, which indicates
why we will restrict attention to compact manifolds. In §1.2, we introduce the
notion of a Riemannian metric on a manifold, define the spaces of L? functions
and forms on a manifold with a Riemannian metric, and introduce the Laplacian
associated to the metric. The Hodge theorem is proved in §1.3 by heat equation
methods. The kernel of the Laplacian on forms is isomorphic to the de Rham
cohomology groups, and hence is a topological invariant. The de Rham coho-
mology groups are discussed in §1.4, and the isomorphism between the kernel
of the Laplacian and de Rham cohomology is shown in §1.5.

Before we start, we note that while the simplest differential operator d/dt
on the real line generalizes to the exterior derivative d on a smooth manifold,
it is not possible to generalize the second derivative to manifolds without the
additional structure of a Riemannian metric. Thus it can be argued that the
Laplacian is the simplest, and hence the most basic, differential operator on
functions on a Riemannian manifold. Just as the study of the exterior derivative
leads to important results, such as de Rham’s theorem, relating the smooth
structure of the manifold to its underlying topological structure, the study of

1



2 CHAPTER 1. THE LAPLACIAN ON A RIEMANNIAN MANIFOLD

the Laplacian leads to even deeper results, such as the geometric version of the
Atiyah-Singer index theorem, which relates the topology, the smooth structure,
and the geometry of a Riemannian manifold.

Notation: Given a smooth map f: M — N between manifolds, we will denote
the differential of f by either df or fi.

1.1 Basic Examples

Because the theory of the Laplacian on a Riemannian manifold involves some
technical preliminaries, we begin by examining some simple examples. In fact,
considering the Laplacian and the associated heat flow on just S' and R high-
lights essential differences between the Laplacian on a compact and on a non-
compact manifold.

First, recall that if 7' : V — V is a symmetric, nonnegative linear trans-
formation of a finite dimensional inner product space V', then there exists an
orthonormal basis of eigenvectors of V' with eigenvalues 0 < Ay < ... < A,. The
set {A;} is called the spectrum of T, denoted o(T'), and is characterized by the
property

A ¢ o(T) < (T — M) ! exists < Ker(T — XI) = 0.

This eigenvector decomposition of V' generalizes to the infinite dimensional case
where V' is a Hilbert space and T is a compact operator, i.e. an operator such
that if {v;} is a bounded sequence in V, then {T'v;} has a convergent sub-
sequence. (For example, any projection onto a finite dimensional subspace is
compact, and in fact any compact operator is the norm limit of such finite rank
operators.) In this case, the spectral theorem for compact operators says that
V' again has an orthonormal basis of eigenvectors for T, each eigenspace has
only finite multiplicity, and the only (finite or infinite) accumulation point for
the set of eigenvalues is zero. In particular, since the absolute values of the
eigenvalues are bounded, the operator T is itself bounded. Remember that in
infinite dimensions a linear operator may well be unbounded, or equivalently
discontinuous.

The spectral theorem for compact operators is an easy generalization of the
finite dimensional situation. We want to show that this eigenvector decompo-
sition holds for certain unbounded differential operators on compact manifolds.
The space V will be some Hilbert space of functions or forms on the manifold.
We remark that unbounded operators are only defined on a dense subset of a
Hilbert space, and in general one must be very careful to define the domains
of such operators and their adjoints correctly. The domains of definition of our
unbounded operators are rather easy to construct on compact manifolds, but
noncompact manifolds are more difficult to treat. We will follow the standard
practice of glossing over these problems, but here are some references for the
reader: for unbounded operators in general [70] is quite thorough, while the
domains of various Laplacians are stated carefully in [26].
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1.1.1 The Laplacian on S' and R

The first example to consider is the circle. We set V = L?(S') = L*(S',C),
the space of complex valued L? functions. (We could just as easily deal with
real valued functions, but the notation is a bit more involved.) The simplest
differential operator on the circle is of course d/df. However, this operator
generalizes on a manifold to the exterior derivative d : A°M — A'M, which
takes one space to a different space and hence does not have a spectrum; only
on one dimensional manifolds can one identify one-forms with functions, e.g.
by identifying f(0)df with f(6). The next simplest operator is the Laplacian or
second derivative,

d2

A= 3000

de?
where once and for all we adopt the geometers’ convention of placing a minus
sign in the definition. We will see that this operator does generalize naturally
to an operator on a manifold taking functions again to functions.

Exercise 1: We might try to consider d : A* — A* as an operator taking forms
of mized degree to forms of mized degree, in which case o(d) is well defined.
Show that for any manifold the only eigenvalue is zero, that zero has infinite
multiplicity, and that there is an infinite dimensional space of forms which are
not in the zero eigenspace. Although we have not yet made A* into a Hilbert
space, this shows that a nice spectral decomposition of A* with respect to d does
not exist.

The eigenfunction decomposition of L?(S') is quite well known. An or-
thonormal basis is given by the trigonometric polynomials {e"?}, n € Z,
and Ae™ = n2e™. Thus L?(S') decomposes into eigenspaces with eigenval-
ues {n? : n =0,1,...} and each eigenspace has multiplicity two, except for the
eigenspace of zero, which has multiplicity one. Notice that the eigenfunction
decomposition of f € L? is given by

f — Zaneinﬂ — Z<f7 eina)einﬂ,

with
()= 55 [ 10000 dp

the usual L? inner product, which is just the Fourier series decomposition of f.
Note also that ' )
[le™ /n]| = 0, but [|A(e™ /n)|| - oo

as n — 00, so A is unbounded.

The (formal) theory of Fourier series is quite old, dating from around 1825.
By the end of the 19" century, Sturm-Liouville theory provided a powerful
generalization of Fourier series. This theory typically treats operators of the
form P p
e + A(t)— + B(t),

D=
dt
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for certain smooth functions A and B, acting on L?[—, 7] with certain bound-
ary conditions. In particular, if periodic boundary conditions are imposed, we
are working on L?(S'). According to this theory, all such operators D give an
eigenfunction decomposition of L?[—m,7]. Moreover, the eigenspaces are finite
dimensional, and the eigenvalues {\,} accumulate only at oco. However, for
general A and B it will not be possible to determine the corresponding eigen-
functions and eigenvalues. This situation is typical for Laplacian-type operators
on compact manifolds.

We now define and compute the spectrum of A = —d?/dt?> on L?*(R). (This
discussion is more advanced than the circle case, and can be skipped as it is
not needed later.) For motivation, choose A ¢ o(D), where D is an operator of
Sturm-Liouville type. Then not only does (D — AI)~! exist, it is also a bounded
operator, since

o((D =AD" ={(n ="}

is a bounded set. Moreover, as the reader should check for A, by the eigenfunc-
tion decomposition it can be shown that the range of D — \I is dense in L?(S?),
and so (D — AI)"! extends to a bounded operator on all of L2.

This (I hope) justifies the following definition of the spectrum of an un-
bounded operator; a complete justification is given by the spectral theorem for
unbounded operators.

Definition: Let D be a symmetric unbounded operator on a Hilbert space H. The
spectrum of D, o(D) C R, is defined by the condition X ¢ o(D) iff (D —\I) !
can be extended to a bounded operator on all of H. Equivalently, A ¢ o(D) iff
(i) Ker(D — XI) = 0, (i) the image of D — M\ is dense, and (iii) on the image,
(D — XI)~! is bounded.

Now set D = A acting on H = L?(R). We first consider A > 0. If we look
for eigenfunctions, we find that the only solutions to Af = Af are f(z) =
exp(£iv/Az), for any A € Rt U 0. However, none of these eigenfunctions is in
L?. This does not mean that o(A) = @. Consider a function 1n(z) on R which
satisfies ¥y > 0 and

_ 0 ifg;e(—oo,—N]U[N,OO),
¢N($)—{1 ifze[-N+1,N—-1].

For fixed A > 0, there exist constants C, C' > 0 such that
. ! .
1A = AD(ne™))| < O < S llowe™™ |l (L1)

For ¢ is nonconstant only on [-N,—N + 1] U [N — 1, N], so the function on
the left hand side of (1.1) is zero except on this interval.

Exercise 2: (i) Show that (1.1) implies ||(A — XI)7|| = oco.



1.1. BASIC EXAMPLES 5

(ii) Show that A\ < 0 = X\ & o(A). Hint: Show that there are no L? eigen-
functions for \. If the image of A — XI is not dense, take a non-zero o € L?(R)
with a L Im(A — XI). Show that

0= /R a(@)(A — A) f(x)

for all compactly supported functions f. Thus « is a distributional or weak
solution to (A — X )a = 0. (That is, if a were in L?(R), then we could integrate
by parts and let f be a bump function to conclude that (A —AI)a = 0.) Classical
elliptic regularity results for the Laplacian then imply that in fact o € L*(R)
(cf. §1.8.4). This is a contradiction. Finally, show that ||(A — AI)7Y|| < |A[7L.
For this last step, let g = (A — AI)"1f. Show that in the L? norm and inner
product we have

I£11” = (Ag, Ag) — 2X\(Ag, 9) + X*(g, 9) > N*||g]|*.
Here (Ag,g) > 0 by an integration by parts. Thus ||g||?/||f|]* < (A?)~1.
From this exercise, we see that in fact o(A) = [0, 00).
Since the spectrum does not consist of a discrete set, we cannot have a

Fourier series decomposition as on S'. However, note the analogy between the
Fourier series decomposition on S,

16 =5 (55 [ e dw)e, (1.2)

2 S1

and the Fourier inversion formula on R,

f@) == [ (%27 [ s dy)e’fm dé. (13)

While we will prove the existence of a formula corresponding to (1.2) on any
compact manifold, no such formula corresponding to (1.3) is known for general
noncompact manifolds. (In fact, the existence of (1.3) reflects the fact that R
is a semisimple Lie group.)

1.1.2 Heat Flow on S! and R

Given an initial distribution f(6) = f(0,6) of heat on S*, considered to be per-
fectly insulated, the distribution f(t,6) of heat at time ¢ is (allegedly) governed
by the heat equation

(O + A)f(t,0) = 0. (1.4)
This is quite easy to solve explicitly. If f(¢,0) = Zan(t)ei”e is the Fourier

decomposition for f(t,6), with a,(0) = a,, the n'" Fourier coefficient for f, then
plugging the Fourier decomposition into (1.4) gives

0= Z(an(t) + nzan(t))emo'

n
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Tt follows that a,(t) = ane_”2t, and so
f(t,6)= Z e~ g e
n

Note that as t — oo, f(t,0) — ag, which is the average value of f. This fits
with our intuition that as ¢ — oo the heat should reach a constant equilibrium
state; since the circle is insulated, the equilibrium value should be the average
of the initial heat distribution.

The situation on R is as expected more complicated. Given the initial heat
distribution f(0,2) = f(x) € L?, set

f(t2) = ﬁ /R =T £ (y) dy. (L5)

Exercise 3: (i) Verify that for continuous functions f,
(0 + 8)f (t,2) = 0 and lim f(t,2) = f(x).

(1) Fill in the details in the following derivation for f(t,z). We will assume
familiarity with the Fourier transform; see Lemma 1.17. Let f(t, &) denote the
Fourier transform of f in the x variable only. Show that (0; + A)f(t,z) = 0
implies . A

_|£|2f(ta €) = 6tf(ta E)
Conclude that f(t,€) = f(&)e 6. Thus

ft,) = e e = feyemlevair
p 1 2
— —|z|* /4ty
= —e
F@( e /¥ (@
1 2
- = e lmlF /Aty
= * e ,
(£ (e )
where {...} denotes the Fourier transform of the function in the braces, and
the star in the last line denotes convolution. Taking inverse Fourier transform

yields
1 2
flt,z) = Ji Ref(””*'”) " f(y) dy.

(%) Similarly show that the integral kernel for the heat equation on R™ is

1 g2
e(taxﬂy) = W@ ‘$ yl /4t.

Thus (1.5) provides a solution to the heat equation in the form of an integral

kernel
1 _(@—w)?

e 4 1.6
Vart (16)

e(t,z,y) =
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which is a smooth function on (0,00) x R x R. Notice that for all f € L2,
f(t,z) — 0 as t — oo, in accordance with our intuition that the heat should
“dissipate to +00.” While the solution (1.5) looks different from that of S, note
that on S!

f(t, 0) — Z 67712t<f7 ez’n0>ein9

1 —n2t_ind ing

= IS (O
Thus heat flow on S is also given by the integral kernel
Z e—nzteinOeiTw,

n

which is easily seen to be smooth on (0,00) x S x St.

Exercise 4: Prove the Weierstrass approzimation theorem: given f € C.(R™)
(where C. denotes compactly supported continuous functions) and € > 0, there
exists a polynomial p(z) such that ||f — p|lc < € on the support of f. Hint:
Apply the heat flow to f, which is valid since f € L2. Then apply Taylor’s
theorem to the resulting smooth function.

These two heat kernels are in fact closely related. First we have to readjust
the inner product on L*(S*) by setting (f,9) = [q f ) df. (This is just
the integration theory on S! induced by the local 1sometry R — S given by
z — z (mod 27).) This changes the orthonormal basis to {e?™?//27}, but
leaves the rest of the previous discussion unchanged. Let eg, e, denote the
heat kernels on R, S*, respectively. Set

Es1(t,0,9) = > e (t,60,9 + 27n), (1.7)

neZ

where on the right side of (1.7) we consider 6,7 to run over any interval of
length 27 in R; this is well defined since e (t,z,y) = e (t,z + k,y + k) for
k € R. Intuitively, we expect that €s1 = e_,, since heat can “get” from 6 € S !
to ¢ € S by flowing around the circle any number of times in either direction,
or equivalently by flowing from 6§ € R to any translate of ¢ in R. This is indeed
the case:

Lemma 1.8 és1 =e_,. Thus

L(£,60,9) =) en(t,0,9 + 2mn).

nez

PROOF. It is immediate that (0; + A)ég1 = 0, where A acts on 6. Also,

lim [ &s:(t,60,9)f () dy = lim / en(t,0,9)f(¥) dip,
R

t—0 S1
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where we extend f to be periodic on R. It is easy to check that even though
f ¢ L?>(R), we do have

lim [ ea(t.0,0)7(0) b = 16).

The following lemma, whose generalization to manifolds will be used later,
finishes the proof of Lemma 1.8:

Lemma 1.9 Let a(t,0,v),b(t,0,v) € C®(RT x S! x S) satisfy (0; + A)a =
(0 + A)b =0, and
iy [ alt,6,6)70) v =limy [ 0,6.9)(6) v = 116),

t—0 St
for all f € L?(SY). Then a(t,0,v) = b(t,0,1).

Here we make the convention that the Laplacian always acts on the first
space variable of the kernel unless otherwise indicated. When necessary, we use
the notation Ay, Ay, etc. to indicate on which variable the Laplacian acts.

ProOF. We first show that a(t,0,v) = a(t, v, 0); similarly, b(t,6,) is symmet-
ric in the space variables. For fixed 6, two integrations by parts in the variable
L yield

0

/ A“a(tl, ’¢’7 /‘L) . Cl(t - tl7 07 ll’) - a(tl7 ¢7 ll’) . Aua(t - tl7 67 /1’)
St

_6t'a(tla ¢a /J/) : a(t - tla 95 IU/) - a(tla 'Qb; /J/) ’ 6t’a(t - t1707/'l’)

S1

—0p / a(ﬁ%ﬂ) -a(t—t’,@,,u).
St

Thus if we abbreviate lim; o [, a(t,8, ) f (1) by [g1 a(0,0, p)f (1), we have

0

t
/ dt' 6t’ / a(tla ¢; ,U,) : Ll(t - tla 05 /J/)
0 St

= [ ot o060 = [ a0.0-att.6.)
= a(t71/)79) - Cl(t,071/)).
Now consider the integral
¢
/ ds 63/ a(s, 0, w)b(t — s, u, ) du. (1.10)
0 51

This equals

t'—0

lim [/ a(t - tl707ﬂ)b(tl7ﬂ7¢) d,u - / a(t1707ﬂ)b(t - tl7/‘7¢) d/l’ )
St St
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which reduces to
Cl(t, 07 ¢) - b(t7 07 "vb)
On the other hand, (1.10) also equals

t
/ ds[ 0a(s,0.1) -t = 5,1 ) du+ [ als,0,0)- 0,00t = 5,1, ) du]
0 St g1

t
= [ as| [ ~aa(6,0.00 00—, 10) it [ alos 0,00 Auble=5,10) .
0 1

Sl
(1.11)
By the symmetry of a(t,z,y) in z and y, we can replace —Aga(s, 8, )] (5,9, in
(1.11) by —Aga(s, 0, p)|(s,u,6)- Two integrations by parts then replace the first
integrand on the right hand side of (1.11) by

_a(87 M, H)Aub(t — S5 U, ¢) = _a(87 07 H)Aub(t — S M, ¢)7

which cancels with the second integrand, finishing the proof.

We denote the operator taking the heat distribution f to the time ¢ heat
distribution f(t,z) by
e A 1?5 [P
for heat flow on either S* or R; the notation is suggested by the fact that e~*2
acts by multiplication by e~*"" on the n?-eigenspace of A on S!, and is justified
by the spectral theorem for unbounded operators in the case of R (see [70]).
The trace of the heat operator on S' is given by the “trace” of the heat kernel:

Te e~td = 37 n't = / e..(t,6,0) db.
n Sl

For short time, the trace of the heat kernel on S! looks like the trace of the heat
kernel on R, in the sense that

Ze—n% = / e (t,0,0) df :/ Zen(t,ﬂ,ﬁ + 27n) df
n Sl Sl n

- / e (t,,0) dz + O(t%),

-

o

where O(¢*°) denotes terms dying like e~ *, for some a > 0, as ¢t — 0. Thus as
t = 0, Tr e *2 on S looks more and more like 27/v/4nt. To be precise, we
make the following definition:

Definition: Given functions A(t) and B(t), we write A(t) ~ B(t) if
A - B

t—0 tm

=0,
for allm e RT.

In this notation, we have shown the following result of Jacobi (ca. 1780):
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Theorem 1.12

Ze*"zt ~ T t 3.

neZ

In the course of this argument, we have seen that the short time behavior of
the pointwise trace of the heat kernel eg1 (¢, 8, 0) is the same as that of er (¢, z, z),
up to exponentially small factors. This is more or less plausible, if one argues
that S and R are locally isometric, and that for ¢ ~ 0, all the information in
the heat flow should be locally computable, as the heat has not “had enough
time” to distribute itself around the manifold.

Moreover, if we take a circle of circumference ¢, it is easy to check that
Tr e~*2 ~ £/+/47t, so the short time behavior of the heat operator recaptures
the length, the only intrinsic geometric invariant of a circle (i.e. any two circles
of the same length are isometric as metric spaces). In contrast, the long time
behavior of the heat flow clearly differs on S* and R, at least to the extent of
distinguishing between a compact and a noncompact manifold.

These remarks are the simplest examples of quite general phenomena. We
will see in this chapter that the long time behavior of the heat flow on functions
and forms is determined by the topology of a compact manifold, and in Chapter
3 we will show that the short time behavior is controlled by the local differen-
tial geometry of the manifold. Moreover, comparing the long and short time
behavior of the heat flow will lead in Chapter 4 to a proof of the Atiyah-Singer
index theorem.

Finally, we should point out that it is unclear how closely the heat equation
models actual heat flow. For example, the reader should check that (1.5) shows
that f(t,z) is a smooth function in z for any ¢ > 0. Is it physically plausible that
a discontinuous initial heat distribution in L?(R), such as a step function, should
be immediately smoothed under heat flow, or is such an initial distribution
physically implausible? Moreover, from (1.5) we see that for any ¢ > 0, the
heat distribution at z, namely f(t, ), is affected by the initial distribution f(y)
at y, for y arbitrarily far from xz. Thus, we say that heat flow has infinite
propagation speed, in contrast to the solution of the wave equation. Is this
physically plausible?

1.2 The Laplacian on a Riemannian Manifold

The goal of this section is to generalize the notion of the Laplacian on L2(S') to
the Laplacian on L? functions on any manifold. To do this, we need to introduce
a Riemannian metric on the manifold.

1.2.1 Riemannian Metrics

Given a smooth manifold, there is no natural way to define a generalization of
the Laplacian on S! or on R, without as additional data a “geometry” in the
form of a Riemannian metric.
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What is meant by geometry in this context? Certainly we should be able
to measure lengths of curves on the manifold in order to do geometry. For a
surface M2 C R?, we can measure the length of a curve 7 : [0,1] — M by the
usual formula

lwzlwmm

Notice that the basic ingredient is the measure of the length of the tangent
vector 7/(t) € Ty M. We can also use this formula for any manifold embedded
in R™, which covers the classical cases in algebraic geometry and analysis where
manifolds appear as the zero set of constraint equations. However, not all
manifolds arise in this way.

Exercise 5: Show that the space of all positive definite inner products on R™
is in one-to-one correspondence with the set M = GL(n;R)/O(n). Hint: Such
an inner product is determined by a basis of R™ which is orthonormal with
respect to the inner product. However, two bases which differ by an orthogonal
transformation (with respect to this inner product) determine the same inner
product.

Because O(n) is a closed subgroup of the Lie group GL(n;R), M is a mani-
fold [68]; this means we can smoothly parametrize the set of inner products. By
Whitney’s embedding theorem, M can be embedded in some Euclidean space.
However, the embedding is not canonical, and so the geometry of M is not
uniquely determined.

Thus in order to get a geometry on a manifold in the above sense, we need
to introduce a method of measuring lengths of tangent vectors.

Definition: A Riemannian manifold (M, g) is a smooth manifold M with a
family of smoothly varying positive definite inner products g = g, on T, M for
each © € M. The family g is called a Riemannian metric. Two Riemannian
manifolds (M, g) and (N, h) are called isometric if there exists a smooth diffeo-
morphism f: M — N such that

forall XY € T,M, for all x € M.

Note that since g, is a bilinear form on T, M, it is an element of Ty M ® Ty M.
To say that g varies smoothly just means that g is a smooth section of the
bundle T*M ® T*M. Given a Riemannian metric, we can set the length of a
curve v : [0,1] = M to be

1

Kﬂ=L%WWNmFﬁ

Examples: (1) On R"”, the standard Riemannian metric is given by the stan-
dard inner product g(v,w) = v - w for all v,w € T,R", for all x € R". Of
course, we call R™ with this Riemannian metric Euclidean space.
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(2) If M is a submanifold of Euclidean space, then M has a natural Rieman-
nian metric given by g, (v, w) = v-w. This so-called induced metric is the metric
used in the classical theory of curves and surfaces in Euclidean three-space.
By this same construction, a submanifold of a Riemannian manifold always in-
herits an induced Riemannian metric. Moreover, by the Whitney embedding
theorem, every manifold possesses a Riemannian metric; this can also be shown
by putting the metric of Example (1) on each chart in a cover of M and using
a partition of unity argument.

(3) Let M = GL(n;R)/O(n) as above.

Exercise 6: (i) Show that for all A € GL(n;R), TaGL(n;R) is isomorphic to
the space of n x n real valued matrices.

(i) Show that ga(X,Y) = Tr XY? is a Riemannian metric on GL(n; R).

(i) Consider GL(n;R) as an open submanifold of R™. Show that the in-
duced metric on GL(n;R) equals g of (b).

(w) O(n) acts on GL(n;R) by matriz multiplication. Show that this ac-
tion preserves the Riemannian metric: if O € O(n) and A € GL(n;R), then
9a(X,Y) = goa(0.X,0.Y). Conclude that the metric g descends to a metric
h on the space of inner products GL(n;R)/O(n). Hint: Let O 4 be the orbit of a
matriz A € GL(n; R) under the action of O(n). Define Hy C TAGL(n;R) to be
the orthogonal complement of TaO4 in TAGL(n;R). Show that Hoa = O, H4.
Let [A] be the class of A in M = GL(n;R)/O(n). Show that if m: GL(n; R) - M
is the projection, then (m«)a: Ha — TiqM is an isomorphism. Given Z,W €
T[A]M, deﬁne

WZ,W) = g((w)5' Z, (w)5' W)

for any choice of B € Oa. Show that h is well defined, since O.(T.)5'Z =
(m) 7' Z if OB = A.

This last example shows that Riemannian metrics may arise naturally on
manifolds which are not a priori embedded in R™. This raises the question
of whether any compact Riemannian manifold can be embedded in Euclidean
space in such a manner that the induced metric coincides with the original one.
The Nash embedding theorem states that such an embedding is always possible;
the proof is much more difficult than for the Whitney embedding theorem. Like
the Whitney embedding theorem, the Nash embedding theorem is not of much
practical help for questions in Riemannian geometry.

Exercise 7: (i) Show that the space of metrics on a fized manifold is a connected
(in fact contractible) set. Hint: if go, g1 are metrics, so is tgo + (1 — t)g1 for
te€[0,1].

(i) (For those who know about infinite dimensional manifolds.) Show that
the space of all Riemannian metrics on o fired manifold M is an open sub-
manifold of the space of symmetric contravariant two-tensors on M. Hint: o
perturbation of a metric by a small symmetric two-tensor is still a Riemannian
metric. What topology are we using when we say “open submanifold”?
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To compute with a Riemannian metric, we must be able to analyze it in a
local coordinate chart. If v,w € T, M and (x',z2,...,2") are coordinates near
x, then there exist a*, 8* such that

i 0 i 0
v:Za %,w:Zﬁ pres

We have

0(0,0) = ga(D 00, Y 70,s)

J

Z aiﬂjgz (6a:’ ) azf)a

i,J

where 8,: = 8/0z*. Thus, g, is determined by the symmetric, positive definite
matrix (g;;(x)) = (92 (0z:i,05i)). Note that while the metric g is defined on all
of M, the g;;(x) are defined only in a coordinate chart, where we may write

g= Zg”dmz & d.’l?j.

i3

Exercise 8: (i) Check that g is a Riemannian metric iff in any chart the
functions g;j(x) are smooth functions for all i, j.

(ii) Let hij = g(Oyi,0yi) be the matriz of the metric g in another coordinate
chart with coordinates (y,...,y™). Show that on the overlap of the charts we
have
_ 61/’“ ayé
9is = 7 Ozt Oxd

k

Now that we can measure lengths of curves, it seems plausible to set the
distance between any two points of M to be the length of the shortest path
between them. However, such a path of shortest length need not exist; just
consider the points (1,1) and (—1,—1) in R? — {(0,0)} with the metric induced
from the Euclidean plane. We can avoid this problem by setting

d(z,y) = inf {1(y) :7(0) = 2,7v(1) = y}.

7~ piecewise C'>°

Exercise 9: Prove that (M,d) is a metric space. Hint: Use that v need only
be piecewise smooth to prove the triangle inequality. Don’t forget to prove that
x # y implies d(z,y) # 0. Use the Weierstrass approrimation theorem to
conclude that d is a metric if we only use smooth curves.

We will use this metric space structure associated to a Riemannian manifold
in Chapter 3.
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1.2.2 L? Spaces of Functions and Forms

At this point we can develop analysis on a manifold with metric. First of all, we
want a Hilbert space of real valued functions on M, so it seems natural to define
L?(M) by setting (f,g) = [,, f(z)g(x). However, this is horribly wrong. We
cannot integrate functions on a manifold; only n-forms transform correctly to
give an integral over an n-manifold which is independent of coordinates. (This
property in fact characterizes n-forms, a point often lost the first time around
with differential forms.) It may be objected that we happily integrate functions
on R™ and S!, but this is possible only because we can identify a function f on
S with the one-form fd# and a function f on R™ with fda! A ... A dz™. This
identification occurs because these manifolds have special coordinates, which is
precisely what general manifolds have not got.

From this point on we assume that the given manifold M is oriented and
connected; this avoids technicalities later on. We are looking for an n-form a(x)
such that (f,9) = (f,9)m = [, f(x)g(x)a(x) defines a positive definite inner
product; such an « is called a volume form. This terminology is motivated by
noting that (1,1) will then equal | w @ and that for reasonable sets A C R",

vol(A) z/ de' A...Adz™ = (1,1) 4.
A

We first compute what the volume of a Riemannian manifold should be. To
make things simple, we’ll just compute the volume of a coordinate chart; for
the full volume, we would then use a partition of unity.

In a positively oriented coordinate neighborhood U around x with coordi-
nates (z',...,2"), pick a large number N of points p;, and in each tangent
space Ty, M form a box B; with sides (Az') 72, (A2?) 525, ..., (Az™) 5%, for
some small numbers Az*. Let v1,...,v, be a positively oriented orthonormal
basis of T,; M. Then 8,; = a¥v; for some matrix af = a¥(p;). Here we are
using the Finstein summation convention, which means that an index which
appears as both a superscript and a subscript in an expression is summed over:

e.g. afv, =3, afv,. With all this notation, we expect vol(U) to be

N
volU) = lim lim Z(volume of Bj)

Azi—0 N—oo

Jj=1
N o
= Alziirgo J\}E)noo J; (volume of a box with i*iside (Az?) ,; aka>
N
= Alziin_1>0 A}E}noo 12:: ((Aa:l)(Aa:2) ... (Az™) det(af))

1
= /det(af)d;vll\.../\d;v".
U

(We do not use summation convention for 4 in the second line.) For §y; the
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Kronecker delta (6 = 1if k =1, §iy = 0 if k # 1), we have

l k 1
-’Ul) = Oy a]-&kl

9ij = (Bai,0) = (afvr, 0]

= okl = (44Y,

where A = (af.'), and we denote g(v,w) by (v,w). Thus
det g = det(AA?) = (det A)?,

and so vol(U) should be [, +/detg dz' A... A dz".

Exercise 10: Show that v/det g dz' A...Adx™ is a well defined n-form on M™:
i.e. show that if (y',...,y™) are also coordinates at x, then

Vdetg(z) dz* A...Adx™ = /detg(y) dy* A ... Ady".

Definition: We define the volume form of a Riemannian metric to be the top
dimensional form dvol which in local coordinates is given by

dvol = \/det g dz' A ... Adz",

whenever (0,1, ...,0;n) is a positively oriented basis of T, M. We set the volume
of (M,g) to be

vol(M) = /M dvol(x).

Exercise 11: (i) Show that dvol is bad notation: if M™ is compact and without
boundary, then there is no (n — 1)-form 6 such that dvol = df. A much harder
exercise is to show that if M is noncompact, then there always exists such a 0.
(ii) Let f : RZ — R be a smooth function and let M be the graph of f
with the metric induced from R3. Show that the volume element on M satisfies

dvol = /1+ f2+ f; dz A dy. Compare this with the standard vector calculus
definition of surface area.

As an aside, notice that we usually define the length of a one-manifold,
a curve, to be the limit of the sum of lengths of inscribed secants, while for
surfaces the area is computed as the limit of sum of areas of boxes in tangent
spaces. It turns out that we could equally well use tangent line segments in the
curve case, but using inscribed planes in the surface case is problematic; very
simple compact surfaces can have inscribed planes the sum of whose areas is
arbitrarily large. Thus in our motivation we stick to summing up volumes of
tangent boxes.

Exercise 12: (i) Prove that a smooth n-manifold is orientable iff there exists
a smooth nonzero section of A"T*M.
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(i) Given such a nonzero section s, prove that there erists a Riemannian
metric g on M with dvol(g) = s; you may have to switch the orientation of M to
agree with the orientation determined by s. Hint: Pick any Riemannian metric
g1 on M. Find a function f : M — R such that

\/det(efg1)dz* A...Adx" =5
on M.

(iii) Show that ef g, is conformal to g; i.e. define the angle between two
intersecting curves, and show that the angle is the same when measured with
respect to either efg1 or gi. Conversely, if two metrics gi,gs always give the
s?me angle measurements, show that there exists f € C°(M) such that g1 =
€' g2.

(iv) Place a cylinder around the sphere S? so that the equator is the line of
intersection. Map the sphere minus the two poles to the cylinder by radial pro-
jection from the center of the sphere. Show that this map, Mercator’s projection,
preserves angles, although it of course distorts distances.

Now we can define the Hilbert space L?(M,g) to be the completion of
Cg° (M) (the smooth functions of compact support) with respect to the inner
product (f,g) = [, f(z)g(z)dvol.

Exercise 13: Let M be a compact manifold with two Riemannian metrics gy, g-
Show that L?(M, g,) and L?(M, g2) are naturally isomorphic as Hilbert spaces.
In contrast, if M is noncompact, show that there always exist metrics g1, gs
such that these two Hilbert spaces are not naturally isomorphic, in the sense
that there exist smooth functions in one Hilbert space but not in the other.

We’ll also need spaces of L? k-forms. For one-forms this is fairly easy. Recall
that if V' is a finite dimensional vector space with an inner product { , ), then
the dual vector space V* is naturally isomorphic to V under the map a : V' —
V*, where a(v) = v* satisfies v*(w) = (v,w) for v,w € V. V* inherits an
inner product, also denoted ( , ), given by (v*,w*) = {(v,w). In particular, a
Riemannian metric g on a manifold produces an inner product, also denoted
g, on each cotangent space Ty M under the isomorphism « = a4, constructed
above. We'll also use a to denote the bundle isomorphism o : TM — T*M
induced by oy, in each fiber.

Exercise 14: In local coordinates, set g* = g(dz',dz’). Then g*gy; = 5;-,
where &} is the Kronecker delta —i.e. (9"7) = (i) "

We now set L2A1T*(M, g) (or just L2AYT™ M for short) to be the completion
of C°T*M with respect to the global inner product

(w,m) = /Mg(w,n) dvol(z).
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Similarly, the inner product g induces an inner product g on each tensor product
TyM®...®T,M and hence on each exterior power A*T* M, and hence a global
inner product

(@) = | g(a,8) dvol
M
for a, 3 € CPA*T* M. The completion is denoted by LZA*T* M.

Exercise 15: Compute g(dz' A dz?,dz* A dx') in terms of (g%7).

1.2.3 The Laplacian on Functions

Now that we have the Hilbert spaces in place, it is time to define the Laplacian
A:L*(M,g) — L*(M,g). (Keep in mind that A will only be defined on a dense
subset of LZ(M).) Of course, we want the Laplacian to agree with (minus) the
standard Laplacian —(%21)2 +...+ ﬁi)z) on R™. However, this expression
depends on the standard coordinates for R™, and we need a coordinate free
expression for our generalization. This is provided by the classical equation

02 02 )
—(W'F...-l-m)——dlvov.

Now do we have the operators V : C*° (M) — TM and div: TM — C*(M)
on a general manifold? The answer is no, but on a Riemannian manifold we
may set V to be the composition

-1
C®(M) S AT M™% TM.
It is easy to check that this produces the ordinary gradient in Euclidean space.

Exercise 16: Show that in local coordinates, we have
Vf=9"8:19;,

where 9; = 0,5 = 5.

As for div, integration by parts applied to f € C°(R™) gives
- aX'-f=| oaf-X',
R" R"

for functions X*?, which shows that the divergence 9; X of a vector field X =
X'0; on R™ is characterized by the equation

(—divX, f) = (X, Vf), (1.13)

where the inner products are the global inner products on functions and vector
fields induced by the standard dot product. In other words, —div is the (formal)
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adjoint to V. We would like to use (1.13) on a Riemannian manifold to define
div X, since we already know what Vf and the inner products in (1.13) mean
on a Riemannian manifold. (The inner product on the right hand side is the
global inner product on T'M defined just as for T*M.)

Exercise 17: Why is the following attempt to define div X from (1.138) not
valid? Recall that the dual space to o Hilbert space H is canonically isomorphic
to H via the map « above: i.e. for all functionals A € H*, there exists a unique
v € H such that A = a(v) = (v,-). For a fized vector field X on a Riemannian
manifold, the right hand side of (1.18) defines a linear functional A\x on L*(M),
and so we can define —div X to be the unique function v € L?>(M) satisfying
(v, f) = Ax (f), which is just (1.13).

Assume for the moment that an operator div X satisfying (1.13) exists.
What must this operator look like in local coordinates? Let U be a coordinate
patch on M; we won'’t distinguish in the notation between integration over U
and integration over the coordinate chart image of U in R". For any function
f € C°(U) and vector field X = X'9; € TM, we have

(X,Vf) = /M(X,Vf) dvol
= /U (X'8;, g™ 0y, f0;) dvol
_ /U X400 f)g" gij /et g da* ... da"
= /UX@'(aif)\/del...dm"
- _/U;f.a,(xi\/de—tg)\/mdxl...dmn

det g

1 i
= <f:_\/mai(X Vdet g)).

Thus, if div X exists, it must satisfy

div X = —— di(X*y/det g).

Vdet g
Assuming this expression is independent of choice of coordinates, we can then
define the Laplacian on functions to be A = —divoV, a second order differential
operator. In local coordinates, we get

1 .

Af = ———0;(9g"+/detg 0;
f \/M J(g g Zf)
= —¢"0;0;f + (lower order terms). (1.14)

Note that this reduces to the usual expression for the Laplacian on R™. The last
expression shows that not only is the Laplacian determined by the Riemannian
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metric, but the Laplacian also determines the metric. (By evaluating A on
a function which is locally ziz’, we can recover g¥ and hence g;;.) Thus we
expect the spectral theory of the Laplacian to be intimately connected with the
geometry of (M, g).

Exercise 18: Show that div X is well defined: i.e. given another set of coor-
dinates (y',...,y™) on U, write X = X'0,: =Y70,; and show that

1 . 1 .
0,:(X"\/det g) = ——=0,; (Y7 +/det g).

By this exercise, the Laplacian is well defined. However, it is much nicer
to construct the Laplacian in a coordinate free manner from the start, so that
there is no need to do local calculations as a consistency check. Before we do
this, we rewrite (1.13) in terms of one-forms, as this is more convenient for later
purposes. Because « is trivially an isometry, it is easy to check that at each
point of M, we have g(a(X),df) = g(X, Vf) for any tangent vector X and any
function f. Set 6 : A'T*M — C°(M) by 6(w) = —div(a~!(w)), so that § is
“the same” as div up to the isomorphism o : TM — T*M. Then §, which exists
by the last exercise, is characterized by the equation

<6w7f) = <w7df)7 (115)
for all w € C®A!, f e Cx.

Exercise 19: Check that 6 is given by

1 ..
ow) = — 0;(g¥+/det g w;),
( ) \/m ’L(g g ’L)
where w = w;drt, and that this expression is independent of choice of local
coordinates.

As a second (coordinate dependent) definition, we define the Laplacian by
A = d. This is the same as our first definition, since ddf = (—div a™1)(aVf) =
—div Vf. The reader might prefer to check in local coordinates that these two
definitions agree.

We now introduce the Hodge star operator, which is a pointwise isometry
* = x, : A¥T*M — A"~FT* M. Choose a positively oriented orthonormal basis
{0',...,6™} of T}M. Since * is a linear transformation, we just need to define
* on a basis element 0 A ... AO% (iy <...<ij) of AXT*M. Note that

dvol(z) = /det((67,63)) 6" A
O A ... AO".

Definition: *(6% A...A@%) =01 A.. . AN@In—* where O A... A0 NPT AL A
@in—* = dvol(z).
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This definition forces
{1y gn—k} =1{1,2,...,n} = {i1,...,ix},
and we always have
O AL AO A x0T A ... AG™) = dvol.

In particular, *x1 = dvol and *dvol = 1. The reader should check that the
definition above is independent of the choice of orthonormal basis, and that
¥2 = (=1)*(»=k1d on A*T*M, where dim M = n.

Exercise 20: Show that the equation
((w,m)) = *(w A *n)
defines a positive definite inner product ({ , )) on each exterior power AFT* M.
Since the Riemannian metric g induces the inner product denoted ( , ) on
AFT? M, we now have two inner products associated to the metric. Fortunately,
these two are the same, as we now show:
Claim: For w,n € A*T*M,

(w,n)e dvol = w A *n.

PRroOF: Both sides of the equation are linear in w and 7, so we may assume

W=0" A A0 p=0" AL NG

Then
(w,n) dvol = (B A...A0% 01 A ... AG%) dvol
_ {’il,...,ij}
= +d5,7 7 dvol

(the last step follows from (6%,67) = &%). We also have w A xi = (6" A ... A

) A0 AL AO) = iégll ”;J’; dvol. We leave it to the reader to check

that the plus/minus sign is the same in both cases.

Exercise 21: (i) Use this claim to show that the Hodge star is an isometry.

(ii) Let w = w;dz® be a one-form written in local coordinates. Compute xw in
local coordinates. Hint: Write dz* = b%07 for some invertible matriz B = (b%).
Note that BBt = (g%). Then

*w:chdxl/\.../\dxj_l/\dxj+1/‘\.../\d:1:",
i
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where c; is a complicated expression in the entries of B. Rewrite this expression
in terms of the g% and det g.

Thus on k-forms we may express the global inner product (also known as
the Hodge inner product) in two ways:

(w,m) = / g(w,n) dvol :/ w A *1).
M M
For the exterior derivative d : A¥ — A**! we have

(dw,a) = dw A *a
M

Md(w/\*a)—(—l)k/w/\d*a

= (—1)k+1/w/\d*a

= (1) (< 1) (b)) /w Axxdsxa

= (—1)"k+1/w/\*(*d*a)
= (1), xdx a),

where we have used Stokes’ theorem in the third line. Thus the adjoint §*+! of d
on k-forms is given by §¥+! = (—1)"%*+1 xdx, and in particular, § = §' = —xdx*.

Exercise 22: Compute that — * dx on one-forms has the same local expression
as in Ezxercise 19.

Thus the Hodge star construction and Stokes’ theorem (which is the coor-
dinate free version of integration by parts on a manifold) lead to a coordinate
free description of the adjoint of exterior differentiation. We are now entitled
to define the Laplacian:

Definition: The Laplacian on functions on a Riemannian manifold is given by

Af =0df = —xd=df.

It is interesting to review classical vector analysis in R? in light of the tech-
niques of this section. The modern version of Stokes’ theorem, as taught in
courses on the differential topology of manifolds, involves no Riemannian metric.
However, to reinterpret the classical Green’s, Stokes’ and divergence theorems
as special cases of the modern Stokes’ theorem requires the use of the standard
dot product metric on R?; see Exercise 11(ii) and [63]. Moreover, vector cal-
culus in R? is full of unstated identifications of tangent spaces and cotangent
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spaces via the & map and between one-forms and two-forms via the Hodge star
operator. For example, it is easy to check that the classical curl operator taking
vector fields to vector fields is given by

curl X = o~ x daX.

1.3 Hodge Theory for Functions and Forms

In this section we will prove the Hodge theorem for compact connected oriented
Riemannian manifolds, which states that, just as on S*, there is an orthonormal
basis of L2(M, g) such that the Laplacian diagonalizes with respect to this basis:

A1
A~ A2

We will also prove the corresponding theorem for the Laplacian acting on k-
forms.

1.3.1 Analytic Preliminaries

The proof we give, which is modeled on the heat equation proof of Milgram and
Rosenbloom [44], depends on some standard Sobolev space analysis in Euclidean
space, suitably generalized to compact manifolds.

We first recall the definition of the Sobolev spaces of complex valued func-
tions on a set Q@ C R™, where Q is open with compact closure Q. The st Sobolev
space is a Banach space whose norm measures the L? norm of a function and
its first s derivatives. (Recall that the usual Banach space norms on functions
measure the sup norm of the first s derivatives.) In other words, the Sobolev
space Hs(Q), for s € {0,1,2,...}, is the completion of C°(Q) with respect to

the norm
1
I£1ls = (Y- 1D FI3)%,
laf<s
where @ = (@, ..., ay), a; € Z is a multi-index with |a| = 3", a; and
6a1+...+ak
Do = (-l (1.16)
o ... O

Note that Hg(Q2) = L?(2). Of course, we can also define Sobolev spaces of real
valued functions (omitting the (—4)!* in D¥), and the analytic results below
remain valid.

We recall the basic properties of the Fourier transform on R, defined by

. 1 —iz
(&) = @n /R" e” " 8y(z) d.
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We will also use the notation (f) for complicated functions f. Define the con-
volution of functions on R™ by

(wso)@) = [ ule - y)oly) dy.

Here and from now on we use the measure dy which is (27)~"/? times Lebesque

measure dy' ...dy" to avoid a plague of 27 factors. The proof of the following
lemma can be found in many texts.

Lemma 1.17 (i) The Fourier transform is an isometry on C°(R™) in the L*
norm, and so extends to an isometry of L?(R™).

(i) wxv =10-9, uo =10 * 0.

(i) u(z) = [ €=50(c) d.

(iv) Du(§) = £*a(§). (Here & =& -...- &5 for £ = (&1,---,n).)

(v) z*u(§) = D*a(§).

The proofs of the basic analytic results depend upon an alternative definition
of the Sobolev spaces. Given two norms || - ||) and || - ||®) on a vector space,
we write || - ||V ~ | - [|® if there exist positive constants Cy,Cy such that
CLllFID < IFI1® < Col|£]|™ for all £ in the vector space.

Lemma 1.18 For f € C°(2), we have

I~ ([ 1FOPa+ierragt (119)

Since the right hand side of (1.19) is defined for all s € R, we can define
Sobolev spaces Hy = H,(2) for any real s to be the completion of C°(Q2) with
respect to

I = ([ 1F@Pa+eryrant.

This extends the previous definition, as the Hilbert space completions of a pre-
Hilbert space with respect to two equivalent norms are naturally isomorphic
(check this). Using the fact that (14 [£]%)* > (1 + |€]?)* for s > ¢, it is easy to
see that if s > ¢ > 0 > r, we have continuous inclusions

H,—»H;—Hy = L>~H,;

it should be trivial to check this for s,t € Z* using the first definition of Sobolev
spaces.

PRrOOF OF LEMMA 1.18. By the previous lemma, we have

S o= Y [ e a

lo|<s loe|<s

[ (X epiion

n
lo|<s

17113
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There exist constants C,Cy such that

CLL+EP)° < (D [E1°1°) < Ca(1+ [P,

lo|<s

since all three terms are polynomials in £ of the same degree. The lemma follows.

We need two important theorems about Sobolev spaces. First, note that
f € H,(Q) if f € C*(Q). The Sobolev embedding theorem is a partial converse
to this.

Theorem 1.20 (Sobolev Embedding Theorem)
FEHLWN) = feC’(Q), Vs < k— g
Corollary 1.21 f € (g Hk(Q) <= f € C=(Q).

PROOF OF THEOREM 1.20. We first do the case s = 0 —i.e. if k > n/2, then
f € Hy= feC’ We have

|/ ()]

[ it a

‘ [ s ien s ighese d€‘

(/Rn(l ™ d§>1/2 (/Rn IFOPA + | d,g) 1/2

by Cauchy-Schwarz. Now k > n/2 implies that [5. (14 |£|*)™" d¢ = C is finite,
$0

IN

f@)] < 2 £l

Any f € Hy, is the Hy-limit of compactly supported smooth functions f;. The
last equation implies that f; — f uniformly, and so f is continuous.

For the general case, fix s and choose f € Hy with k > s + (n/2). For any
multi-index a with |a| < s, we have

ID°fI = [ DRI P+ [P de

[ e 1@+ il
< Cliflh

since as above for some constant C, we have

[P (1 + €)1 < o+ [€)*
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This implies that D : Hy — Hy_|4| is continuous. By the first part of the
proof, we conclude that D®f € C° for all |a| < s, and so f € C?.

Recall that a map of one Banach space to another is called compact if the
image of every bounded sequence contains a convergent sub-sequence. In par-
ticular, the identity map is never compact on an infinite dimensional Banach
space.

Theorem 1.22 (Rellich-Kondarachov Compactness Theorem) If ¢ > s,
then the inclusion Hy(Q2) — H,(Q) is compact.

Proor. Let {fn,} C H; have || fu]ls < 1. We first show that a sub-sequence
of {fn} converges uniformly on compact subsets of R"”. Choose a smooth com-
pactly supported function ¢ with ¢ = 1 on Q. Letting D; = (—i)9/0§;, we
have

ID; fa(&)] = [Dj(¢- fa) () = |Dj(¢ * fn)(©)|
‘/R D;p(€ —n) fn(n) dn

IN

(/Rn 1D;$(& = m)P(L+ |n*)~* dn)l/Q

1/2
N 2 2\t
([ 1P+ Py an)

where we have used Cauchy-Schwarz and set

c© = ([ 1idte-nra+ dn)m-

Since C(£) is a continuous function, it is bounded on compact £-sets.

This shows that each D; fn is uniformly bounded on compact &-sets, and
a similar argument shows the same for fn The Arzela-Ascoli theorem now
guarantees the existence of a sub-sequence of {f,}, which we still call {f,},
converging uniformly on compact &-sets.

Since H, is complete, the proof will be finished once we show that {f,} is a
Cauchy sequence. For fixed r > 0,

o= fnlle = [ 170 = In(OP1+16P)" de
= /h§|< 1Fal®) = Fm(© (1 + €P)* de

[ 1RO - In©P +€P) e
[€]>r
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Since t > s, we have (14 |£[?)*(1 + %)% < (1 4 |¢]?)? for |£] > r. This gives

/|€|> 1Fal) — Fu©P(+ |E2)° de

1

< ey [ © — Fn@P O+

1

m“fn — fmll?
4

T+

For r sufficiently large, this term is as small as desired. Moreover, for fixed r
and m, n sufficiently large,

/ﬂ< 1Fal) = Fm(©2(1 + [€2)° de

is also as small as desired, since { fn} converges uniformly on the compact set
|€] < 7. This shows that {f,} is a Cauchy sequence in H.

It is straightforward, although a little messy, to define Sobolev spaces on
manifolds. Let {U; C R™, p;}, where ¢; : U; = M, be a locally finite coordinate
cover of M, with U; compact in R". Take a partition of unity {p;} subordinate
to U;. Set Hy(M) to be the completion of C$° (M) with respect to

171l = (i £ o il

Exercise 23: (i) Let {V;,v;} be another locally finite cover with subordinate
partition of unity {u;}. Show that

I1/]

if M is compact. If M is noncompact, show that there always erist covers
{U:},{V;} such that (1.23) fails.

(i) For a compact manifold M, show that Ho(M) is naturally isomorphic
to L?(M,g), for any choice of Riemannian metric g on M, by showing that

1£1lo = (£, £)g"-

gi,wi,pi ~ ”f”;/j,w,w (1.23)

It is not too surprising that the embedding theorem holds on any manifold,
once Sobolev spaces are defined correctly, since differentiability properties of
functions are local properties; i.e. one checks them locally, and locally a manifold
is indistinguishable from our Q. In contrast, the compactness theorem always
fails if Q is noncompact. Just take a sequence f; with ||f;|l1 = 1 and with the
supports of the f; pairwise disjoint; then {f;} has no convergent sub-sequence
in L2(Q2). This example carries over to any noncompact manifold. Because the
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compactness theorem fails for noncompact spaces, the Hodge theorem as stated
is not valid for noncompact manifolds. This “explains” why the Laplacian on
R does not have an eigenfunction decomposition as on S'. In any case, the
embedding theorem and compactness theorem are valid for compact manifolds.

Exercise 24: Prove the compactness theorem for compact manifolds, assuming
the compactness theorem for Q as above. Hint: Take a sequence {f;} C H,(M)
with || f;|l; bounded. Show that in the i*" coordinate chart U;, {pifjpi} satisfies
the hypothesis of the compactness theorem in R™, and so has a convergent sub-
sequence in Hg(U;). Now use the compactness of M.

We will also need the existence of a heat kernel analogous to that on St.
Namely, we claim that there exists e(t,z,y) € C®°(Rt x M x M) such that
(6t + Az)e(trr:y) = 07
(1.24)

lim [ e(t,z,y)f(y)dy = f(z).
M

Here A, denotes the Laplacian acting in the z variable. The existence of
e(t,z,y) will occupy Chapter 3.

Exercise 25: Show that there is at most one function e(t,x,y) on M satisfying
(1.24). Moreover, we have e(t,z,y) = e(t,y,x). Hint: imitate the proof of
Lemma 1.9.

If we define the heat operator e=*2 by e =2 f(z) = [), e(t, =, y) f(y) dvol(y),
then e~ 2 f(z) solves the heat equation with initial condition (temperature dis-
tribution) f(z) € L2(M): setting f(t,z) = e ** f(z), we have

(6t+Az)f(t7x) = 0
f0,2) = f(x).

Here f(0,z) = limy_o f(¢, ).

Exercise 26: Use (1.24) to verify these last two equations.

1.3.2 The Heat Equation Proof of the Hodge Theorem for
Functions

We now assume that M is compact. We use the abbreviation dy = dvol(y) to
denote the variable of integration. In a coordinate chart, by abuse of notation
we may write

Dzef@) = [ Deetta)i@wib.
M



28 CHAPTER 1. THE LAPLACIAN ON A RIEMANNIAN MANIFOLD

(How can this be written correctly?) Since e(t,x,y) is smooth in z, we see that
for f € L2(M), e A f € C*(M) for all t,k, and so e *»f € Hy(M) for all ¢, s.
Moreover, we claim that if f; — 0 in L2(M), then e™*2 f; = 0 in H;.

Exercise 27: Prove the last statement. Hint: If for fized t, e(t, z,y) is a smooth
function on the product of the closure of a domain Q x Q, then f; — 0 in L2(Q)
implies

0, [ ettonfiw)ds = [ oje(t.au)fi)dy 0

uniformly on Q. Conclude that ||0;e 2 filla — 0; similarly |e=*2 f;|l — 0.
Now use a partition of unity argument to carry the result over to M.

As a result, e *» : L2(M) — H;(M) is continuous. The composition

—tA
Hy=IL?°—> H,— Hy = L*

of a continuous operator with a compact operator is compact (check!), and so
e tA . I?2 — L? is a compact operator. Moreover, the heat operator is self-

adjoint:
/M (/M e(t, , y)f(l/)dy) g(x)dx

([ ct.a@iz) rwpay

= (f,e7%yg), (1.25)

by the symmetry of the heat kernel e(t,z,y). By the spectral theorem for self-
adjoint compact operators on Hilbert spaces, L2(M) has an orthonormal basis
consisting of eigenfunctions for the heat operator e~ 2 with eigenvalues 7;(t) —
0 as i — oo. We write this schematically as

7(2)

(e f,9)

€ ~ ‘ Tn (t)

In order to prove the Hodge theorem, we study the v;(t). We want to show
first of all that they are strictly positive. To do this, we establish the important
semigroup property of the heat operator.

Claim: e tAe=t'A = ¢=(t+t)A,
Since the heat operator is supposed to model heat flow on M from a given initial
temperature distribution, the claim is the physically plausible statement that
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heat flow at time ¢+ #' should be the composition of heat flow up to time ¢’ with
heat flow for a further time t.

ProOF: Fort > s > 0,

e_(t_s)Ae_SAf(flf) = e (t=9)A: (/ 6(3,z>y)f(y)dy> (.’L‘)
M

/M et —3,3,7) (/M e(s; 2, y)f(y)dy> dz

so e~ (!=8)2¢—3A hag the integral kernel
/ e(t—s,z,2)e(s, z,y)dz.
M

Now (0 + Az)(f,, e(t — s, 2, 2)e(s, z,y)dz) = 0, and

fim [ (/M et — s,m,z)e(s,z,y)dz)f(y)dy

t—0

= lim e(t — s,x,z)(lim /M e(s,z,y)f(y)dy)dz

t—=0 J s 5—0

= lim [ e(t,z,2)f(2)dz
t—0 J o

= [f@).

Here we have used that s — 0 as t — 0 and (1.24) for e(s, z,y). Thus [, e(t —
s, x,2)e(s, z,y) has the two defining properties of the heat kernel, so by Exercise
25, we must have

e(t,ﬁj’,y) :/ e(t—s,m,z)e(s,z,y)dz.
M

In other words

e—tA — e—(t—s)Ae—sA7

which finishes the proof.

Remark: More generally, it is shown in the theory of unbounded operators that
a self-adjoint operator D has an associated semigroup {e *P} of self-adjoint
operators giving a solution to heat flow [70]. Conversely, it is easy to see that if
the semigroup {e~*P} has a smooth kernel, this kernel must satisfy (1.24).

We can now show that ~;(t) > 0. Since
e N O w 7)

(1.26)
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we certainly have 7;(t) > 0. If some v;(t) = 0, then there exists f # 0 with
e tAf = 0. As above, we would then have

0=(e'Af, f) = (e FRe 28], f),

which implies e~ 22 f = 0. Repeating this argument gives e~ 52 f = 0, etc. This
yields f = limy_ge *»f = 0, a contradiction. Thus all the ;(t) are strictly
positive.

We now show that there exist A\; € R such that

Yilt) = e7N!
for all t. There exists an orthonormal basis {w;(t)} C L?(M) such that
e Buwi(t) = yi(twi(t).
In fact, w;(t) is independent of ¢, since the equation
e—sAe—tA — e—(s—i—t)A — e—(t+s)A — e—tAe—sA

implies that the operators e *A can be simultaneously diagonalized for all ¢.

(Check that this result from linear algebra applies in the current infinite dimen-
sional case.) Thus e~**w; = v;(t)w;, and
0 = (B +A) (e tPw)
(0 + A) (i (t)wi)
= Jiwi +7ilw;,

where ¥; denotes d;7y;. Since we know 7; > 0, we may write
Aw; = — L. (1.27)
i
The left hand side of this equation is independent of ¢, which implies
w g
Yi
with C a constant which depends only on 4 and not on t. Thus 7;(t) = C'-e™ i,

for some real number ;. As t — 0, e~*® goes to the identity. This forces
~i(t) = 1 as t — 0, and so we must have C' =1 and \; > 0. In conclusion,

Yilt) = e, (1.28)

and
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with respect to the basis {w;} in L?(M,g). By (1.27) and (1.28), we have

—/\,-e_Ait
A(.di = —Wu}i = /\sz

Thus, with respect to the same basis {w;}, we have the desired diagonalization
of the Laplacian:
A1
A~ Ay

Remarks: (1) We can also show that the eigenvalues A\; of A are nonnegative
by the equation

(Af, f) = (odf, f) = (df,df) > 0.
The 0-eigenspace of A is easy to determine. If Af =0, then

0=(Af,f) = (df,df).

Therefore, df = 0, and f is a constant function. (This is the only place in
this subsection where we use that M is connected.) Thus 0 is an eigenvalue of
multiplicity one. Since e * is a compact operator, its eigenvalues e~**¢ all have
finite multiplicity and accumulate only at 0. Thus we may list the eigenvalues
of A (repeating eigenvalues according to their multiplicity):

0=/\1</\2S/\3S/\4§...T00.

Since the eigenvalues go to infinity, A is always an unbounded operator on
L2(M).

(2) The eigenfunctions w; are the generalization of the trigonometric polyno-
mials on S!. (More precisely, the w; generalize the real eigenfunctions {cos(nf),
sin(nf):n = 0,1,2,...} of the Laplacian on S'.) In fact, for f € L?(M,g), we
may write

f= Zaiwi; a; = <f;wi) :/ f - w; dvol.
~ M
1
Since e~ is bounded on L?, we have
et = tA Zaiwi
= Z aie”Pw;
= Z aie Ntw;.

In particular, as t — oo, e *Af — ajw;. Now w; is a constant function suitably
normalized,
1

or =1/ =1/(f 1-1avont = i
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and so

awr = (f,wi)wr

(/Mf-\/ﬁdwﬂ)m

oy £ dvol
vol(M) ~

Thus, just as on S!, heat flow on M sends a function to its average value as
t — oo.
(3) Consider the formal sum Y, e~**w;(z)w;(y). Formally,

/M<;6Aitwi(w)wi(y))f(y)dy = ;e’\itwi(m)/Mwi(y)f(y)dy
= Ze_’\"twi(x)ai.

This shows that formally the heat kernel has the expression Y e~ tw;(z)w;(y).
We’ll show later that this sum does indeed converge nicely to e(t,z,y).

To sum up the results so far, we state the Hodge theorem for functions:

Theorem 1.29 (Hodge Theorem for Functions) Let (M, g) be a compact
connected oriented Riemannian manifold. There exists an orthonormal basis of
L?(M, g) consisting of eigenfunctions of the Laplacian. All the eigenvalues are
positive, except that zero is an eigenvalue with multiplicity one. Each eigenvalue
has finite multiplicity, and the eigenvalues accumulate only at infinity.

Exercise 28: Let Z&Z denote the subgroup of the (additive) group R? generated
by (1,0) and (0,1).

(i) Show that each element of Z ® Z acts isometrically on R2; i.e. for
g € Z®Z, the translation map T, : R* — R? given by Ty(v) = v + g preserves
the standard inner product on (each tangent space to) R2. As in Ezercise 5, this
means that (Ty). : T,R? = T4y R? is an isometry. Conclude that the quotient
manifold T? = R?/(Z & Z) (the two-torus) has a well defined metric such that
the projection map from R? to R?/(Z & Z) is a local isometry.

(ii) Let 0,1 denote the usual angular coordinates on the torus T?. Compute
the Laplacian on T? in these coordinates. Compute the eigenvalues and the
eigenfunctions of the Laplacian.

Exercise 29: Compute the eigenfunctions and the eigenvalues for the Laplacian
on S? with the standard metric. Hint: This exercise is harder than Exercise 28.
You may want to read [4] or [24].
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Remark: The Hodge theorem is similar to the basic theorem of Sturm-Liouville
theory: the existence of an orthonormal basis of eigenfunctions for certain second
order differential operators on an interval with Dirichlet or Neumann boundary
conditions. In fact, the Hodge theorem as stated above is valid for manifolds
with boundary, provided one imposes Dirichlet or Neumann boundary condi-
tions. The proof is as before, once one checks that the results of §1.3.1 carry
over to functions on Q with these boundary conditions (which is straightfor-
ward) and that a heat kernel exists (which is rather delicate). Moreover, the
Hodge theorem is valid for a class of operators, the so-called elliptic operators,
which include the Laplacians we deal with. Elliptic operators on the interval
are precisely the operators treated in Sturm-Liouville theory, so Hodge theory
does extend these classical results.

1.3.3 The Hodge Theorem for Differential Forms

In this section we define the Laplacian on k-forms and prove the corresponding
version of the Hodge theorem.

In §1.2.3, we computed the adjoint §*+! for exterior differentiation d* on
k-forms, so it might seem reasonable to define the Laplacian on k-forms to
be §%t1dk. This doesn’t work, for various reasons. First of all, this definition
makes no sense if k¥ = n. Secondly, the kernel of §¥t1dF is infinite dimensional,
as it contains the image of d*~1, and so any heat operator associated to this
operator could not be compact on LZA*. All this shows that our first guess for
the Laplacian is not correct, but it does not tell us what the correct definition
should be.

We’ll now try to motivate our definition; the reader should not take this
attempt too seriously, as the real motivation comes from the discussion in §1.5.

Exercise 30: Let dim M = n. Show that xA = d*~16"x.

From this exercise, we see that d”~16™ is isospectral to A, since the star op-
erator takes eigenfunctions of one operator to eigenfunctions of the other. Thus
the conclusions of the Hodge theorem for functions are valid for the operator
d"16™ on n-forms. This indicates that d”~'6™ might as well be the Laplacian
on n-forms, and that a term similar to it should occur in the Laplacian on
k-forms.

Definition: The Laplacian on k-forms on a Riemannian manifold is given by

Ak = gHttak 4 g+t ot

To prove the Hodge theorem for these Laplacians, we need to rework the
analytic preliminaries of §1.3.1. Defining Sobolev spaces of k-forms is not diffi-
cult. Given a cover {U;, p;} of (M, g) with subordinate partition of unity {p;}
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as before, we define the Sobolev s-norm of a compactly supported k-form u to
be the s-norm of the function g(u,u)'/? on M:

lulls = Y lpig(u,u)'/? o pill3)' /2.

2

The completion of C2°A*T* M with respect to this norm is denoted HsA* M.

Exercise 31: Show that if M is compact, then H,A*M is independent of the
choices of cover of M, partition of unity, and Riemannian metric on M. What
happens if M is noncompact?

The argument that the embedding theorem and the compactness theorem
hold for Sobolev spaces of forms on compact manifolds is exactly the same as
for functions; see Exercise 24. Similarly, the work in Chapter 3 showing the
existence of a heat kernel can be generalized to produce a heat kernel and heat
operator for the Laplacian on forms; this is discussed in §3.2.

Here we should state precisely what we mean by a heat kernel for forms. A
so-called double form e(t,z,y) € RT x A*T¥M @ A*T; M which is smooth in
t,x,y is called the heat kernel for the Laplacian on k-forms if

(1) (0 + AY)e(t, ,y) =0,

(2) lim [ (e(t,z,y),w(y))ydy = w(z), for all smooth k-forms w.
t50 J 1y

Note that the smoothness of e(t,z,y) is equivalent to saying that e(¢,z,y) is a
smooth section of R x (A*T*M ® A¥T*M) as a bundle over M x M, where we
consider R as the trivial bundle over M x M. In (2), the pointwise inner product
and integration are in the y variable, leaving a form evaluated at z; equivalently,
the integral may be written [, e(t,2,y) A *yw(y), where x, indicates that we
take the Hodge star and integrate with respect to y. To be concrete, let I =
(i1,...,ix) be a multi-index and let dz! = dz** A.. . Adz™ . If we write e(t, z,y) =
frs(t,z,y)de’ ® dy’ in a coordinate patch U, then for all w = wrdz! with
support in U, we have

[ ettty = ( [ttt )iy’ o)) dvol(y))dx’,
M M

which is indeed in A*T* M. Given these analytic facts, the proof of the Hodge
theorem for functions carries directly over for the Laplacian on forms. The one
crucial difference is that the kernel of A* need not be one dimensional. For
completeness, we summarize this discussion:

Theorem 1.30 (Hodge Theorem for Forms) Let (M, g) be a compact con-
nected oriented Riemannian manifold. There exists an orthonormal basis of
L?A*(M, g) consisting of eigenforms of the Laplacian on k-forms A*. All the
eigenvalues are nonnegative. Each eigenvalue has finite multiplicity, and the
eigenvalues accumulate only at infinity.
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In the next sections, we will discuss the topological significance of the kernel
of Ak,

Exercise 32: Compute a basis of L?A'(T?) consisting of eigenforms for Al
with respect to the standard metric of Exercise 21. Compute the corresponding
eigenvalues.

It should seem that we are not working very hard in the last exercise, and
the reader may wish to see eigenfunctions and eigenforms for the Laplacian for
more interesting Riemannian manifolds. However, if one tries to compute the
eigenfunctions for the Laplacian on T2 with the metric induced from the stan-
dard embedding of 72 in R3, one soon confronts a nasty looking linear PDE
whose solutions are not obvious. Trying to compute the eigenforms/eigenvalues
for the Laplacian on one-forms on this manifold is even harder, as one encoun-
ters a system of linear PDEs. Thus it is usually impossible to compute the
eigenforms/eigenvalues explicitly except for very special Riemannian manifolds,
and the study of the spectrum of the Laplacians concentrates instead on de-
termining what information can be read off from the spectrum without explicit
knowledge of the spectrum. As we will see, it is remarkable how much geometric
and topological information can be decoded from the spectrum.

1.3.4 Regularity Results

So far we have derived the L? theory for the Laplacians on forms. Although
this is the easiest theory from the analytic point of view, from the point of view
of differential topology we want to know as much as possible about the C'*®
theory. This requires some adjustments. First of all, although we have been
vague about the domain of the Laplacian on forms on a compact manifold, it
is certainly plausible (and in fact true) that its domain contains all C2 forms.
The heat equation methods used in the proof of the Hodge theorem allow us to
show that the eigenforms of the Laplacian A = A* on k-forms are smooth, for
all k.

Theorem 1.31 Let w € C2A*T*M satisfy Aw = Mw. Then w € CPA*T*M .

Remark: It should not be too surprising that this regularity result also holds for
noncompact manifolds, since the degree of differentiability of a function is a local
property. We omit the proof here to avoid some technicalities. In particular,
this regularity theorem generalizes a classical theorem of Weyl which states that
harmonic functions on Euclidean space are smooth.

PRroOF. If Aw = Aw, then
tA A

e Tw=¢e Tw.
Since we will show that the heat operator on forms has a smooth kernel, the
argument at the beginning of §1.3.2 shows that e *w is smooth. The last
equation implies that w is itself smooth.
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Using this regularity theorem, we can pass from the decomposition of the
space of L? k-forms to a more useful decomposition of the space of smooth
forms. First of all, if w is in the kernel of A = A¥, then

0 = {Aw,w) = (ddw,w) + (ddw, w) = (dw, w) + {dw, dw),

and so dw = dw = 0. Conversely, it is immediate that dw = dw = 0 implies
Aw = 0.

Now consider d : C®A*1T*M — C®A*T*M and § : C*A*IT*M —
C>®A*T*M as operators on smooth forms. We have

C®A*T*M > Ker A @ Tm d ® Im 4, (1.32)

where @ indicates orthogonality with respect to the Hodge inner product. For
example, if w € Ker A, we have (w,da) = (0w, a) = 0; the other orthogonality
relations follow similarly. Our goal in the rest of this section is to show that the
two sides of (1.32) are in fact equal.

The form of (1.32) suggests that we work with the operator D = d + 4,
thought of as an operator on C'*°A*, the space of smooth forms of mixed degree.
The operator D has the advantage of being a first order differential operator
and is a “square root” of the Laplacian on C*®A*: D? = A. More importantly,
our analysis of D will lead to the Chern-Gauss-Bonnet theorem in Chapter 4.

Note that since Imd | Im § and Ker A = Ker dNKer 4, it suffices to show
that

C*®A* =Ker D@ Im D. (1.33)

We now just write Hy, L2, C>™ for HyA*, L?A*, C>®°A*, the spaces of forms of
mixed degree with the Sobolev norm, L? norm and smoothness criterion, re-
spectively.

The first step is Garding’s inequality, also called the basic elliptic estimate:

Theorem 1.34 For each s € ZT U {0}, there exists a positive constant C = Cj
such that
wlls < C(llwlls—1 + | Dwlls-1),

for all w € H,.

D is a bounded operator from a dense subset of H,; to Hy_1, and so extends to a
bounded operator on all of Hy;. Thus the right hand side of Garding’s inequality
makes sense. Notice that the reverse inequality, with a different C, is immediate
from the definition of H,.Thus the two sides of the inequality define equivalent
norms for H,.

A clever proof of Theorem 1.34 is given in Theorem 2.46. Standard proofs
for general elliptic operators are in [24], [30]. For w a function, the crucial
property of D in the standard proof is that the coefficients (¢*) which occur
in the second order term of the Laplacian D? form a positive definite matrix.
Since the top order term of the Laplacian on forms is the top order term of the
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Laplacian on functions times an identity matrix (see Exercise 33), the argument
for functions extends to the case of forms.

Exercise 33: Let w = ajdz! be a k-form on a Riemannian manifold M. Show
that AFw = (A%ar)dz! + (lower order terms). Hint: Write w = bi', where
{0%(z)} is an orthonormal basis of T} M in a neighborhood of a fized point xy.
It suffices to prove the exercise in the 6 “coordinates.” If {X;} is the basis of
T, M dual to {6}, note that for any function f we have df = X;(f)60° and the
second order term in Af is — 3 . Xi(Xi(f)). Now compute the second order
term of AkFw by differentiating by as much as possible. Warning: this is a
long computation, so proceed only if you want o deeper appreciation of Theorem
2.46.

In fact, as the next series of Exercises show, one can derive the Hodge
theorem from the Sobolev embedding theorem, the compactness theorem, and
Garding’s inequality, without any use of the heat equation. This is the usual
elliptic proof of the Hodge theorem.

Exercise 34: (i) Show that D is injective as a map D : H} = H;N(Ker D)+ —
H,_,, where L indicates orthogonal complement with respect to the Hodge metric
on L? forms. Thus we can define D~' : R(D) — H, for R(D) the range of D
on H}.

(ii) Show that D~! : L2 N (Ker D)+ — H; < L? is bounded. Hint: Since
the spectrum of D1 consists of the reciprocals of the nonzero spectrum of D,
it suffices to show that the spectrum of D restricted to (Ker D)L is bounded
away from zero. If there exist w; with ||w;llo = 1 and ||Dwi|lo — 0, show that
dw; — 0,0w; = 0 in L2. This implies that w; forms a bounded sequence in H;
by Gdrding, and so there evists w with w; — w in L?. Thus w € (Ker D)*. But
(Dw;,0) = {w;, DAY — 0 for all § € L? implies that w € (Im D)' = Ker D.
Thus w € (Ker D) N (Ker D)+ = {0}, which contradicts ||w|lo = 1.

(iii) Use Gdrding’s inequality and induction to show that D! : R(D)(C
H, 1) — H} is bounded for all s.

(iv) In particular, by the compactness theorem, D~' : L2 N (Ker D)+ — L2
is a compact operator. Now apply the spectral theorem for self-adjoint operators
to D! to give another proof of the Hodge theorem.

We can also use Garding’s inequality to extend our regularity results.

Corollary 1.35 If Da = (8 for k-forms o, and if a,8 € Hg, then in fact
a € Hyyy. In particular, if 3 € C*® and o € C*, then a € C™.

PROOF. This follows from ||a||s+1 < C(||lls + ||8]ls)-

We will now restate this last result. Recall that the closure D of D is defined
by taking the closure of the graph of D in L?: i.e. Da = 3 if there exist a; € L?
with a; = o in L? and Da; — 3 in L?. Note that since D is unbounded, we
cannot write Da = .
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Corollary 1.36 If Da = 3 with 3 € C*, then a € C* and Da = 3.

Proor. Take a; = a with Da; — 3. By the definition of the domain of D
(which we have not made precise but which certainly contains the space of C!
forms), we may assume that a;,a € Hi-. D™! is bounded on L? by the last
exercise, so a; — D718, and hence a« = D713 in L2. But D~!3 € H; by the
last exercise, and so a € Hy. Now D is defined on all of Hy, and so Da = Da..
The last corollary now implies that o € C'*°.

We now wish to determine R(D) C L2. You should check that R(D) L
Ker D. We claim that in fact R(D) = (Ker D). Since D! is bounded on
(Ker A)* by the last exercise, it is easy to show that R(D) is closed. If R(D) is
not all of (Ker D)+, then there exists 0 # a € (Ker D)+ with a L R(D) (check
this!). In other words, («, D) = 0 for all § € C*°. We can find «; € C* with
a; = a in L2. Then (Da;,0) — 0in L2 for all # € C* implies that Da; — 0 in
L?. By definition this means Da = 0, so by the last corollary Da = 0, which is
a contradiction.

Thus we have shown that

L*A* = Ker D @ R(D).

Now take w € C'°°, and let Pw denote its orthogonal projection into Ker D,
which consists of smooth forms by the last corollary. Then w — Pw is smooth
and in the range of D. By the last corollary, we can write w — Pw = DJ for
some 8 € C*. This proves (1.33), which we state as follows:

Theorem 1.37 (Hodge Decomposition Theorem)
C®A*T*M =Ker A* @ Im d* ' & Im 6+,

Finally, we show that the decomposition of L? into eigenspaces of D extends
to a decomposition of H,; this technical result will be used later.

Proposition 1.38 Let {w;} be an orthonormal basis of L? with Dw; = Aw;. If
w € Hy, for s € ZF, has w = Y, a;w; with equality in L?, then w = Y, a;w;
with equality in Hy.

PROOF. Since w € H,, we have w € Hy, and so Dw = ), bjw; in L?, where
b,’ = (Dw,wi) = (w,Dwi) = )\i(w,wi) = )\iai.

By Exercise 34(iii), D! : L2N(Ker D)+ — H; is bounded, and clearly D~ 1w; =
/\i_lwi for \; # 0. Thus w — Pw = D~'Dw = E: a;w; in Hy. Here Pw is the
L? projection of w into Ker D, and Z'. indicates that we sum over those 4
with A\; # 0. Since Pw is a finite sum Zi' a;w; over i with A; = 0, we get that
W=y, a;w;in H;.
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Assume by induction that for some fixed s > 1, w € H; and that we have
shown w =}, a;w; with equality in H,_;. Moreover, assume by induction that
the proposition is true for all w € Hy, k < s. For any N, Garding yields

N N N
o= Y sl < (o = 3ol + 1D~ S awls ). (139
i=1 i=1 i=1

Since we know Dw = Y. Aja;w; in L? and Dw € H,_4, by the induction hy-
pothesis we get the same equality in H;_;. Thus the right hand side of (1.39)
goes to zero as N — oo. Thus w = ), a;w; in Hj.

The results of this subsection can easily be extended to the Laplacian D? to
show that Aa = 3 has a solution iff 3 € (Ker A)* and that the solution always
has degree of smoothness two more than 3. These results should be viewed as
generalizations of classical results in potential theory regarding the solvability
of Laplace’s equation Aa = 3 for domains in Euclidean space (although a more
exact analogue would be solving Laplace’s equation on manifolds with bound-
ary). In turn, all our results can be generalized to a wider class of operators, the
elliptic operators, on compact manifolds via the calculus of pseudo-differential
operators. For this topic we recommend [30].

1.4 De Rham Cohomology

In this section we will see how to use differential forms to detect topological
properties of smooth manifolds. Our discussion of de Rham cohomology is
based on [32], [64, Vol. I]; a much more thorough treatment is in [11].

As a basic example, we consider the two-torus T? = S* x S'. We parametrize
points on the torus via the usual angular coordinates (6,v), 6,4 € [0,2m), of
the two circles. Note that strictly speaking these coordinates give a coordinate
chart only on a dense subset of T2.

Loosely speaking, among all oriented closed surfaces, the torus is charac-
terized by having one hole. In other words, among all such surfaces only the
torus has exactly two “really different” noncontractible loops, a : [0,27] — T2,
b : [0,2n] = T?, given by a(t) = (¢,0),b(t) = (0,t). Here “really different”
means that a and b cannot be deformed into each other, and that any other
loop on T? can be deformed into a loop which travels n times around a and
m times around b for some m,n € Z. Using the map (n,m) — na + mb, we
see that the group Z @& Z appears naturally as an algebraic description of the
one hole in the torus. The reader probably knows that this group is called the
fundamental group of the torus.

Exercise 35: Compute the fundamental group of the g-holed torus. Hint: the
group has 2g generators and one relation.

Now we want to construct differential forms which detect the difference be-
tween the loops a,b, but which are insensitive to smooth deformations of these



40 CHAPTER 1. THE LAPLACIAN ON A RIEMANNIAN MANIFOLD

loops. As candidates, we take the one-forms df, dip € A'T?2, which satisfy

/adG:/bdv,b:QW, /bda=/ad¢=o.

Moreover, if F: [0,1] x [0,1] — T2, F(0,t) = a(t), is a smooth deformation of
a to the loop a' : t — F(1,t), then by Stokes’ theorem

/do:/ do+/ d(de):/ do.
a a’ Im F a'

(Note that [, . is actually an integral over [0, 1] x [0,1] and so is well defined
even if the image of F is messy.) Thus dé, di satisfy the conditions we specified.

Exercise 36: Why is the following argument invalid? Since the image of the
loop a is a one-manifold without boundary, by Stokes’ theorem

/d0:/ 6=0.
a 8a=0

The key property of df used in the preceding computations was that df is
closed, i.e. d(df) = 0. However, for any f € C™(T?), df + df is also closed,

with
/a(do+df)=/acza+/aaf:/ade,

and similarly for the integral over b. Thus as far as integration over loops is
concerned, the forms df and df + df are indistinguishable; similar remarks hold
for di. Since the ezact one-forms {df : f € C°°(T?)} are included in the closed
one-forms, we can quotient out the ambiguity by setting the first de Rham
cohomology group of the torus to be

H3p(T?) = {w € AMT? : dw = 0}/{df : f € C*(T?)}.

Of course, Hip(T?) is naturally a real vector space and so a group only in a
trivial sense, but the terminology will become clearer soon.
The basic information contained in this vector space is its dimension.

Claim: dim Hl,(T?) = 2.

PROOF. Let w = adf + Bdy be a closed one-form. A direct calculation gives

Oa 0P
oy 08’
This equation pulls back to R? as in Exercise 28, where we now consider a, 3, 6,1
as periodic functions on R2. Then (1.40) is just the integrability condition, i.e.
the necessary and sufficient condition, to solve the equations
of _ ~ of _

%—0@ %—ﬁ

(1.40)
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for f € C*°(R?). This is equivalent to solving
df =w (1.41)

in R2. If (1.41) were valid on T2, we would have H},(T?) = 0. However, (1.41)
is valid on T? iff f defines a function on the quotient 72 = R?/(R @ R). In
other words, f must be periodic: f(z+2mn,y+27wm) = f(z,y) for all n,m € Z.

If o, B are constants not both zero, then f(z,y) = axz + By + C for some
constant C. Hence f does not descend to a function on T2. This shows that in
this case w # df on T2, and thus that the dimension of H.(T?) is at least two
— specifically, the equivalence classes [df], [dy)] are nonzero.

Now we want to study what happens when «, 8 have no constant part. To
make sense of this, we write the Fourier expansions of a, :

OL(G,@D): Z a"’meinaeim¢7 ﬂ(07¢): Z bn,meinaeim¢7

n,meZz n,meZ

and assume that apo = bo,o = 0. (This Fourier expansion is the solution to
Exercise 28(ii).)

Exercise 37: For the standard metric on T?, show that this assumption on a, 8
is equivalent to assuming that o, 3 are orthogonal to the constants in L*(T?).

Under this assumption, one directly calculates that

/aaz/baz/aﬂz/bﬂzo. (1.42)

Lifting back to R? and using the explicit solution

(20,0) (z0,%0)

a(z,0) dw<+-jf B(zo,y) dy,

(EQ,O)

ﬂmw@=ﬂ@®+/

(0,0)

we get

F(mo + 27,90 + 27m) — f(z0,Y0)
(zo+27n,0) (z0,y0)
= /( a(z,0) dz —/( B(zo,y) dy

Z0,0) Zo,O)

(zo+27n,y0+27m)
+ [ Blzo + 2mn,y) dy
(zo+27n,0)

(zo,y0+2m)
= m /( B(wo,y) dy

Z0,Y0)

($0+2ﬂ',0)
+n / a(z,0) dz,
(z‘o 70)

by the periodicity of a(z,y),8(z,y). Now (1.42) shows the right hand side of
the last equation vanishes, since the integrals in (1.42) are unchanged under
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deformation of a,b to vertical and horizontal circles, respectively. This shows
that f is periodic and hence df = w on T?. As a result, H}(T?) is precisely
two dimensional with basis [df], [d¢)].

Exercise 38: Modify this proof to compute H}p(S').

Thus the fact that the fundamental group of the torus is a free Z-module
with two generators is mirrored by our computation that the first de Rham
cohomology group is two dimensional. However, the reader should be aware that
there is a loss of information in passing from the fundamental group 71 (M) of a
manifold M to de Rham cohomology Hj (M), the quotient of the closed one-
forms on M by the exact one-forms. For example, the fundamental group of two
dimensional real projective space is Zs, whereas the first de Rham cohomology
group vanishes. In fact, if [ry (M), 71 (M)] denotes the commutator subgroup of
71 (M), it turns out that H' (M) = (my (M) /[r1 (M), 71(M)]) ® R. Any torsion
element in 7 /[m1, 1] becomes trivial after tensoring with R, so in passing from
m to H}p we lose the ability to detect both the non-abelian character of 7 and
the existence of elements of finite order in ;. On the other hand, it is much
easier to compute the de Rham cohomology of a manifold than to compute the
fundamental group and its higher dimensional analogues, the homotopy groups.

Just as for the loops a, b on T?, the space of closed k-forms modulo exact k-
forms detects deformation classes of k-dimensional submanifolds, and so should
contain topological information.

Definition: The k" de Rham cohomology group of a manifold M, H%p (M),
is given by:

HEp (M) = {w e AF 1 dw=0}/{df:0 € A"}

The dimension B* of HEL(M) is called the k" Betti number.

Since the spaces of closed and exact forms are both infinite dimensional, it
is a nontrivial fact that ¥ < oo for all k£ whenever M is compact; cf. §1.5.

For example, H),(M) = {f € A° : df = 0}, which means that f must be
constant on each connected component of M. Thus if M has ¢ components, we
have H),(M) = R? and 8° = ¢. In other words, the zeroth Betti number has a
topological significance, albeit not a very exciting one.

To explain the topological significance of the higher Betti numbers, we
will show that if M is smoothly homotopy equivalent to N, then HE, (M) =
H §R(N ). Recall that homotopy equivalence means that there exist maps

f:M—>N,g:N—>M, F:[0,1]]xM—> M, G:[0,1]]x N > N,
with

F(0,2) = (9/)(z), F(1,z) =z, G(0,y) = (f9)(¥), G(1,y) =y



1.4. DE RHAM COHOMOLOGY 43

Exercise 39: Show that R™ is homotopy equivalent to a point. Assuming
Theorem 1.44 below, conclude that

ny ~ R, k=0,

To show the homotopy equivalence property, we first consider a smooth map
f: M — N. This induces the pullback map f* : AYN — A¥M. The equation
fFdw = df*w yields
dv=0=df*w = f*dw =0,

and
0 =dvw— f*0 = f*dw = df*w.

Thus f* takes closed forms to closed forms and exact forms to exact forms.
Therefore f* induces a map, also called f*, on de Rham cohomology,

e HincR(N) - H(licR(M);
given by f*[w] = [f*w].

Exercise 40: (i) If g: N — P, then (gf)* = f*g* : HXo(P) —» Hkp(M).
(ii) For the identity map Id : M — M, Id* =1d : Hp(M) — H5o(M).

Let iy : M — [0,1] x M be the map i;(z) = (¢, ), for any ¢ € [0,1]. Define
I:A¥([0,1] x M) — AF~1 M as follows: any k-form w on [0, 1] x M has the local
coordinate expression

w = fiat2)de A AdT 4 gy g, (B x)dE AdTT A LA daE
= w;+dtAn,

where wi = fi,. i, (t,2)dz™ A...Adz™ and n = gj,. jo_, (t,x)dz? A. .. Adzi*—1
have no dt terms. (Check that wy and 7 are independent of choice of local
coordinates on M.) Set

1
Iw, = /0 irn(t,p)dt € A¥ T M.

Let dar, djp,11xm denote the exterior derivatives on M, [0, 1] x M, respectively.
Lemma 1.43 if —ig=dy oI + T odp xm on A¥([0,1] x M).

PROOF: Both sides of the equation are linear operators on A¥([0,1] x M), so it
suffices to check two cases.
1. w= fi, i, (t,2)dzt A ... Ada™ = fr(t,z)dz’. In this case
djo,1)x mw = (garbage) + %dt Adx!.
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Thus

L0
Todpyyxyw = (/ afl dt)dz"

= [f1(1,2) = f1(0,2))dz’,
as the reader should check, while dysfw = 0. Now check that ijw — ifw =
2. n=gs(t,z)dt Adz’. In this case, ifn = ijn = 0, as ijdt = ijdt = 0, and

095

Todpyyxmun = I(— 637 2 dt Adz® Adz?)
= gngt)da: Ada?,
dyolw = (/ txdt) 7

= ( g(t,x dt)da:a/\da:'].

Thus I odyw + djg1jxm 0 lw = 0.
This completes the proof.

Now assume that fy, fi : M — N are smoothly homotopic maps with the
homotopy given by F : [0,1] x M — N, F(0,z) = fo(z), F(1,z) = fi(z).
Equivalently, we have

Foig= fo, foir=fi1.

This implies

fi=fe = (Foir)" = (Foig)

P F* —itF*

dIF* — IdF* (from the lemma)
= dIF* - IF*d.

If [w] € H¥(N), then
fiw— fow=dIF*w — IF*dw = dI F*w,

and so
filw] = [fiw] = [fow] = fw]-

Thus smoothly homotopic maps of manifolds induce identical maps on de Rham
cohomology groups.

Theorem 1.44 If M and N are smoothly homotopy equivalent manifolds, then
Hjg(M) = Hip(N).



1.4. DE RHAM COHOMOLOGY 45

PrOOF. If M and N are smoothly homotopy equivalent via maps f : M — N
and g : N —» M, then fg is homotopic to the identity map on N. By Exercise
40, the induced maps on de Rham cohomology satisfy

9" f* = (fg)" = (Idn)* = Idn,

and similarly f*g* = Idy. Thus f* : H¥,(N) — H%,(M) is an isomorphism of
de Rham cohomology groups for all k.

Remark: The reader should be aware that there are smooth manifolds which
are homeomorphic but not diffeomorphic. The first example was constructed
in the 1950s by Milnor, who showed that S7 can be given a smooth structure
not diffeomorphic to the standard structure. Since then, many examples of
manifolds with so-called exotic structures have been given. For example, using
Donaldson’s gauge theory techniques, it can be shown that R* admits exotic
structures, and that there exist compact four-manifolds with infinitely many
distinct differentiable structures.

Our proof of the smooth homotopy invariance of the de Rham cohomology
groups leaves open the possibility that these groups may depend on the choice of
differentiable structure on a manifold. Fortunately, this is not the case: the de
Rham cohomology groups depend only on the underlying topological structure
of the manifold and are in fact (continuous) homotopy invariants. Thus these
groups are topological invariants, not just invariants of differential topology.

This topological invariance is shown by de Rham’s theorem, which states
that the de Rham cohomology groups H 5R(M ) are isomorphic to H fmg(M ;R),
the singular cohomology groups of M with real coefficients, which are topological
invariants from their definition. For the reader familiar with singular homology
and cohomology, the isomorphism of these two groups is given by the de Rham
map

sing

dR : HY, (M) — HY, (M;R), induced by w + (0 — / w),
for any k-form w and k-chain o.

Exercise 41: Show that the de Rham map is well defined, i.e. (i) dR is inde-
pendent of the choice of representative of [w], and (i) the image of dR lies in
the space of k-cocycles.

Note that singular cohomology is defined for any abelian group G, and that
the spaces H fmg (M;G) are abelian groups. This explains why the vector spaces
Hk_(M) are commonly referred to as groups.

We conclude with two exercises. The solution of the second, which shows
that the de Rham cohomology groups are computable for some standard spaces,
depends on the Mayer-Vietoris sequence for de Rham cohomology, which can
be found in [11].
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Exercise 42: Show that H"(M™) # 0 if M is an oriented compact manifold.

Exercise 43: (i) Compute the de Rham cohomology groups for S™. Hint: Cut
S™ into two overlapping pieces, each of which is diffeomorphic to the n-disk B™,
and such that the disks intersect in a cylindrical band homotopy equivalent to
the equator S™~'. Now use the Mayer-Vietoris sequence, induction on n, and
Exzercise 38.

(ii) Show that B*(T™) = (Z) Hint: Cut T™ into two overlapping pieces, each
of which is homotopy equivalent to T™ ', and such that the overlap is homotopy
equivalent to two copies of T 1.

(iii) Show that for a closed oriented g-holed surface ¥, 3°(X) =1, B1(%) =
29, B*(X) = 1. Hint: Cut X into two overlapping pieces, each of which is
diffeomorphic to S§+1a a sphere minus g+ 1 disks, and such that the overlap is
homotopy equivalent to g+ 1 distinct circles. Compute the de Rham cohomology
groups of 5§+1 by applying the Mayer-Vietoris sequence to S§+1, g+ 1 disks,
and their union S2. This uses the results of Ezercise 39 and (ii) above. Now

use another Mayer-Vietoris sequence to compute H5,(Z) from Hé“R(SgH).

1.5 The Kernel of the Laplacian on Forms

Elements of the kernel of A = AF  the Laplacian on k-forms on a compact
oriented Riemannian manifold, are called harmonic k-forms. Every harmonic
form is closed, which gives a linear map

h:Ker AF - HE,(M), we [w].
This leads to a second version of the Hodge theorem.

Theorem 1.45 (Hodge Theorem) Let M be a compact oriented manifold.
Then we have the isomorphism

h: Ker A*¥ 5 HEL(M).

This theorem gives an important relationship between the topology of the man-
ifold and analysis on the manifold, and has many applications, as we shall see
later. Here are two immediate consequences.

Corollary 1.46 (i) For any compact oriented manifold, dim H¥. (M) < oo for
all k.

(ii) The dimension of the kernel of A*¥ on a compact oriented manifold is
independent of the choice of Riemannian metric.

Exercise 44: Let T™ have the metric induced from the standard metric on
R"™ as in Exercise 28. Verify Theorem 1.45 for this metric. Note that it is
not feasible to verify the theorem for a general metric on the torus. Hint: Let
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(6, ...,6™) be angular coordinates on T™. By Exercise 32, or by mimicking the
calculations in §1.4, show that a basis of H5p(T™) is given by {[d9 A ... A
df™*]:iy < ... <ir}. Now use the fact that the projection map m:R™ — T™ is
an isometry to show that if ardd’ € Ker Ak.., then

0=Ak.((ar om)dz!) = (AX. (ay o 7))da!.

Conclude that ar € Ker A%n, and so ay is constant. Thus Ker A%.. has basis
{dG“ A ANdO™® 0 < ... <ik}.

We will give two proofs of Theorem 1.45. The first one depends on the
C® theory of §3.4. The second heat equation proof, which takes place almost
entirely in the L? framework, is longer, but has applications to the Hodge theory
of noncompact manifolds.

PROOF I OF THEOREM 1.44. The map h is trivially injective. For if [w] =0 €
Hk. (M), then w = df for some § € C°A*"'T*M. Then

0 = (6w, 8) = (6d6,0) = (db, db),

which implies w = df = 0. For surjectivity, pick [a] € Hk,(M) and a rep-
resentative a € [a]. By the Hodge decomposition theorem, we may write o =
w+dp + 685, with w harmonic and 3; smooth. Since da = 0, we have djf3; = 0,
and so 0 = (d0fs,B2) = (632,002). Thus 632 = 0, and so @ = w + dfB;. Thus
w € [a].

To start the heat equation proof, recall that we are assuming that the heat
operator e ** on k-forms has a smooth kernel e(t,z,y) € C®(R x A*T*M ®
A¥T*M) as a bundle over M x M. As in the case of functions, it is convenient
to just write

(e"2a)(x) = / e(t,2,y)a(y) dy.

M
Lemma 1.47 Ae~tA = ¢~tAA and de—t2" = e=t2*""q for all smooth forms.

Proor. We have

AetBu(r) = Az( / e(t,x,y)w<y)dy)= [ ettty

- / Brelt, ., y)w(y)dy,

and, by the symmetry of e(t,z,y) in z and vy,
e BAu(z) = / e(t,2,4) Ay (y)dy = / Aye(t,z,y)w(y)dy
/ Aty 2,9) (o) =)@ (®)dy = — / Bre(t, y, x)w(y)dy

- / Bre(t, , y)w(y)dy.
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The second half of the lemma is more difficult, as the following exercise
shows.

Exercise 45: (i) Why is the following argument that de=t*® = e~*Ad incorrect?

If AFw; = \jw;, then de=tA" b = de~Piw; = e~Pidw;. Since dAF = ARt we
have AFdw; = dA*w; = d\jw; = \idw;. Thus e 2" dw; = e Nidw;, which
shows that de *® = e *Ad on the basis {w;} of L2A*.

(i) Use Proposition 1.38 to correct the proof in (i).

We now consider the long time behavior of the heat flow. Let {w;} be an

orthonormal basis of L2A* with AFw; = \w;. For any w € L2A*, since e 2 is
bounded on L2A*, we have

lim e **w = lim e_tA(z a;iw;) = hm Za, w;

t—o0 t—o00

= lim Zaie_A"twi = Zaiwi,
t—o0
i=1

where {w1,...,wn} is an orthonormal basis of Ker A. Thus a form w flows to

its harmonic component Pw € Ker A, just as in the case of functions.

PrOOF II OF THEOREM 1.45. Take a class [w] € HE,(M). Then

ey —w = e w—Id /3t Ay

= / Ae Pwdt = / e A Awdt
0
t

t
= - / e~ ddwdt = — / de~ A §wdt
0 0

t
= d[/ e "R owdt),
0

since dw = 0. This shows that the heat flow takes closed forms to closed forms,
that the cohomology class of a closed form is unchanged under the heat flow, and
that each cohomology class contains at least one harmonic form representative,
namely [lim; o e *Aw).

To finish the proof, we need only show that there is at most one harmonic
form in each cohomology class. This proceeds as before. If 71,792 are harmonic
forms with my = 12 + d6, then 0 = dny = dn2 + §d6 = 8df. Thus 0 = (0, 5d8) =
(df,df), and so df = 0. This forces g, = n,.

Remark: By spectral theory for unbounded operators, it follows from dA = Ad
that de*® = e~*Ad, which avoids using Proposition 1.38. Thus there is a heat
equation proof of Theorem 1.45 that uses C'*° regularity theory only to show
that harmonic forms are smooth (as this ensures that the map h is well defined).

Here are some easy applications of our latest version of the Hodge theorem.
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Corollary 1.48 Let M be an n-dimensional compact, connected, oriented man-
ifold. Then Higp(M) = HY,*(M). In particular, dim H7p(M) = 1.

PROOF. Since *A*¥ = A" % the map w — *w is an isomorphism of Ker A*
and Ker An—k,

Exercise 46: Let g1,9> be two Riemannian metrics on a compact, connected,
oriented manifold M with vol(M, g1) = vol(M, g2). Show that there exists an
(n — 1)-form 0 such that dvol(g1) = db + dvol(g2). Hint: Show that the map
J : H}p(M) = R given by [w] — [,, w is well defined and an isomorphism.

The Euler characteristic of a compact manifold M is defined to be

X(M) = (=1)i8" =Y (—1)'dim Ker A.

i i

By the de Rham isomorphism, x (M) = }_,(-1)*dim HZ,  (M;R). The reader
may be familiar with the definition of the Euler characteristic given in terms of a
triangulation of M: if there are by, k-simplices in the triangulation, then x (M) =
>~;(=1)%b;. In algebraic topology courses, it is shown that the singular theory
and the simplicial theory produce the same cohomology groups, so x(M) =
Yi(=1)"dim HZ, (M;R). An easy argument then gives
> (-1)'dim Hj,,,(M;R) =Y (-1)'b;.

i i

This shows that all the definitions of yx(M) agree. There are several other
equivalent definitions of the Euler characteristic of a smooth manifold [32], as
the Euler characteristic is in many respects the simplest topological invariant of
a smooth manifold.

We now give an analytic proof of the following topological result.

Theorem 1.49 Let M be an odd dimensional compact manifold. Then x(M) =
0.

PRrOOF. If M is oriented, introduce a Riemannian metric on M and apply the
last corollary. If M is nonorientable, it has a connected orientable double cover
M'. Triangulate M and lift the triangulation to the double cover. The number
of k-simplices doubles for each k, which shows that x (M) = x(M')/2 = 0.

In this last proof, we have shown that if 7 : M’ — M is a finite covering
map with £ sheets, then x(M') = £x(M). The Betti numbers do not have this
multiplicativity in general, as one can see by considering H1(S'). Nevertheless,
we can still get some information from Hodge theory.

Theorem 1.50 Let M' be a finite cover of a compact oriented manifold M.
Then §*(M") > f*(M).
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PRrROOF. Let m : M' — M be the projection map. Pick a metric g on M
and pull it back to 7*g on M'. (By definition, 7*¢g(X,Y) = g(m. X, m.Y).)
Informally speaking, the manifold M and its cover M’ are locally topologically
indistinguishable, and with the pullback metric they are locally geometrically
indistinguishable. In particular, the Laplacian looks the same on the manifold
and its cover: Appm*w = 7* Ay w for all forms w on M. Thus the map w — 7*w

takes Ker Ao Kemdthe map is easily seen to be injective.

It is instructive to prove this last result directly using de Rham cohomology.
We have m,: Hyr(M) — Hgr(M') given by [w] — [7*w]. To determine whether
this map is injective, we must show that if 7*w = df’ on M’, then there exists a
form 8 on M with w = df. Note that §' does not define a form on M in general,
since it need not be invariant under the deck transformations of the covering
map (cf. the computation of H},(T?)). However, we can produce a form m,a
on M from any form a on M' by averaging over the fiber 7—1(z):

Tt (Xp,. 0, Xp) = Y oa(n, X, X).

Fen—1(z)

It is obvious that d commutes with averaging, and that m.7m*w = w. Thus
m*w = df’ implies w = dm.6'. Hopefully, this second proof will convince the
reader that Hodge theoretic proofs can be easier than de Rham cohomology
arguments.

Exercise 47: Prove that

k

BE(M x N) =" BH(M)B¥(N).

=0

Conclude that x(M x N) = x(M)x(N). Show that *(T™) = (}) (cf. Ezercise
43(ii)). Hint: Pick Riemannian metrics g,h on M, N, respectively, and form
the product metric g @ h on M x N: i.e. write X € T, ny(M x N) =T, M @
TN as X = Xy + XN, and similarly for another vector Y, and set (g ®
h)(X, Y) = g(XM,YM) + h(XN,YN). Show that dvolyrxny = dvolys A dvoly,
and that L>(M x N) = L*(M)®L?*(N), where the completed tensor product
symbol &® indicates that a Hilbert space basis of L*(M x N) is given by {fig;}
where {fi},{g;} are bases of L*>(M),L*(N), respectively. Generalize this to
show that

k
L’A*(M x N) = @ L*A(M)SL*AF(N). (1.51)

Show that with respect to the decomposition (1.51), the Laplacian A* on M x N
for the product metric takes the form

AP =3 (AL @Td+1d @ AR,

i
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Conclude that a basis of the harmonic k-forms on M x N with respect to the
product metric is given by {a;'- ® ﬁf*’ :4=0,...,k}, where {a;'-} is a basis of
Ker A%, and {8} is a basis of Ker Akt

Exercise 48: Let S x S* be the join of S® and S* given by connecting every
point in S® to every point in S* by a unit segment. In other words, S® x S*
equals S x [0,1] x S* modulo the relations

(xlaoayl) ~ (371;0;3/2); (wlalayl) ~ ($2alay1)7

for all z1,25 € S3,y1,y2 € S%. Compute the de Rham cohomology groups of
S3 x S*. Do the same for S® x T*. Hint: Use a Mayer-Vietoris sequence on
the pieces S® x [0,2/3) x S* and S® x (1/3,1] x S*. You’'ll need the results of
Ezercise 47.



Chapter 2

Elements of Differential
Geometry

In the first chapter we discussed heat flow on a compact manifold and the
topological significance of the long time behavior of the heat flow. In contrast,
the short time behavior of the heat flow might appear trivial, as we know the
heat operator goes to the identity operator as ¢t | 0. However, we shall see in
Chapter 3 that the way in which the heat kernel approaches the delta function
(the kernel of the identity operator) is determined by the local Riemannian
geometry of the manifold.

This chapter covers those parts of Riemannian geometry used to construct
the heat kernel and its short time asymptotics in Chapter 3. We also prove
Garding’s inequality from Chapter 1, and develop some of the supersymmet-
ric techniques used to prove the Chern-Gauss-Bonnet theorem in Chapter 4.
The key concepts discussed are the various types of curvature in Riemannian
geometry (§2.1), the Levi-Civita connection associated to a Riemannian metric
(§2.2.1), the Weitzenbock formula and Garding’s inequality (§2.2.2), geodesics
and Riemannian normal coordinates (§2.3). There is a technical section on
the Laplacian in normal coordinates (§2.4). Other references for this material
include [4], [27], [64, Vols. T, II].

2.1 Curvature

There is no better place to begin a discussion of curvature than with Gauss’
solution to the question: when is a piece of a surface in R? (such as the earth’s
surface) flat? By flat, we mean that there should exist a distortion free — i.e.
isometric — map from the piece of the surface to a region in the standard plane.
Thus a region is flat if it possesses an accurate map in the ordinary sense. Our
intuition is that this should be possible iff the region is not curved in some sense.
Gauss’ work gives a precise meaning to this notion of curvature, and proves that
it is the obstruction to solving the mapping problem.

52
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Locally, the given surface M is oriented and hence has an outward point-
ing unit vector n, at each point z € M. Consider the Gauss map v : M —
S2, v(z) = ng. As test cases, consider the family of spheres S%(r) of radius r.
Notice that for € < r, the image v(A) of the set A of points on S%(r) of distance
at most € from the north pole has area proportional to 7—2. Moreover, for M the
standard plane, the area of the image of v(A) is zero, where we replace the north
pole by any point in the plane. Thus the more curved the surface, the greater
the area of v(A). It is important to note that if M is a standard cylinder, then
v(A) still has area zero. This may seem to give the counterintuitive impression
that the cylinder is as flat as the plane, but it is in agreement with the fact that
there exists an accurate map of the cylinder to the plane given by unrolling the
cylinder; alternatively, the fact that the area is zero for the cylinder agrees with
our habit of storing maps by rolling them into cylinders.

For our test cases, there is no need to specify the radius € of A, as it is easy
to check that the ratio area(v(A))/area(A) is constant. However, for arbitrary
bumpy surfaces this ratio will certainly depend on the choice of A, and a sphere
which is very bumpy very close to the north pole and very flat elsewhere will
have ratios very close to that of the flat plane unless A is very small. Thus we
would like to define the curvature at the point z to be some sort of limit

« 1. area(v(A))
A=z area(A)

”

To give a precise definition, we recall that the areas above are defined as limits
of Riemann sums of areas of little boxes in tangent spaces to M and S2, and
that det dv, equals
area(dv, (B))
area(B) '

for B a small box in T, A. (Here it is necessary to note that T, M and T, (5,)S 2 are
parallel, as both are perpendicular to n,,. Thus we can canonically identify these
two tangent spaces, and so the map dv, : T,M — T,,(w)S2 has a well defined
determinant.) In summary, following Gauss we define the Gaussian curvature
as follows:

Definition: The Gaussian curvature K, of a surface M in R® at a point z is
given by det dv,.

Exercise 1: Compute the curvature of the standard two-sphere of radius r.

Note that at the saddle point of a hyperboloid, the determinant of the Gauss
map is negative, reflecting the fact that the Gauss map is orientation reversing.

Exercise 2: Consider the torus with its standard embedding in R>. Draw the
regions on the torus consisting of points of positive curvature. Do the same for
the points of negative and zero curvature.
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At this point it is reasonable to conjecture that a surface has a distortion
free map ¢ from a neighborhood V' of a point z to a region U C R? iff K, =0
for all y in a neighborhood of x. Let {z!,2?} be coordinates on V, with the
metric g expressed as g;;dz’ ® dz?, and let {y', y*} be the standard coordinates
on U. Via the map ¢, we can as usual treat {y'} as coordinates on V. Then
the condition that ¢ be distortion free is that the inner product in V is the
same as the standard Euclidean inner product when measured with respect to
y coordinates, or in other words

gijds' ® dz? = dy' ® dy* + dy* ® dy>. (2.1)

Thus we want to find the functions y* = yi(z!,2?),i = 1,2, satisfying (2.1). If
we write dy® = (0y’/0z7)dx?, we see that (2.1) is a system of three nonlinear
first order partial differential equations for the unknown functions y*. Moreover,
we expect the system to have a solution iff the Gaussian curvature vanishes on
V. As we will now explain, in the language of PDEs this means that we expect
the Gaussian curvature to be the integrability condition for this system.

As a simple example of an integrability condition, consider the following
problem in classical vector calculus:

Example: Given a vector field X = a(z,y)0; +b(z,y)d, on R?, find a function
fwithVf=X.

Of course, we must solve
of _, of _
or Oy

This is not always possible, since we must have

b.

oo _ 5 _ o
0y Oxz0y Ox’

(2.2)

It is a basic result that (2.2) is a necessary and sufficient condition for solving
Vf = X, and that the solution is given by a standard integration technique.

Thus the equation
oa _ 0
oy Oz
is called the integrability condition of the equation Vf = X. (We have already
seen this condition in §1.4.)

In this simple example, the integrability condition was fairly obvious to
discover. Note, however, that writing any mixed partial derivative of f in terms
of a and b gives another condition that X must satisfy. The only real work in
solving V f = X is in determining which mixed partial condition is sufficient for
solving the equation.

For a general system of PDEs, even the first step of finding any restrictions on
the given data may be difficult, as the equations that result from setting mixed
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partials equal may still contain unknown functions and not just the given data;
the reader is urged to try this for the system (2.1). Thus finding integrability
conditions is not just a mechanical process.

In any case, our conjecture for the solution of the mapping problem should
be reinterpreted as the conjecture that the vanishing of the Gaussian curvature
is the integrability condition for (2.1). In fact, Gauss found the integrability
condition for the system (2.1): we must have

ory, oy,
ozt Ox?

+ F;2Fil - F§1F§2 =0 (2.3)
in a neighborhood of z, where the Christoffel symbols I‘;'- & are defined by

i _ 1 u(O9m  Ogjt _ Ogjk
oxJ )

ik =39 oz* ox!

Recall from Exercise 14, Chapter 1, that (g*') = (g;;)*.

Although Gauss has given us the analytic solution to the mapping problem,
it is not obvious how it is related to our geometric intuition that the solution
be determined by the Gaussian curvature. In fact, at first glance it seems
implausible that the two approaches should be equivalent, since the Gaussian
curvature is defined in terms of the surface’s placement in R?, while the analytic
solution (2.3) is defined strictly in terms of the geometry of the surface. In other
words, if f : M — N is a map of surfaces in R? which is an isometry with respect
to the induced metrics, then (2.3) holds for M iff it holds for N. It is not clear
at all that this property is true for the Gaussian curvature, since f need not be
the restriction of an isometry of all of R®. (For example, f might be the map
from the plane to the cylinder which rolls up the plane.) Nevertheless, Gauss
proved his intuition correct by showing that the Gaussian curvature is indeed
given by the left hand side of (2.3) divided by |dz! A dz?|?, the square of the
area of the parallelogram in 77* M spanned by dz',dz?. Thus the curvature can
be defined directly off the metric tensor of the surface. This is Gauss’ famous
Theorema Egregium, dating from around 1830, which we state in the following
form:

Theorem 2.4 A surface in R? admits a distortion free map from a neighbor-
hood of a point to a region in the flat plane iff the left hand side of (2.3) vanishes
in a neighborhood of the point. Moreover, the left hand side of (2.3) divided by
|dzt A dz?|? equals the Gaussian curvature of the surface.

In particular, there are no distortion free maps of regions on the standard sphere
to the plane.

We will prove a more general form of the first part of the theorem in Theorem
2.10. Moreover, since the left hand side of (2.3) is defined for any Riemannian
two-manifold, not necessarily embedded in R?, we can define the Gaussian cur-
vature K of an arbitrary Riemannian surface to be this left hand side divided by
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|dz' Adz?|?. Since this quantity equals det(g) computed in (z',z?) coordinates

(as the reader should check), we have by definition

1 or} or}

While the Gaussian curvature is the solution to a local problem, it has strong
influence on the global topology of a surface. Recall that the Euler characteristic
of the g-holed torus is 2 — 2¢, as can be computed from a triangulation of the
surface.

Theorem 2.6 (Gauss-Bonnet Theorem) If M is a closed surface in R3,
then

1
X(M) = o /M KdA.

Here dA is the classical notation for the volume element on M in the induced
metric. It should seem remarkable that the integral is independent of any de-
formation of the surface in R®. The Gauss-Bonnet theorem remains true for
arbitrary Riemannian surfaces, with the Gaussian curvature defined by (2.5).
As we will see, the Gauss-Bonnet theorem (ca. 1850) is historically the first
instance of the Atiyah-Singer index theorem.

The Gauss-Bonnet theorem shows that the global topology of a surface re-
stricts the type of Riemannian metrics the surface admits:

Corollary 2.7 (i) S? has no metric with K <0 everywhere.

(ii) T? has no metric with K > 0 or K < 0 everywhere.

(11i) An oriented closed surface of genus g > 1 has no metric with K > 0
everywhere.

The Gauss-Bonnet theorem gives the only topological obstruction to the
curvature function on a closed surface. That is, by Exercise 1 the sphere admits
a metric with K > 0. Furthermore:

Exercise 3: (i) T? admits a metric with K = 0. Hint: use Exercise 28, Chapter
1.

(i) Consider the upper half plane H = {(z,y) : y > 0} with the metric
tensor y~2(dr ® dx + dy ® dy). Show that the curvature of H is identically —1.

It is a nontrivial fact that there exist subgroups I'y of the group of isometries
of ‘H such that the quotient manifold # /T, is a closed surface with g holes, for
any g > 1. As in Exercise 28, Chapter 1, this implies that these surfaces have
a metric of constant negative curvature. It is interesting to note that (more or
less) explicit expressions for the harmonic one-forms for these constant curvature
metrics were not known until fairly recently [40].
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Around 1860, Riemann gave an inaugural lecture for an unpaid lectureship,
in which he demonstrated a clear understanding of manifolds with Rieman-
nian metric (without giving a precise definition of either by modern standards).
Within a few years, he had posed and solved the basic question of when a piece
of a Riemannian manifold admits a distortion free map to R™ with the stan-
dard metric. In other words, Riemann found the integrability condition for the
system

gijd(l]'i Qde! = 5,~jdyi ®dy’, (2.8)

the natural generalization of (2.1). To set the notation, we define the Riemann
curvature tensor of type (1,3) to be

R = Ri},0, ® do’ @ da* @ da' € T,

where ] ]
i 6F;k 6F;l s i s i

T Bl Oak + 150 — T, (2.9)
and the Fj- i are defined as before. It is not obvious that R; ; are the components
of a tensor, although a long calculation verifies that the Rj’kl do transform
correctly; see Exercise 4 below. The notation R € 7> means that R is a smooth
section of TM ® T*M @ T*M ® T*M. (Warning: while (2.9) agrees with the
definition in [27], other texts such as [64] define the curvature tensor to be the
negative of our definition.)

Theorem 2.10 (Riemann) The system (2.8) has a solution in the neighbor-
hood of a point iff R = 0 in a (possibly different) neighborhood of the point.

A metric with R = 0 is called flat.

The proof is a beautiful example of 19" century PDE techniques. We will
show that a solution exists only if the curvature tensor vanishes; a complete
proof is in [64, Vol. II]. Throughout the messy calculation, keep in mind that
we are trying to eliminate the unknown functions y’ to obtain an integrability
condition. The only techniques available for the proof are differentiation of the
system (2.8) and algebraic manipulations.

PROOF. Given coordinates (z!,...,2™) with the associated matrix (g;;) of inner

products, we assume that there are functions y' = y'(z',...,2"),...,y" =

y™(z!,...,2") such that (y!,...,y") are also local coordinates on the manifold

which solve (2.8). Plugging dy’ = (9y*/0z*)dz*, dy’ = (8y? /0z*)dz* into (2.8),

we see that solving (2.8) is equivalent to finding functions y!,...,y™ such that
9y oy

(Here and below we abuse the Einstein summation convention by summing over
oy*

D ) be the Jacobian matrix for the y maps,
x

repeated superscripts.) Let A = (
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and let G = (g;;) be the matrix of the metric with inverse matrix entries denoted
G~! = (g¥). Then (2.11) is equivalent to G = ATA, or AG'AT =1d. (47!
exists because the map taking a point’s z coordinates to its y coordinates is a
diffeomorphism of R™.)

Letting 0¥ denote the Kronecker delta symbol, we see that the equation
AG'AT =1d and hence (2.11) are equivalent to
oy”

Oyt ..
61;1’ g5 = oL (2.12)

Differentiating (2.11) gives

691‘]‘ _ 8ya 62ya aya 62ya

dzk — Oxi dridxk + Bzt Oxidxk

There are similar expressions for 8g;, /0x7,0g;,/0z'. Adding these three equa-
tions with appropriate signs gives

1<59z'j 09gik 6gjk>_ O*y> Oy
5 + 2o

oxk ' Oxi Ozt ) Oxidzk Ozt

Now it is time for an algebraic trick. Fix a new index A. The last equation
gives

1 5 0y* (0gi;  Ogi _Ogje _ i, 0y 0%y~ 0y*
29 9z \ 9zt T i Ozt - Oz 0zidz* Ozt
azya o

Here we have used (2.12) with the index of summation j replaced by ~y. Notice

) A
that the left hand side of (2.13) is just F}ka—g;. Thus (2.13) becomes

62y>\ o 8y>‘

92302k ~ Litggr (2.14)

This equation is actually a large improvement over the original system (2.8),
as we have decoupled this nonlinear system into a linear system of equations,
each of which involves only one y*. In fact, the new system involves only first
and second partials of y*, so we can do a standard reduction of order. For fixed
A, define a vector of functions

A A
z:(zl,...,z")=<ai %)

Oxl’ " Oz
Then (2.14) is just
J
e =T (2.15)
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Since we are assuming that a solution to (2.15) exists, the mixed partials of
the z functions must be equal:

0227 0227

0ztozk — dxkozt’
Looking at (2.15), we see we must have

0 0

Rl i
for all j,k, ¢ € {1,...,n}. Equivalently, if we set fg(x,z) = f,g(x,z(m)) =
I (2)27(z), we must have

ofp _ of
ozt Ozt
By the chain rule, this becomes
Ofi | 0fi0z" _0fj _0fj 0"

Oxt ' 92k Ozt Ozt Ozr Ozt T

or
0 0 0
6 Z(F )+6—(ij2 )F’YZZ’Y—W(F’Y ’Y)—

Since 9zP [0z = 65, we get

g(l—‘]zz )Fukz’y = 0.

8 d
5ot (L3077 + T4, = 2 ([7)2" = T4z =0.

ozk

Now z = (2%,...,27,...,2"™) in (2.15) has an arbitrary initial value, also
denoted by z, at some chosen initial point x, and the last equation expresses
that z is orthogonal to the vector with components

0

d
502 e + T3kl = 55 T — DT,

ook Lt T (2.16)

This forces (2.16) to vanish. Since (2.16) is precisely R}, the curvature tensor
must vanish to solve the mapping problem.

Exercise 4: The condition R;’ké = 0 must be independent of the choice of local
coordinates, as it is the integrability condition for the mapping problem, whose
statement does not depend on a choice of coordinates. This indicates that the

R;'-M should be the components of a tensor. Show that R;'- we ore the components
of a tensor of type (1,3) (i.e. R;-kl@zi ®dr! @ de* @ da' is a tensor). Hint: Let

(yt,...,y™) be another set of coordinates, and write
gijd:ci Q@ da? = hyedy” @ dy®, (2.17)

where hys = (Oyr,0ys). Recall that g;; and h,s are related as in Ezercise 8,
Chapter 1. Now perform all the manipulations we did to obtain R;'-M from the
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various gi;, and do the same for the right hand side of (2.17). Then convert all
the x differentiations of the right hand side to y differentiations using the chain
rule 8, = (0y’/ axi)ayj. You should end up with the desired transformation law
expressing Ry, in the x coordinates in terms of the R}y, in the y coordinates.

To compare Riemann’s result with Gauss’ theorem requires some familiarity
with raising and lowering indices, the process of creating new tensors from a
given tensor via the Riemannian metric. We let 7,! denote the space of tensors
of type (k,l) —i.e. with k 0,:’s and [ dz’s.

Exercise 5: (i) If X = a'0,: € T is a vector field, show that w = g;ja’dz’ € Ty
is a one-form — i.e. show that g;;a’dz’ € Ty is independent of the choice of local
coordinates. We denote gz-jaj by a;, so w = a;dx’. Check that 0ay(X) = w in the
notation of §1.2.2. Similarly, if w = a;dz’ € T3, show that X = a'd,: € T?,
where a' = g¥a;.

() If A;'.k,aw,- ®dr! ®@dz* @dx! € T2 is any tensor, then gimA;’}dd:pi ®dr! ®
de* ® dz' is a tensor of type (0,4). We denote 9im Ay by Aijhr-

By iterating this process, we can clearly raise or lower an arbitrary number of
indices in a tensor, which is equivalent to repeated applications of the map «
(or a~1) of §1.2.2.
Applying the exercise to the Riemann curvature tensor, it is easy to check
that
Rijke = —Rjire, Rijre = —Rijer, Rijre = Ryuij- (2.18)

As a result, for surfaces the only nonzero component of R is R}, (and its
permutations given by the last equation), and from (2.5), (2.9) we have

—R3}; 5, = K|dz' A dz?)?. (2.19)
Thus Riemann’s theorem generalizes Gauss’ result for surfaces, as it must.

Exercise 6: Derive the Bianchi identity

Rijre + Rigjr + Rige; = 0. (2.20)

Riemann’s calculation can be generalized to show that two Riemannian man-
ifolds are locally isometric iff the curvature tensors agree in a certain technical
sense. Thus the Riemann curvature tensor completely determines the Rieman-
nian geometry locally. However, in practice this is not of much use; after taking
account of the symmetries of R, we still have n(n — 1)/2 independent compo-
nents for the curvature tensor on an n-manifold. For n of any reasonable size,
the tensor R is just too complicated to be of much use. Therefore, it is natural
to use the metric to “average” the curvature tensor.
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The first simplification is the Ricci curvature
Ric = Rypdz’ ® dz* € T¢,

where _
Rir = Rjy; = ¢’ Rimuj-

The Ricci tensor is of the same type as the metric tensor, so we can compare
them as inner products. Namely, we write Ric > C if Ric(w,w) > Cg(w,w) for
all w e Ty M, for all z € M. The Ricci tensor, while weaker than the curvature
tensor, still controls some crucial rough geometric properties of a Riemannian
manifold. For example, the volume of geodesic balls (i.e. the set of points within
a fixed distance of a given point — see Exercise 9, Chapter 1) is controlled by
the Ricci tensor. Let B,.(z) denote the set of points within distance r of z € M.

Theorem 2.21 If Ric > C(n — 1), where n = dim M, then
vol(B,(z)) < e °", C <0,
vol(B,(z)) < Cr™, C=0.

A proof of this result is in [27, Ch. III. H].

The Ricci curvature also influences the topology of a manifold. For example,
Myers’ theorem states that a compact manifold with positive Ricci curvature
has finite fundamental group [46]. In contrast, it is a recent result of Lohkamp
[41] that a metric having negative Ricci curvature places no restriction on the
manifold, as any manifold of dimension at least three admits a metric of negative
Ricci curvature.

A still weaker curvature, the scalar curvature, is given by contracting the
two indices of the Ricci tensor. Namely, we set

s = R: = gimRm,-.
Notice that this is a function on M.

Exercise 7: (i) Formulate a coordinate free definition of the contraction of a
tensor. In other words, given a tensor of type (k,l), show how to construct a
tensor of type (k—1,1—1). Check that our constructions of the Ricci and scalar
curvatures use this procedure. Hint: for any vector space V, there is the natural
map V* @V — R given by A ® v — A\(v).

(i) Show that if V' has an inner product, then from a tensor of type (k,l) on
V, one can construct a tensor of type (k,l —2) and a tensor of type (k — 2,1),
by means of natural maps V> V* > R and VRV — R. If A;ll',',',’j’; are the
components of a tensor of type (k,l), what are the components of these new
tensors?

The scalar curvature is really too weak a concept to control the geometry of
the manifold, although there is a global topological obstruction (the A-genus of
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a spin manifold) to a manifold admitting a metric of positive scalar curvature,
just as the Euler characteristic can be an obstruction to a surface having a metric
of positive Gaussian curvature. In fact, if the dimension of M is at least three,
and f: M — R is any smooth function which changes sign, then there exists a
metric on M (in fact many) whose scalar curvature equals f [38]. Thus if the
scalar curvature changes sign, one can conclude nothing about the topology of
the manifold.

The final notion of curvature, the sectional curvature of a two-plane in the
tangent space, comes closest to mimicking the Gaussian curvature of a surface.
If P C T, M is a two-plane spanned by vy,vs € T, M with |v;| = |va| = 1, then
we can find coordinates (2?) near x such that v; = 0,1,v9 = 0,2, (v1,v2) = 0 at
x (check). We set the sectional curvature of P to be K(P) = —Rj212/|v1 Ava?,
where the curvature tensor is computed in the (z?) coordinates. (Dividing by
|v; A v2|? makes K(P) independent of the choice of basis of P.) Of course,
if M is a surface, then P = T, M and K(P) is the Gaussian curvature at
z. It is an unpleasant exercise in linear algebra to show that the n(n — 1)/2
components R;j;;,1 < i < j < n, which give the sectional curvatures (up to the
factors |0; A9;|?) of the coordinate two-planes at a point, determine all the R;jx
and hence determine the full curvature tensor. Thus in principle the sectional
curvatures determine the local geometry of a Riemannian manifold.

Exercise 8: (i) Show that for the standard metric on S™ all sectional curvatures
equal one. Show that Ric = (n—1)g and that the scalar curvature is the constant
n(n—1). Hint: argque by symmetry considerations that it suffices to compute the
sectional curvature of just one plane at the north pole.

() Compute the Ricci curvature and the scalar curvature of a surface in
terms of the Gaussian curvature.

As in the case of the Gauss-Bonnet theorem, the sectional curvatures can
also influence the topology of a compact manifold. Let M be a compact manifold
with sectional curvature K = K (P).

Theorem 2.22 (i) (Cartan-Hadamard) If K < 0 for all two-planes, then
the universal cover M is diffeomorphic to R"™. In particular, (M) = 0 for
k> 1.

(i) (Synge) If K > 0, and M is orientable and even dimensional, then
1 (M) =0.

Proofs are in [64, Vol. IV].

Nevertheless, the relationship between the sectional curvature and the topol-
ogy of compact manifolds is far from understood. For example, the following
questions raised by Hopf in the 1950s are still unsolved:

Hopf conjectures:
(i) If dim M =2n and K < 0, then (—1)"x(M) > 0.
(if) If dim M = 2n and K > 0, then x(M) > 0.
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(iii) S? x S? has no metric with K > 0.

Conjecture (i) is true if n = 1 by Gauss-Bonnet, and is known for n = 2, for
manifolds of constant negative curvature, for manifolds with K pinched close
to a constant, and for certain complex manifolds. As far as I know, aside from
a pinching result for (ii), and a partial result in [14] for (iii), no progress has
been made on the other conjectures. It is interesting to note that Hopf raised
question (i) before any examples of compact manifolds of negative curvature in
dimensions above three were known [10], and well before any examples of neg-
atively curved manifolds not admitting a metric of constant negative curvature
were given [50]. This is not a recommended technique for making conjectures.

2.2 The Levi-Civita Connection and Bochner
Formula

In this section we will introduce the Levi-Civita connection on a Riemannian
manifold, which essentially allows us to take higher order derivatives of functions
and tensors. We'll see how to relate the Levi-Civita connection to the curvature
of the metric, and how this connection relates to the Laplacian on forms. As
applications, we’ll give a proof of Garding’s inequality (Theorem 2.46) and of
Bochner’s theorem, which states that a manifold with positive Ricci curvature
has Hi,(M) = 0.

2.2.1 The Levi-Civita Connection

On a smooth manifold, the differential df encodes all the first derivative informa-
tion of a function f in a coordinate free manner; equivalently, on a Riemannian
manifold, the gradient V f encodes this information. To keep track of second
derivative information, d? f certainly won’t do, and Af is a complicated combi-
nation of second derivative information (and lower order terms). Thus we need
some coordinate free way of taking the derivative of V f, or more generally of
any vector field. The main difficulty is that a vector field lies in a different
tangent space T, M for each z € M; to see how these vectors are changing, we
need some canonical method of comparing different tangent spaces.

If the manifold is R"™, then all tangent spaces are canonically isomorphic,
and the derivative of a vector field X in the direction v € T,R™ is just the
directional derivative D,X (x), which is again a vector at z. The directional
derivative’s crucial properties are (i) it is linear in v, and (ii) it satisfies the
Leibniz rule: for any smooth function f,

Dy (fX)(z) = f - Dy(X)(2) + df (v) - X ().

Exercise 9: Why doesn’t the Lie bracket Ly X = [X,Y], where X and Y are
vector fields on a fized manifold, give the desired generalization of directional
derivative?
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If our manifold is a surface M in R? with the induced metric, then we can
define the derivative of a vector field X on M as follows. Extend X to a vector
field on a small neighborhood of M in R2. For v € T, M, set V,X = Po D, X,
where D is the ordinary directional derivative in R?® and P is the orthogonal
projection of T,R?® = R? to T, M. (Check that this definition is independent
of the extension of X.) Let I'(T'M) = T denote the space of sections of TM,
i.e. the space of vector fields. Then V : TM @ I(TM) — I'(TM) is linear in
v and satisfies the Leibniz rule V,(fX) = fV,X + df(v)X. In particular, V
is determined in a coordinate chart by the quantities V,0x, where 9; denotes
Opi -

Exercise 10: Show that for this V we have Va0 = F;-k(?,-. Hint: In a coor-
dinate chart (x,y) on M, with 8,0, the usual basis vectors for tangent spaces
to M in the chart, let Oy, denote the vector giving the derivative of 0, in the
direction of 8,. Let n be the normal vector to M. Write

Ope = A110, + A0, + Lin,
sy = AL, + A28, + Lon,
Oyz = N30, + A58, + Ln,
Byy = A3s8y + A%0y + Lun,

for some constants Afj. Take the inner product of these four equations with
3y, 0y, and solve the resulting equations for the AY;. Conclude that A¥; = T%,.
Note that when we project e.g. Oy into Ty, we just omit the terms with n in
the equations above. For more details, see [21, Ch. ].

We now carry over this construction to any Riemannian manifold.

Definition 1: The Levi-Civita Connection. Let (M,g) be a Riemannian
manifold. Define V : TM @ T(TM) —» T'(TM), (v ® X) — V,X, by the
conditions:

(ii) Vo X = AV, X and VopuX = Vo X + Vo X;

(#)V o (fX) = [V, X +df (vV)X, for all smooth f: M — R.

V; = Vg, is also called the covariant derivative in the " direction. Note that
condition (i) is formulated in terms of a local coordinate chart, which makes it
aesthetically less appealing than the other conditions, and forces the following
exercise.

Exercise 11: (i) Show that condition (i) in Definition 1 is independent of
choice of coordinate chart. Warning: this is a long computation.

(i) Alternatively, for those who prefer coordinate free formulations, show
that the operator D : T(TM ® TM) — T'(TM) defined by

2<DXYaZ> = X<Y3Z> +Y<Z5X> - Z<X5Y>
+H([X,Y],Z)+ ([Z,X],Y) — ([}, Z],X) (2.23)
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satisfies (a) DxY (x) depends only on the value of X at x, and so D may be
considered as an operator D : TM @ T(TM) — T(TM); and (b) D is the
Levi-Civita connection. Use (2.23) to conclude that the Levi-Civita connection
satisfies
X({Y,2)=(VxY,Z)+ (Y,VxZ),
(2.24)
VxY -VyX =[X,Y].

(In fact, the Levi-Civita connection is the unique operator from T'(TM ® TM)
to D(TM) satisfying (2.24), see [27].)

For our purposes, it is convenient to use a little confusing linear algebra to
rewrite the Levi-Civita connection.

Exercise 12: Let V be a finite dimensional vector space and W any vector
space. Show that a homomorphism h: V @ W — W induces a homomorphism
MW =>V*QW by h(w)(v) = h(vew).

Applying this exercise to the Levi-Civita connection, we obtain a map V' :
(TM) - T*M (T M) given by V'(X)(v) = V,X. In terms of a coordinate
chart, this becomes V'8), = da’ ® Fj.k@,-. From now on we’ll just write V for
V'. The reader should check that the following definition is equivalent to the
previous one.

Definition 2: The Levi-Civita Connection. Let (M,g) be a Riemannian
manifold. Define V :T(TM) - T*M Q T(T M), by the conditions:

(i) VO, = dz? ® F;ﬁk@,-;

(i) VX (M) = AVX (v) and VX (v +w) = VX (v) + VX (w) in T'(TM), for
dl X eT(TM),v,w € TM;

(i) V(fX)(w) = fVX(v) +df(v)X, for all smooth f: M — R.

Exercise 13: Extend the Levi-Civita connection V to an operator, also denoted
v,
VTP —TreT"M = 7;’”*1,

by the following rules:

(i) Vdz' = —F;kdxj ® dz*;

(i) for Opr = Opin ® ... @ Oyiq, V(0p1) =3 0pis ®... QO VO,i; ®...® i,
and similarly for V(dz”);

(@) for any tensors w,n, Vw®n) =Vw®n+w ® Vn;

(iv) for f € T = C(M), Vf = df.
Note that (iii), (iv) imply

V(at8,r ® de’) = da’, ® 8,1 @ dz’ + a V(0,1 ® dz”).
The important point is to check that these rules define an operator inde-

pendent of the choice of local coordinates. Classically, these extensions of the
Levi-Civita connection are written

11500yl J\ _ G1yeeyig J j
V(a8 Opr @ dz”) = a;" "0 01 ® da” @ da’,
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with corresponding covariant derivatives

. 'ily---,'iq Jy ila---:iq J
Vila; 00y @da”) = a0 O0pr @ d

(The minus sign in (i) is forced by the equation
X(w(2)) = (Vxw)(Z) + w(Vx Z)

for vector fields X, Z and a one-form w. This reduces to the first equation in
(2.24) if w is identified with the vector field Y wvia the metric. Letting w =
dzt, X = 8,5, 7 = O, shows that we want a minus sign in (i).)

Now extend the Levi-Civita connection to k-forms, V : A¥T*M — T*M ®
A*T*M , by imposing the Leibniz rule and

V@' A AWk =D W AL AVWEA L AW,
i

for one-forms w?.

Now consider the operator V2 : C*°(M) — T¢. Recall from Chapter 1 that
the metric g defines an isomorphism o = g, : Ty M — Ty M, and so a map
Tr:TyMQTyM — TryMQT,M — R, where the last map is given by v @w
v(w). Check that A = —Tr(V?) is the Laplacian on functions.

Since the Levi-Civita connection measures the change in vectors lying in
different tangent spaces, it should provide a method of comparing (or “connect-
ing”) different tangent spaces. Indeed, given z,y € M and a curvey: [0,1] = M
from z to y, we can define an isomorphism ||, : T,M — T, M as follows. For
v € Ty M, consider the ODE for a vector field V' defined in a neighborhood of
~:

ViV (t) =0, V(0) = v,

where V(t) denotes V(y(t)). Since V is a first order differential operator, there
is a unique solution V'(t). We set ||,(v) = V(1). The vector V(1) is called
the parallel translation of v along ~y, as it is easy to check that in Euclidean
space V(1) is the same as v. Parallel translation is clearly an isomorphism, with
inverse given by parallel translation along - run in the reverse order. Note that
parallel translation is independent of v in Euclidean space, but this is not true
for general Riemannian manifolds. Thus the Levi-Civita connection allows us
to compare different tangent spaces, but only after a choice of ~.

Exercise 14: (i) If v(t) = (W'(#),-..,7™(t)) and V = v*dy, in a coordinate
chart, show that the equation VsV (t) = 0 becomes the equations
dvk  dyt

-+ SLTEOO)0 () =0, k=1,...,n,

for vk (t) = v*(y(t)). In particular, the equation V44)%(t) = 0,7(0) = zo,%(0) =
vo for fized g € M,vg € T, M, is a second order differential equation (in a
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coordinate neighborhood of o) and so has a unique solution for small t. (Strictly
speaking, we must extend  from a vector field just defined on v to a vector field
defined in a neighborhood of v. However, if we let v be the ' azis in a coordinate
system, the expression for the covariant derivative in terms of the Christoffel
symbols easily shows that V. )7(t) is independent of this extension.) We will
see in §2.3 that this equation is satisfied by geodesics on M.

(i3) Show that parallel translation is an isometry. Thus parallel translation
||y around a closed loop can be considered to be an orthogonal transformation of
T. M. Hint: it is enough to show that ¥(V (¢),V (t)) = 0.

(#i) Define the holonomy group ot © € M to be the subgroup of O(n) given
by parallel translations around all closed loops at x. Show that if M is simply
connected, then the holonomy group actually lies in SO(n). Show that for the
standard sphere, the holonomy group at an arbitrary point is all of SO(n).

Parallel translation can be extended to give an isomorphism ||, : AFT*M —
AFT¥M as follows. For k = 1, set ||, to be the adjoint of ||, : T,M — T, M.
For k > 1, define ||, to be the linear map extending

(' AL AOR) = |0t AL A ] 0F,

for v*,..., 0" € Ty M.

2.2.2 Weitzenbock Formulas and Garding’s Inequality

In this subsection we will derive the Weitzenbdck formula relating the Laplacian
on forms to the Levi-Civita connection. The Weitzenbock formula gives a proof
of Bochner’s theorem, relating H3 (M) to the Ricci curvature, and a proof of
the basic elliptic estimate/Garding’s inequality of §1.3.4. These techniques will
be used in Chapter 4 in the proof of the Chern-Gauss-Bonnet theorem.

We begin by showing that the Levi-Civita connection determines the curva-
ture tensor. Since the curvature tensor R is a section of the bundle

TM@T*M ®T*M @ T*M = Hom(TM & TM & TM,TM),

where this isomorphism does not use the metric, we can consider R as an opera-
tor taking three tangent vectors at a point to a fourth. Classically, this is denoted
by X,Y,Z — R(X,Y)Z, for X,Y,Z € T, M. Note that R(0;,0,)0, = R},0;.

Theorem 2.25 Extend X,Y,Z to vector fields in a neighborhood of x € M.
Then

R(X,YN\Z =Vy(VxZ)—-Vx(VyZ) - V[Y,X]Z- (2.26)

ProoF. If we replace X by fX, for any function f defined near z, it is easy to
check that the right hand side of (2.26) is multiplied by f, and the same is true
for Y, Z. Since X = a'0; for functions a’ and similarly for Y, Z, we may assume
X =0;,Y = 0;,Z = 0. The result follows by a direct computation.
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We now introduce a linear algebra construction, called fermion calculus, a
finite dimensional analogue of the creation and annihilation operators in ele-
mentary quantum mechanics. Let V be an n-dimensional inner product space.
We won'’t distinguish between a vector in V' and its dual in V*. Associated to
v € V are maps

al : AP(V*) = APPHV*), a, : AP(V*) = AP H(V™),

given by a}(w) = vAw (exterior multiplication) and by defining a, to be interior
product, the dual map to a}.

Exercise 15: Let {6;} be an orthonormal basis of V*. Show that

0, i¢{j17"'7jk}a
ag, (0, AN...NB; ) = A T
01( n ]k) { (_1)(1*10]1/\/\&“/\/\0‘“7 1= Jgq,
where 0qu means that 0;, is omitted.

Let End(V*) denote the space of endomorphisms of A*(V*). For A,B €
End(V*), define the anticommutator {A,B} by {A,B} = AB + BA. For an
orthonormal basis {6;} of V*, let a;, aj denote ay,,a;.. With the help of the last
exercise, it is easy to show that we have the basic relations

{ai,a;} =0, {aj,a;} =0, {ai,a}} =di;. (2.27)
Consider the set of endomorphisms of the form
Ary=aj o...0a; oaj o...0aj, (2.28)

with1 <4 <...<ip<m, 1<j; <...<j <n (with the understanding that
the multi-indices I or J may be empty and that Agy = Id). There are 22" of
these endomorphisms, which is the dimension of End(V*), and we claim that in
fact {Ars} is a basis of End(V*).

It is enough to show that {Ar;} is linearly independent. Say ¢!/ Ar; = 0.
Since Ary : AP(V*) = APHII=I7(V*) | we may assume that |I| — |J| is constant.
We now induct on the order of J. If |.J| = 0, we obtain 0 = ¢!’ Ar;(1) = ¢'%0;,
where 6; = 6;, A...A8;,, and so ¢'® = 0 for all I. By induction, we have ¢!/ = 0
whenever |J| < s. Applying ¢!/ A;; to 6,,, where |J;| = s, gives ¢!/t = 0 for all
I. Letting J; vary over all multi-indices of order s finishes the induction.

Lemma 2.29 (i) ) . aja; = p-1d on AP(V*).
(i3) Let (—1)F = (=1)P Id : AP(V*) — AP(V*). Then

(-1 =T[Q - 2¢}a;) = [ (asa} - a}as).

i %
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PROOF. (i) It is easy to check that afa;(6r) = 61 if ¢ € I and zero otherwise.
Since 01 has p indices, ), afa;(6r) = pfr, and the result follows.
(ii) By (i), (1 — 2a}a;)(0r) equals 07 if i ¢ I and —6p if ¢ € I. Thus

[1@ - 2a7a:)(6r) = (-1)6r,
i
and the last relation in (ii) follows from (2.27).

Exercise 16: For A € End(V), let A* : V* — V* be the adjoint map, and
define the induced endomorphism A* € End(A*V*) by

k
A*(8;) = Zail A NA*O; N... NG,
j=1

Show that if A = (A;;) is skew-symmetric, then A* is given by —A;jafa; (with

summation over i,j).

For A € End(V*), we define the supertrace of A to be Tr((—1)F A). This
is just the trace of A on even forms minus the trace of A on odd forms. Such
a trace occurs in the proof of the Chern-Gauss-Bonnet theorem in Chapter 4.
Other common notation for the supertrace is Tr,(A).

Proposition 2.30 Let A =c'/A;; € End(V*). Then

TI‘((—].)FA) — (_1)n(n—1)/20{1,2,...,n}{1,2,...,n}_
In other words, only the term in A with n a’s and n a*’s contributes to the
supertrace of A.

ProoF. We introduce the “Clifford algebra variables/Dirac matrices”

e; = a; — a}‘, e; =a; + a}‘, (231)

which satisfy the relations
{ei,ej} = —{ei,ej} = —26i5, {ei,e;} =0. (2.32)
We have
(1" = [J(ai — ad)as +af) = (-1 D295,

where v = ejeaz...e, and ¥ = €163...€,. Now consider the endomorphism
B = €i,€ig -+ - €4, with ¢; equal to e; or &;, and let C' = €ip -+ -Eiy- If ¢ is odd,
then (2.32) implies Byy = —y3B, and so Tr(Bv%y) = —Tr(yyB) = —Tr(B~7)
implies Tr(yyB) = 0. If £ is even, then B = ¢;,C = —Ce;,, and so Tr(B) =0
unless £ = 0. Thus Tr((—1)¥ B) = 0 unless B = (—1)*("~1/245._ In this case,

Tr((-1)"(=1)"""V/2yy) = Tr(1d) = 27, (2.33)
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since dim V* = 2™,
Since
1 _ " 1 _
Jleite), ai =—g(ei—e),
we can write any Ary as an expression in the e;, ;. If I and J do not equal
{1,...,n}, then no term in this expression involves 77, and so Tr((—1)F A7) =
0. Finally, since a;a} = (1/2)(1 + e;&;),

a; =

n(n— 1)/2a*a1a as...anan

(-1)
(_l)n(n 1)/2H +ezez
(-1)
(-1)

Af {1} =

-1 n(n— 1)/22_ Heiei

-1 n(n—l)/22—n(_l)n(n—l)/2,y,7 +...,
where the dots indicate other products of the e;, e;. Thus

Te(-D)FAqay,my) = 27" Te((-1)Fy7) = (-1)n(n=1/2,

We now carry this linear algebra over to a Riemannian manifold M by
replacing V' with T, M. On a neighborhood U of z, there exists a smoothly
varying set of one-forms {6;} which form an orthonormal basis of T,y M, for
all y € U. (For example, just apply Gram-Schmidt to the basis {dz'} defined
on a chart near x.) This orthonormal basis, or frame, defines endomorphisms
ai,a; € End(A*T; M) for y € U. Define the curvature endomorphism by

R = —Rjjnia;a;a,a;, (2.34)

with summation convention. Here the components R;j;; are computed with
respect to the orthonormal frame. More precisely, as in (2.26) we have Rj-,d =
Rijre = (R(X;, Xx) Xy, X;), where X; € Ty M is dual to 6;, We will see below
that the expression for R is independent of choice of frame.

Exercise 17: Show that for an orthonormal frame w',... ,w"™ € T} M,

k n
(RW'A ... AWF), W' AL AWE) = Z Z K(Y;,Y;),
i=1 j=k+1
where the Y; are dual tangent vectors to the wi, and K (Y;,Y;) denotes the sec-
tional curvature of the Y;,Y; plane. Hint: Assuming that R is independent of
orthonormal frame, we may set w* = 6°.

We now rewrite R in terms of the e;,&;. This allows us to compute the
supertrace of R¥, the composition of R with itself k times, a key technical step
in the proof of the Chern-Gauss-Bonnet theorem.
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Lemma 2.35 Assume dim M = n = 2k is even. Let s be the scalar curvature
of M.

1
(a) We have R = Z + gRijkgeiejékég.
(b) The supertrace Tr((—1)¥' R¥) equals

1
o8 D" (sgn 0)(sgn T)Rot)o@)r()r(@) - -+ * Ro(ne1)a(n)r(n-1)r(n)-

o, TEX,

Here %, is the group of permutations of {1,...,n} and sgn o denotes the sign
of the permutation o.

PROOF. (a) We claim that
1 * * * *
R= —ZR,-jkl(a,- a; + aiaj)(akag + agay).
For example,
Rijkga’{ajaka’j = —Rijkgafaja’jak = —RijgkafajaZag = RijkgafajaZag,
as Rz’jkk =0 by (2.18). Similarly,
Rijkgaia;aZag = Rijkgaia;aka; = Rijkgafaja};ag,

which gives the claim.
A direct computation using (2.31) gives

eiej — &i€; = —2(aja; + a;aj),
SO 1
R= —1—6Rz’jkl(eiej — éiéj)(ekeg - ékéé)'

If j,k,€ are distinct indices, the commutation relations (2.32) give e;eje; =
ejece; = egeiej. Using the Bianchi identity (2.20), we see that for fixed 4 the
sum over distinct j, k, £ of R;;ree;ejere, vanishes.

In an orthonormal frame, the Ricci tensor is given by R, = Ryjk; (as g9 =
§i7). Moreover, by (2.18) R;r, = Ry;. Thus

Rijkle,-ejekeg = R,-jjgeiejejee+Rijkje,-ejekej

—Rijjeeier + Rijrjeier
= Rijrjeier + Rijrjeier = 2Rireiep
= —2R;; +2 Z Rireex
ik
= —2s5+2 Z Rix(eser + ere;)
i<k
= —2s.
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Similarly, R;jre€;€;€re¢ = —2s. This gives

1 _ _
R = —E(—ﬁls - Rijkgeiejekeg - Rijkeeiejekeg).

Again by (2.18), (2.32), we get
Rijreéiejepes = Rijreeree€i€; = Rypjeiejeree = Rijreeie;jerey.

Thus

1
R = —E(—‘ls — 2R,~jkgeiejékég).

(b) As in the proof of Proposition 2.30, especially (2.33), we must pick out
the coefficient of 75 in R¥. The only terms in R¥ contributing to this coefficient
are of the form

S_kRa(l)a'(2)'r(1)'r(2) - Ro(n—1)o(n)r(n—1)7(n) €0 (1) €0(2)€r (1)€7(2) - - - Er(n—1)€7(n)>
(2.36)
as any term with a repeated e; or &; will not contribute. Rearranging the product
of the e, (;), €, (;) terms into the sequence

€5(1) -+ - €o(n)€r (1) - - - €7(n) (2.37)

does not involve any change of sign, as each e, ;) moves past an even number of
e (i)- However, rearranging (2.37) into ¥ introduces a factor of (sgn o)(sgn 7)
x(=1)™n=1/2_ Using (2.33), (2.36) gives

2"
Tr((-1)" R") = ok > (sgn 0)(sgn T)Ro(1)e@yr(1)r(2) - - - Ro(ne1)o (myr(n-1)r(n)-

o,T

As in Exercise 13, the Levi-Civita connection may be considered to be a
map V : I(T*M) — T'(T*M ® T*M). Both the range and domain of V
have the global L? inner products of §1.2.2, once Ty M ® Ty M is given the
usual inner product (v ® w,s ® t) = (v, s){w, t). Thus V has a (formal) adjoint
V*:I(T*M QT*M) — I'(T*M), and we can form the second order differential
operator V*V : A'T*M — A'T*M.

Exercise 18: Show that the second order part of V*V equals —g*V;V;. Here
Vi =Vx,.

It is an unpleasant exercise to compare A! and V*V in local coordinates:

Exercise 19: Show that

(i) AL(azdz?) = g* ( i

J .
6mi6x’“> dz? + (lower order terms);
62aj
dxidzk

(it) V*V (a;dz?) = g** ( ) dz’ + (lower order terms).
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Thus A'! and V*V differ by a first order operator. In fact, the first order
term is zero. We will show this in more generality. As in Exercise 13, we may
consider V as an operator on V : A¥T*M — A¥T*M ® T*M by the derivation
formula

V' A AF) =D W AL AV AL AW,
K3

for one-forms w. Imposing the Leibniz rule then extends V to all k-forms.
Taking a direct sum over k gives an operator V on A*T*M, the space of all
forms of mixed degree. As above, V has a formal adjoint V*, and we call V*V
the Bochner Laplacian.

Theorem 2.38 (Weitzenbock formula) The Laplacian on forms satisfies

A =V*V+R.

To prove the theorem, it is convenient to work in a synchronous frame. This
is given by first filling out a neighborhood of z with lines radiating from 2 and
intersecting only at . (These lines are usually chosen to be geodesics, as defined
in the next section, but that is not necessary here; the lines can be chosen to
be the image of the radial lines of a polar coordinate system in R™ under the
coordinate map.) Next, an orthonormal frame {X;} of T, M is chosen and then
parallel translated out the radial lines. Since 0 = Vx, X; = I‘ij r at x, we have
I‘fj(a:) =0 for all 4, 7, k.

Lemma 2.39 Let V; denote Vx,, with X; as above. Then we have
d=> a}Vi, §=d* =) Via, V'V=>) ViV,

and at the center point = of a synchronous frame, we have

Vi=-Vi, A== (atarViVe+ aiatVeVi).
k.l

PROOF OF THE LEMMA. Let {#} be the orthonormal frame of one-forms dual
to {X;}. Using [64, 1.7-13] to compute the differential of a one-form, we get
o' (X, Xy) = X;(0°(Xk)) — Xi(0°(X;)) — 6" ([X;, X4])
= 0-0-0"(Vx, Xk — Vx,X;)
= ;k - ;'cj7
and so df* = T%,67 A 6%. Thus for |I] = r,

do' = (=1)*7'6" A...AdE* A ... NG =Talata; 6"

s
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Since d = V on functions, we have day = V(ar) = Vi(ar)8® = a}V;(as). This
implies

dard") = darAO" + ardd”
= a}Vi(ar)b* +a1Fj.’ka;fa2ai501
a;Vi(ar8') — aral V0" + aII‘J'-Ska’]'-‘aZaiSGI
= a!Vi(asd) - alaz‘l“jfka;a}';aiﬁI + amfFﬁa}‘aZaiﬁI
a;Vi(

(1]61),

which proves the first statement. The second statement follows immediately.
For V*V, we note that

(V*'Vw,n) = (Vw,Vn) =(Viw® 6", V;nQ6)
= <Viw, Vﬂ?) = <V:vlwan)

Thus V*V = V;V,.
We now show that V; = —V; at z. For w = a6, we have

(w,Vin) = (Viw,n) = (Xi(ar)8 + arVé,n). (2.40)
As in Exercise 16, we have V;0! = I'¢, ata,87, so the last term in (2.40) becomes
(arTiyatacd’,n) = (w,Tiazarn). (2.41)
For the first term on the right hand side of (2.40), we claim that
(Xi(an)6',n,07) = (ar8", (= X; + div X;)(7.0)8”).
Assuming the claim, we see that (2.40) becomes
(w, Vin) = (w, (=X; +div X;)(1)8” + Tiza;arnsé”)
for n = 16”7, and so
Vin = (=X +div X;)(n,)8” + Tiaaxn.6”. (2.42)
At z,T% =0 and
div X; =00 = —xd+ 60 =+ +d0 ' A... N0 AT AL AOY) =0
as above. Thus Vin = —(X;ns)07 = —V,n, where in the last step we use
V0T =0 at z.

For the claim, we write X; = ald; = ald,; for local coordinates {27} and
compute

(Xi(an)8',ns67) = / Xi(ar)8" A #ns6”
M
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/ ald;(ar)nr dvol

M

— / ar0; (mag\/det g)dz! ... dz"
M

—/ amfaj(m)dvol—/ arnrd;(al+/det g)(v/det g)~* dvol
M M

/ oy Xi(n) + (div X;)(ng) dvol
M

/ ard’ A x(=X; + div X;)(ns)6”7
M
= (af',(-X; +div X;)(n,)0’,

where we abuse notation by ignoring the partition of unity needed in the integral.
For the last statement, we have A = dd + dd = ajV;Via; + Via;a;V;. At
z, we have a;V; = ajV;, a;V; = Vja;, etc., and so

A= a’]'-‘aiVij + a,a;‘V;“V, (2.43)

Since V¥ = —V; at =, we have a;a;ViV; = —a;a;V;V; in (2.43), and the proof
will be finished by showing V;V; = —V;V; at z. First note that, as above, we
have

Vi(ns0”) = Xi(ns)8” +n,Vi87 = Xi(n)87 + Thyaeain 07

By this equation and (2.42), we have
ViVin = —=Vj(Xi(ns)8”) + V;(div X; + Tiyaca;)n
= —V;(Xi(n))87) + (X;div X;)n + (div X;)V;n + V;(Téacaln),
-V;Vin = —V;(Xi(n,)87) - V;(Ti,a;arn).

Since sz =0 at z, it suffices to show that

(X;T4)acal + Xjdiv X; + (div X;)Vn = —(X;T%)ajae.

From {aj,a¢} = 0y¢, this equation follows if we show X;div X; = —le“fe and
div X; =0 at z. Now
divX; = 000 =—xd*x0 =+ xd@'A...ANOTLANGTIA L AGY)
= —xT¢, dvol,

where we have used df* = T'%,67 A %. Since * dvol = 1, the proof is finished.

PROOF OF THE THEOREM. At the base point z of a synchronous frame, we
have

A=dj+dd

— Z(a;‘;agvkw + aparVVy)
kL

— Z{a};, az}kag — agaz (Vle - Vng).
kL
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Recall that for the Levi-Civita connection, we have VxY — Vy X = [X,Y], and
so at z we get [X;, X;] = 0. By Theorem 2.25,

(ViVe = VVi)(X) = R(Xg, Xo) X

for any X € APT*M, where the skew-symmetric endomorphism R(X}, X,) of
T,M is extended to an endomorphism of APT}M as in Exercise 16, namely
R(Xy, X¢) = — 32, ; Rijreaiaj. By (2.27), we get

A:—kavk+R:V*V+R.
k

Since A and V*V are independent of frame, so is R.

The reader may wonder why we chose to work in a synchronous frame, since
differential geometry is supposed to be a coordinate free subject (and the frame
is not even a basis of T, M associated to any coordinates). The point is that
while tensors are coordinate free quantities, the Christoffel symbols and the 9;
are not tensors (although their combination into V; is), and so some choice
of coordinate chart or frame may simplify calculations involving I‘;'-k,&-. The
unconvinced reader should check the derivation of the Weitzenbock formula in
general coordinates in [19].

The Weitzenbock formula is particularly interesting for the case of one-forms,
as then the relation aja} = ;5 — aja; implies

* * * * ¥

—Rl-jklai ajakag = Rigai ay — Ri]-kgai akajag,
where R;; are the components of the Ricci tensor computed in the frame {X;}.
Since aja; = 0 on one-forms, only the Ricci term remains. Moreover, for each

xz € M we can consider the Ricci curvature Ric, as an element of Hom (7, M,
T M) via the isomorphisms

Ric, = Ry6'®6’ € Hom(T,M ® T,M,R) = Hom(T, M, T:M @ R)
=~ Hom(T,M,T;M) = Hom(TyM,T; M),

where the last isomorphism uses the metric. Under these isomorphisms, Ric,
corresponds to R;ea;ae, so we will just denote the last expression by Ric. This
yields

Theorem 2.44 (Bochner’s Formula) Al = V*V + Ric.

This gives our first nontrivial application of Hodge theory.

Theorem 2.45 (Bochner’s Theorem) If M is compact and oriented, and if
Ric > 0, then H},(M) = 0.
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Proor. If H)p(M) # 0, then by the Hodge theorem there exists a nonzero
w € Ker Al. We have

0= {Aw,w) = (V*V,w) + (Ric w,w) = (Vw, Vw) +/ (Ric w,w) dvol(z).
M
The first term on the right hand side is nonnegative, while the integrand is
positive on some open subset of M where w is nonzero. Thus the right hand
side of the equation is positive, a contradiction.

Thus a manifold M with H}p(M) # 0 admits no metric with positive Ricci
curvature.

Exercise 20: (i) Use Bochner’s theorem to re-prove parts of Corollary 2.7.
Namely, show that neither T? nor an oriented surface of genus g > 1 admits a
metric of positive Gaussian curvature. Note that in fact we can replace “positive
Gaussian curvature” by “nonnegative Gaussian curvature which is positive at
some point.”

(i) Complete the argument re-proving Corollary 2.7(iii) as follows. If the
surface ¥ of genus g > 1 admits a metric with vanishing Gaussian curvature,
then by Bochner’s theorem every harmonic one-form w satisfies Vw = 0. This is
a first order differential equation for w and thus w is determined by its “initial
value” at any fized point of . Thus dim H} () < 2. However, it is well known
that x(X) = 2 — 2g, and so dim H}p () = 2g.

(#i) Use the argument in (i) to show that a manifold M™ with nonnegative
Ricci curvature has dim H}p (M) < n, and that a flat manifold has dim H5p (M)
< (Z) Show that this result is sharp by considering the n-torus with the flat
metric induced from R™.

(i) We'll see in Chapter 4 that flat manifolds have vanishing Euler char-
acteristic. This is not very interesting in odd dimensions. However, show that
¥ x 81 admits no metric with nonnegative Ricci curvature, where ¥ is a surface
with Euler characteristic less than zero. In particular, this manifold admits no
flat metric.

Bochner’s theorem, which dates from around 1945, is actually weaker than
Myers’ theorem, from around 1940. Indeed, it follows from the discussion after
Exercise 38, Chapter 1, that a manifold with finite fundamental group has
0= H},,(M;R) = Hjp(M). (The converse is not true.)

As promised in §1.3.4, the Weitzenbdck formula leads to a relatively simple
proof of Garding’s inequality for the Laplacian on forms.

Theorem 2.46 For all s € Z U {0}, there exists a positive constant Cy such
that

lwlls+1 < Cs(llwlls + [I(d + d)wl|s)
for all w € Hy 1 A*.
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PROOF. (cf. [59, p. 42]) Let w € A*T*M denote a form of mixed degree. By a
partition of unity argument, we may assume that w has support contained in a
coordinate chart. We will do induction on s and begin with s = 0.

Since A = (d+9)(d + 9) = (d + §)*(d + ), we have

I(d + Ol ((d+ 0w, (d +0)w) = (Aw,w)

= (V*V 4+ R)w,w) = ||Vw|? + (Rw,w).

Since R is bounded below on M, there is a constant C; such that
IVwli§ < Cr(llwllg + lI(d+ d)wlp)- (2.47)

Now let us compare ||Vw||2 with [|w||?. For w = wydz!, we have

IVwll3

/ (Vw, Vw) dvol
M

/M(viw ® dz', Vjw ® dz’) dvol = /M g 9{(Viw, V;w) dvol.

Writing V; = 0; — I'; as in the proof of Lemma 2.39, we get

IVl

/ gij<(6,~ - Fi)w, (6J - Fj)w) dvol

M

= / g- 6,-w16jwj dvol — / g- I‘,-wI(Qaj — Fj)wj dVOl, (2.48)
M M

where g denotes some products of g*¢ giving rise to the positive definite inner
products (, ), on A*T M. Estimating the last term in (2.48) by Cauchy-Schwarz

gives
IVell§ > (lwllf = lwli§) = Callwliollwlls, (2.49)

for some constant Cs, since the coefficients I'; are bounded above on M. Now
given € > 0, there exists K > 0 such that for all a,b > 0, we have ab < ea®?+ Kb?.
Thus we can write Ca||w|lo]|w|l1 < (1/2)||w||? + Cs||w]|3- Plugging this in (2.49)
gives
1
IVl > 5llwll? = Csllwllg. (2.50)

Combining (2.47), (2.50) gives a constant Cy with

Ca(llwll + Il (d + 6)wll3)

lollf <
< Calllwllg + 2llwlloll(d + d)wllo + [I(d + 8)wll3),

and taking the square root of this inequality finishes the proof for s = 0.
Fortunately, the induction step is easy. Denote d + § by D. We have

wllsr <D 10wlls < Comr (10w lls—1 + [|1DOiw]ls-1)

2
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by induction. Since 9; is a first order differential operator, ||O;w||s—1 < A1||w]|s-
Moreover, [D,0;] = D9; — 9;D is apparently a second order operator, but it
is easy to check that the highest order differentiations cancel, and so [D, 9;] is
only first order. Thus by the triangle inequality,

DOw||s—1 [10i Dwl|s—1 + [I[D, Olwlls—1

A1 [ Dwlls + Azllwl]s-

ININA

We finally obtain
[wlls+1 < Cs(llwlls + [|1Dwl]s)-

2.3 Geodesics

The second major topic Gauss addressed in his study of surfaces was the exis-
tence of curves of shortest length between two fixed points on the surface. It
is important to note that finding a path of shortest length is a harder problem
than the mapping problem for several reasons. First, the curve problem may
have no solution: as mentioned before, if the surface is R? — {(0,0)} and the
points in question are (x,y) and (—z, —y), then there is no curve of shortest
length between these points, as the best we can do is to construct curves of
length arbitrarily close to 24/x2 + y2. It turns out that this type of problem
does not occur if the manifold is compact; shortest paths always exist.

Moreover, the mapping problem was a local problem, which we could expect
to solve only in a neighborhood of a point. In contrast, finding the shortest
path is a global problem, one which involves selecting nice paths from the huge
space of all paths on the manifold which are fixed at the endpoints. Finally, the
solution of the mapping problem reduces to standard PDE techniques. However,
finding the shortest path on a Riemannian manifold will have to involve more
than just calculus.

To understand this last point, consider two almost antipodal points on the
standard S2. There is a unique path of shortest length, a piece of a great circle,
between them. Now consider a mountain slowly growing somewhere on this
great circle; more precisely, consider a smooth perturbation of the embedding
of the sphere in R3 with the corresponding family of induced metrics. As
the metric on the now bumpy sphere changes, the shortest path between the
points also changes. Moreover, depending on how the mountain grows, the
shortest path between the two points may at some instant suddenly jump to a
qualitatively new path, say the portion of the great circle on the original sphere
going “around the back.” In other words, the shortest path between two points
may depend in a discontinuous way upon the parameter describing the family
of metrics, and so calculus techniques alone will not be sufficient.

Although this sounds like a pathological situation, it in fact occurs often
in ordinary calculus problems; the student is usually just not told about it.
Consider the problem of finding the minima of each of the smooth functions
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ft : R = R, for t € [0,1]. For fixed ¢, of course, we first find the candidates
for the minima by solving f;(z) = 0. The art of writing calculus texts consists
in picking functions such that this equation is solvable, and such that one can
easily check the roots to determine the absolute minima; note that checking the
second derivative only finds the local minima. The dependence of the functions
on t causes new complications in that the locus of the minima may fail to be
continuous in ¢:

Exercise 21: Find a family of functions fi(z),t € [0,1], smooth in t and x
such that there is no continuous function g : [0,1] — R such that g(t) € {z €
R : f; has a global minimum at z}. (Note that the noncompactness of R is not
relevant here.)

In summary, we have all been misled into believing that the study of minima of
functions was purely a calculus problem. In studying paths of shortest length,
these difficulties cannot be overlooked.

Nevertheless, as for ordinary functions the first step is applying calculus
techniques in order to find the possible shortest paths between points x and y
on a Riemannian manifold M. In our case, the function we want to minimize
is the length function

I(y) = / 8,4 (0) e,

for all paths v : [0,1] = M with (0) = z,v(1) = y. Within a fixed coordinate
chart, this is a standard calculus of variations problem, with the Euler-Lagrange
equation, the equation for a critical path for the length function, given by a sec-
ond order quasi-linear ODE in the parameter t. We will instead give a coordinate
free derivation of the Euler-Lagrange equation. We call a path v critical if for
any family of paths v.(¢), with € € (—=1/2,1/2), ¢t € [0,1],7.(0) = z,7.(1) = y
and with o (t) = v(t), we have % £(ve) = 0. Note that every path of mimi-

=0
mal length between z and y is critical.

Theorem 2.51 A path y(t) is critical iff

Vi ¥(t) = 0.

PrROOF. Define F : [0,1] x (—=1/2,1/2) — M by F(t,e) = ~.(t) and set
N(~(t)) = dF(0s), where 05 is the positively pointing unit tangent vector field
to (=1/2,1/2). Note that N is a vector field defined along the image of v if F'
is injective. In general, N assigns to a point (t,€) a vector in T oM. Classi-
cally, N was called a parametrized vector field on M; in modern language, N is
a section of F*T M, the pullback of the tangent bundle TM by the map F. N
is called the variation vector field of F'.
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Assume for simplicity that « is parametrized by arclength and is of length
one; in general, we just replace fol in £(~y) with f(f ™ Then

d

td
& o= [ ¢
1

- 5/0 N ((Fe(®), 3e(t)r.0) le=o dt

G (£), 7 (D)5, dt

1
/ (V. 4) dt,
0

by (2.24).

We have 0 = dF([0, 0s]) = [dF0y,dFd,] = [}, N]. As above, this must be
interpreted appropriately if F' is not injective. Now (2.24) and the equation
above give

1
0 = - [ (VN ai
0

- N, V) di - / L3N, e

The last integral is just

1
=0,

1
d . .
- [ N O dt= (VA
0 0

since F'(0,€) = z, F(1,€) = y for all € implies N(g 9y = N(1,0) = 0.

It is easy to see that given a vector field N along +, there is a variation F' of
~ with variation vector field N; the proof reduces to a linear integration in R™.
Thus a path is critical iff for every vector field N along v, we have

1
0:/ (N, V4%) dt.
0
Letting N = V4 shows that we must have 0 = V;+ pointwise.
Definition: A critical point for the length function is called a geodesic.

Thus a geodesic is a curve with parallel tangent vectors, and as it must
generalizes the case of straight lines in Euclidean space. The terminology comes
from geodesy, the science of measurement of the earth. It is interesting to
compare this derivation of the geodesic equation with the classical derivation
in local coordinates (see [64, Vol. I]). One ends up with the Euler-Lagrange
equation for y(t) = (y'(¢),...,¥"(t)) given by

&yt dy Ayt

—_ AL =1.... 2.52
a2 Tk gy g o tT ™ (2.52)
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in agreement with Exercise 14. Since a neighborhood of z is diffeomorphic to R,
the existence and uniqueness theory of ODEs guarantees that, for any x € M
and v € T, M, there exist an € > 0 and a unique geodesic v, (t), t € (—¢, €), with

7(0) = z,7'(0) = v.

Exercise 22: Show that if M is compact (and without boundary), then ~v,(t)
exists for all t € R. Hint: Let To = sup{T € R : 7,(¢) exists on (-T,T)}.
If Ty < o0, show that limy_,1, v(t) = xo and limg_,7, ¥(t) =V € Tpo M exist.
Then show that the geodesic yv(t) starting at xo extends v, past Ty, giving a
contradiction.

Exercise 23: (Hopf-Rinow theorem for compact manifolds; cf. [31, Ch. I], [46,
§10]) Recall from Ezxercise 9, Chapter 1, that d(z,y) = inf{l(y)

v :[0,1] = M,~¥(0) = z,v(1) = y} defines a metric on M. Let M be com-
pact, and choose x,y € M. Show that there exists a smooth curve v from x to
y with £(vy) = d(z,y). Conclude that v is a geodesic. Hint: Take a sequence
of curves v, from x to y with £(v,) — d(x,y). Parametrize the curves propor-
tional to arclength, and conclude that the lengths of the tangent vectors to -y,
are uniformly bounded. Apply the Arzela-Ascoli theorem to conclude that the vy,
converge to a C! curve v with £(y) = d(z,y). Since 7y is a geodesic (why?), it
must satisfy the Euler-Lagrange equation (2.52). This implies v is smooth.

This shortest geodesic is called a minimal geodesic. By Exercise 22, the
following definition makes sense.

Definition: Let M be compact. For x € M the exponential map exp, : T, M —
M is defined by

exp, (v) = (1)

For a noncompact manifold such as R? — {(0,0)}, the exponential map is
defined only on some neighborhood B,(0) of 0 € T,, M for each z.

Exercise 24: (i) Consider S embedded in R? in the usual fashion. We have
the isomorphism R =2 T(LO)SI given by 0 — i6, where we identify T(y o) St with
the y azis. Show that exp; g)(if) = €.

(i) Show that the exponential map on the standard n-sphere maps radial
lines in the tangent space at the north pole to great circles on the sphere.

The key property of the exponential map is that it maps B,(0) diffeomor-
phically onto a neighborhood of z, at least for e small.

Theorem 2.53 For € small enough, exp, restricted to B.(0) is a diffeomor-
phism onto its image, for all x € M. The radius € = €(x) can be chosen to be a
smooth function of x.
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For example, if M = S™ with the standard metric, then exp, maps B,(0)
diffeomorphically onto S™ minus z’s antipode, but for any € > 7, the exponential
map is no longer a diffeomorphism.

PrOOF. The tangent bundle TM is a smooth manifold of dimension twice
dim M. In fact, over a chart neighborhood U with coordinates (z!,...,z"),
T M has coordinates (z!,...,z",t!,...,t"), where a vector v € T,, M is given by
v = t'8,:. Thus locally T M looks like the space of initial conditions for the ODE
(2.52). The standard existence theorem for ODEs depending on parameters and
initial conditions shows that there exists a constant € such that the exponential
map is defined on B.(0) C T, M, for all z € U.

If we set V to be the union of these B.(0), the ODE existence theorem
guarantees that the map exp : V — M, (z,v) — exp,(v), is smooth, and in
particular for fixed z the map exp, : B.(0) C T, M — M is smooth. We now
compute the differential d(exp,)o : ToTx M — T M. Since ToT, M is canonically
isomorphic to T, M, we have

d
d(exp,)o(v) = o exp, (aw) = o

Yau(1).
0

a=0 a=|

Tt is easy to check that y4, () and v, (at) both satisfy (2.52) with the same initial
condition. By the uniqueness of solutions of ODEs, Y4y (t) = Yy (at). Thus

Yo (at) = v.

a=0

dlexp,)o(v) = -

Thus the differential of the exponential map at 0 € T, M is the identity map, so
by the inverse function theorem a neighborhood B, (0) maps diffeomorphically
to a neighborhood of z. Moreover, the proof of the inverse function theorem
shows that the radius of the domain neighborhood depends smoothly on the
differential map, so we may choose €(z) to be a smooth function of x € U. A
partition of unity argument then shows that e(x) can be chosen to be a smooth
function on all of M.

We can now show that for ¢ < to = to(x,v), the geodesic v, (t) is the shortest
path between x and ~,(t). The argument we give works for compact manifolds,
but can be modified for noncompact manifolds (see [46, §10]). Fix ¢;,t with
t1 <t so that 7, (¢) lies in the Riemannian normal coordinate chart at z for all
v € T, M, |v| = 1. By Exercise 23, for fixed v there is a shortest path v from
Z t0 v, (t1) = y. This path is a critical path for length, and so satisfies the
geodesic equation. By the uniqueness of solutions to the geodesic equation, we
must have v(s) = 7y, (s) for some w € T, M, |w| = 1 (after reparametrizing v by
arclength). If v # w, then ~,(s) # y for all s < ¢. Since 7,(s,) = y for some
so > t, the length along v from x to y is at least ¢. Since the length from z to y
along v, (s) is t1 < t, we get a contradiction. Thus ,(¢) is the minimal geodesic
from z to y.
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While an arbitrary manifold has no one set of coordinate charts better than
any other, a Riemannian manifold has the special set of charts {exp, : B.(0) —
M : z € M} and corresponding coordinates, called Riemannian normal coor-
dinates, given by choosing orthonormal coordinates on T, M. A choice of polar
coordinates (r,0) = (r,0',...,0""!) on T, M then gives Riemannian polar co-
ordinates on a neighborhood of z via the exponential map. Note that the 0,
coordinate is the tangent vector to the unit speed geodesics emanating from z.

Exercise 25: Show that Ffj = 0 at the center point x when computed in Rie-
mannian normal coordinates. Conclude that 0;g;r = 0 at x. Hint: In these
coordinates, straight lines through the origin map to geodesics, so in these coor-
dinates the FEuler-Lagrange equation becomes

kﬂdl] =0
Yodt dt

for all k. At x the dy'/dt,dv? /dt are arbitrary, which forces Ffj () = 0. Com-
bining various Ffj gwes 0;g;k(x) = 0.

The following basic result in the study of geodesics will be used in the next
chapter.

Theorem 2.54 (Gauss’ Lemma) (0,,0p:) =0 fori=1,...,n— 1.

PRrROOF. Let 0; denote 0y,, and let V;,V, denote Vjp,, Vg, , respectively. We
compute how (9,,9;) changes as we move out a geodesic radiating from z. We
have

61‘(67‘: 62) = (Vrar; 61) + (87'; Vraz>

The first term on the right hand side is zero since the radial curve with tangent
vector O, is a geodesic. By the standard confusing abuse of notation, we have
O, = d(exp,)(0;), 0; = d(exp,)(8;), where 8,,8; in the domain of dexp, denote
the standard polar coordinates on T, M (with respect to its Riemannian inner
product), and 9,,0; in the range denote tangent vectors to the Riemannian
polar coordinates on a neighborhood of z in M. Thus

V.:0; — Vi0r = [0r, 0;] = [dexp,(0r), dexp,(0;)] = dexp,([0r,0;]) =0,

since 0., 0; are tangent vectors to coordinates in T M. Thus we obtain
1
8r<6r;6i> = (81‘, Vz&") = §8i<8r7 87‘) =0,

since (O, 0r) = 1.
In particular, (9,, ;) is independent of r. However, in T, M the length of 9;
is proportional to r, and hence so is the length of 8; = d(exp,)(9;) on M. This

forces (O, 0;) to be proportional to r. The only way this is possible is to have
(0r,0;) = 0.
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There are many connections between geodesics and curvature on a Rieman-
nian manifold. In particular, the rate at which geodesics emanating from a point
spread apart is controlled by the curvature. Heuristically, this seems reasonable,
as geodesics are controlled by an ODE involving one derivative of the metric, and
so the variation of geodesics involves two metric derivatives. On the other hand,
the curvature, which controls the geometry, involves two metric derivatives, and
hence should measure these variations. These remarks are made precise in the
study of Jacobi fields, which are behind the proofs of Theorems 2.21, 2.22, and
which are discussed in the next section.

For our purposes, we will state without proof another relation between
geodesics and curvature, whose demonstration again involves Jacobi fields. Fix
z € M and pick orthonormal coordinates for T, M. For points y € T, M with
y = 0, the metric exp}, g is defined at y. The following theorem, due to Cartan,
is in [4, Prop. E.IIL.7].

Theorem 2.55 The metric exp}, g has the Taylor expansion

9i(y) = 1d +* Aijry™y' +° Aijrmy*y'y™ + ..
with ¥ A;;... universal polynomials in the components of the curvature tensor
Rijri = Rijri(z) and its first k — 2 covariant derivatives VR,V?R = VVR,. ...

Recall that VR is the tensor with components given by R;jz;m as in Ex-
ercise 13. The term “universal” means that the coefficients of the polynomials
depend only on the dimension of the manifold. In this theorem, we assume that
the components of the curvature tensor are computed in Riemannian normal
coordinates. This theorem shows that if we know the curvature tensor in a
neighborhood of a point, and if we know the collection of radial geodesics at the
point (so that we know what the normal coordinate chart is), then the metric at
that point is determined, at least for real analytic metrics. This is a technical
formulation of Riemann’s intuition that the curvature determines the metric;
another formulation for smooth metrics is in [64, Vol. II].

2.4 The Laplacian in Exponential Coordinates

This technical section gives a formula for the Laplacian in exponential polar
coordinates which will be used in the next chapter.

Fix £ € M and choose a neighborhood U of x which is the diffeomorphic
image of a neighborhood of 0 € T, M under the exponential map. Let {X; =
Xi(y)} be an orthonormal frame of T, M for y € U, and let {#*} be the dual
frame for T;M . Differentiation of functions in the direction X; will be denoted
by Vx, or just V; in agreement with Exercise 13(iv). By Lemma 2.39, the
Laplacian on functions is given by

od = —az'vz'a;Vj = —a,-a;-‘ViVj — ai(V,-Gj)Vj
= —{ai, a’J'-‘}ViV]- + a’]'-‘az-ViVj — ai(Vﬂj)Vj
= —ViVi—a(Vi0")V;,
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where we sum over ¢, j, and note that a; = 0 on functions. Writing Vi =
—TI7,6% (the minus sign is explained in Exercise 13), we have

a,-(ViHj)Vj = —ail“fka’“vj = —F‘;Vj = _VVXiXi’
since a;0* = §%. Thus we obtain
A=-V;V; + vai X;- (2.56)

Now fix r small enough and let S be the sphere in M consisting of all points
of distance r from p. We want to relate A to Ag, the Laplacian on S with
respect to the induced metric.

Exercise 26: Let N be a submanifold of a Riemannian manifold M, and give
N the induced metric. Show that the Levi-Civita connection V on N is given
by

VxY = PyVxY,
where X,Y are tangent to N and Py is the orthogonal projection of T, M to
T.N (see Exercise 11).

Thus the Levi-Civita connection on S is given by VxY = VxY —(VxY, T)T,
where T is the unit tangent vector field to geodesics radiating from p; we may
assume that T = X,,. Set h = (Vx, X}, T); the sum only goes from 1 to n — 1,
since V7T = 0. Then

As = =V;Vj+ Vv, x,~(Vx, X,,T)
= —-V,;V,; + VijXj —h-Vr.

Plugging this last equation into (2.56) gives
A=-VrVr+Ag+h-Vr. (2.57)

In order to simplify the h term, we need to study variations of geodesics.
Recall that a geodesic y(r) can be written as y(r) = exp(rvy'(0)) for small
r. Thus given n € T, )M, for small r,s the set ®(r,s) = exp[r(y'(0) + sn)]
describes a two parameter family of geodesics radiating from +(0) with ®(r,0) =
~(0). We assume that r, s are small enough so that ® is injective except when
r = 0. Let T = d®(9,),X = d®(9s). In particular, X (r,s) measures the
spreading of the geodesics ®(r, s) as s varies, so X is the variational vector field
of the family ®.

Now

VxT —VrX =[X,T] = [d®(d,),d®(0s)] = d®([0r,0s]) =0, (2.58)
so by Theorem 2.25

VrV1X =V1rVxT =VxVrT + R(X, T)T.
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Since V1T = 0, the variation vector field satisfies the Jacobi equation
VrVrX + R(T, X)T = 0. (2.59)

If we consider the Jacobi equation equation restricted to v(r), it becomes a sec-
ond order ODE in r. Its solutions, which are vector fields defined along v called
Jacobi fields, form a vector space of dimension 2n (n = dim M), determined by
the initial values X (0), VX (0).

Note that X = T and X = rT are always Jacobi fields, as both terms in
the Jacobi equation are zero. We claim that any Jacobi field can be uniquely
written as X = aT + brT + Y, where a,b € R and Y is a vector field along vy
which is pointwise perpendicular to 7'. For

2
& X T) = (Ve Ve X, T) = ~(R(T, X)T, T) = 0,
s0 (X, Ty =a+ br. Now set Y(r) = X(r) — aT — brT.

We now relate h to D = D(r) = det(dexp,,), which measures the distortion
of the volume element in T;, M under the exponential map (and thus measures
the volume growth of geodesic balls centered at p). To make sense of the de-
terminant, let ¢ = exp,(r7(0)), and consider the map d(exp,),r(0) : TpyM =
Trr@)TpyM — TyM. Take a parallel orthonormal frame {ey,...,e, =T = 9,}
of tangent vectors along ~(r); the determinant is computed with respect to the
bases {e;(0)},{ei(r)} of T, M, T, M, respectively. It is independent of the choice
of orthonormal basis, as the reader can check that D = det(Pdexp,), where
P:TqM — T,M denotes parallel translation along .

Now let Z; be the Jacobi fields with initial conditions Z;(0) = 0, V1 Z;(0) =
e;. We claim that

i = exp[r(T(0) + se;(0))]. (2.60)
o s=0
For r = 0 at p, so the right hand side of (2.60) is zero. Also, V1 = 8, at p, and
S0

VTd% szoexp[r(T(O) +s5€;(0))](0) = dis Szodir TzoeXp[T(T(O) + sei(0))]
d
= 3| _,TO+5e0) =eil0).

Thus the two sides of (2.60) are Jacobi fields with the same initial conditions,
and so are equal.

By a similar argument, we have Z,, = rT. The other Jacobi fields are of the
form Z; = ;T + byrT + Y;, with Y; L T. However, it follows easily from the
initial conditions for Z; that a; = b; =0, and so Z; 1L T.

Let A = A(r) be the matrix determined by the equation Ae;(r) = Z;(r).
Since we have identified T,7()Tp M with T, M by translation by rT'(0), D is
given by the determinant of the matrix whose columns are the vectors

dis SZOeXP[TT(O) + se;] = dis szoexp[r(T(o) + se;/r)]-
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For fixed i, this vector field along ~y is just r—!'Z; by (2.60). Thus D =
r~"det(A).

Exercise 27: Let A(r) be a one parameter family of invertible matrices. Show
that
O, det(A) = det(A) - tr(A719,A).

Hint: We may assume that A has complex coefficients. First show the exercise
for A diagonal. Then show the exercise for A diagonalizable.

By the exercise, we have
D7'VrD = r"det '(A)(—nr "' det(A) + r "V det(A))
= —% Ftr(A71VA). (2.61)
To calculate the last term, we note that for i < n,
(A7'VrA)e; = A 'V (4e;),
since Vre; = 0. Thus
(A'VrA)e; = A 'V Z; = AV, T = A AV, T =V, T
by (2.58). Moreover, AT = Ae, = Z, =rT, so
(A™'VrAe, = A'VprT = A7'T =r~'T.

Combining this with (2.61) gives

n—1

D7'VyD = —g (T + Y (Ve T e
i=1
n—1 i
= - r - Z<v6i6i7T>
i=1
= —(";1) —h. (2.62)

Here we have used
0= ei(ei,T) = (Veiei,T) =+ (ei, VeiT>-
Substituting (2.62) into (2.57) gives

Theorem 2.63 Let r be the radial coordinate in exponential polar coordinates
centered at p, let T = 0,, let D = det(d expp) and let Ag be the Laplacian on
the sphere S of constant distance ro from p, for ro small. Then for ¢ € S and
feC>®(M), we have

n—1

AF(@) = —VaVrf(@) + Asfla) ( ; D—lvTD) Ve (a):

r
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In particular, if f is a function of r alone, then

92 n—1 Opdet(dexp,) o, f
or? r det(dexp,) )

Af =

89



Chapter 3

The Construction of the
Heat Kernel

In this chapter we will construct the heat kernels for the Laplacians on func-
tions and forms on compact manifolds, and so finally complete the proof of the
Hodge theorem given in Chapter 1. At the same time we will study the short
time behavior of the heat kernels. This short time behavior contains a sur-
prising amount of geometric information, so much so that M. Kac asked in the
1960s whether the spectrum of the Laplacian, which determines the short time
behavior, in fact determines the Riemannian metric itself [37]. We’ll return to
this question in Chapter 5.

The chapter is organized as follows. In §3.1 we assume the existence of the
heat kernel for functions and show that the formal expression given in Chapter
1 for the heat kernel is valid. In §3.2 we construct the heat kernel for functions
and indicate the modifications necessary to construct the heat kernel for forms.
In §3.3 we study the short time behavior of the heat kernel for functions and
forms.

Throughout this chapter M will denote a closed connected oriented manifold
of dimension n. The material for this chapter is taken from [4] and [56].

3.1 Preliminary Results for the Heat Kernel

In §1.3.2, we derived the formal expression for the heat kernel,

e(tv Z, y) = Z e_)\itd)i (.Z')(f), (y)a

where {¢;} is an orthonormal basis of L?(M) satisfying A¢; = \;¢;. We now
show that this expression is valid, provided the heat kernel exists.

Proposition 3.1 Assume there exists e(t,z,y) € C®°(RT x M x M) satisfying
(at + Ay)e(t,.'L',y) = 07

90
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lim [ e(t,z,y)f(y) dvoly, = f(z),

=0 J s

for all f € L?>(M). Then we have the pointwise convergence

tmy Ze /\t(lsz l )

Moreover, e(t,z,y) is the heat kernel.

PROOF. Let {¢;} be as above. Fix t and z and write e(t,z,-) =Y fi(t, z)d;: (),
with equality in L?(M) in the variable y. Thus fi(t,z) = [, e(t,z,y)¢:(y) dy,
where we abbreviate dvol, by dy. Then

atf’t(tax) = at /M e(t7$7y)¢’t(y) dy
- - / Ayt z,9) - $i(y) dy
M
- —/ e(t, 7,5) Ay i(y) dy

= _/\/ (t,z,9)9iy
= _)\fztx)

and so
filt,x) = ki(x)e Mt

Express an arbitrary element f € L2(M) as f = Y a;¢;. Then

f() = lim [ e(t,z,y)f(y) dy
M

t—0
- lim /Mze*ftkz«x)@-(y)%jamj(y) d

— —Ait
= }g% e " 'ki(z)a;

= Z ki(x)ai,
which implies k;(z) = ¢;(z). Thus

e(t,z,y) = Ze Mtg(x)¢i(y)

in L2(M) in the y variable for fixed t,z. As a result, there exists a sequence
i — 0o such that

Z e Ni(2)i(y) — e(t,z,y)
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pointwise for any ¢,z and for almost all y.
By Parseval’s equality,

At At

> ¢i(T)e

<€(t/2,.’lj‘, -),6(t/2,:1:l,-)) = Zei ¢z($l)

Z e M i(2)¢i('),

and so Y, e~ *itg;(z)¢i(z') converges pointwise with limit continuous in ¢,z,z’.
Therefore Y, e~ *'¢;(z)¢; (y) — e(t,z,y) pointwise everywhere.
We leave the last statement to the reader.

Exercise 1: Show that Y, e *i'¢;(z)¢;(y) converges to e(t,z,y) in Hy(M x M),
for each t > 0 and for all s € R. Conclude that we can take integrals and
derivatives of the sum term by term. Hint: use Proposition 1.38.

Corollary 3.2 Ze‘*"t = Tr(e %) :/ e(t,z,z) dz.
- M
K3

PROOF. Since ), e~*'¢;(z)? converges to e(t,z,z) for any = and each term is
nonnegative, we have

/ e(t,z,z) dz
M

=it 4 ()2 — =it (2
/M S ) de =3 e /M bi()? do
Ze—kit — Tr(e_tA).

3.2 Construction of the Heat Kernel

3.2.1 Construction of the Parametrix

In this subsection we will construct a parametrix for the heat kernel, i.e. an
approximate solution of the heat equation defined for z,y close.

Lemma 3.3 A(fg) = (Af)g — 2(df,dg) + fAg.

PROOF. Since the statement is a pointwise equality, we may check it at a point x
using Riemannian normal coordinates centered at x. We may certainly arrange
9:5(x) = d;; by choosing orthonormal coordinates in T, M, and we know that
9;9;k(xz) = 0 by Exercise 25, Chapter 2. Thus

1 y 92
A=——-0,i(y/detg g¥0,;) = — —,
\/M z( € gg z) Z(8$’)2
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and
= 6_f i 99 . i\ _ Of 09 ;
<df7 dg) - <6xz b 8 .7 d 63}1 aw"g
of 09
pt Oxt Ozd”

The lemma follows immediately.

By Theorem 2.53, there exists € > 0 such that for all z € M, the exponential
map exp, takes B.(0) C T, M diffeomorphically onto a neighborhood V,, of z.
For y € V,, set r(x,y) to be the length of the radial geodesic joining z to y; note
that r(z,y) < e. We define a neighborhood of the diagonal in M x M by U, =

2
{(z,y) C M x M :y € Vy,7(2,y) < €}. Then G(t,z,y) = (4nt)~"/2e=" & €
C*®(R*xU,). We make an educated guess that the solution of the heat equation
on U, is a modification of the Euclidean heat kernel. So fix k € ZT and set

S = Sk = S(t,z,y) = (4mt) Fe 5" (ug(z,y) + - . . + up(z, y)t*),

for unknown functions u; € C*(U,). We would like to have (0; + A,)S = 0.
Now

a8 n r? &
E = G((— +4t2)(Uo+ .+t uk)
+(ug + 2upt + ... + kuktkl)) : (3.4)

and

AyS = (AG)(ug + .. +upt") — 2(dG, d(ug + - .. + upt"))

+GA(ug + ... + uxt®), (3.5)
by Lemma 3.3. Also,
9’G  0G n—1
AG = —— — —
¢ or2  Oor ( + r )
n r? r D'
- (5-15) 0+ 556 (36)

by Theorem 2.63 of Chapter 2, where D' denotes 9,D, and

(dG, d(up + . . . + upth))

oG oG
<8 dr + 80d0 d(ug + .. +uktk)>

_ 6G 611,0 6UO k@ UL k%
= <8_d 6—d+80d0+ 4t 5 ——dr +1t 60d0
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<%dr, %dr +...+ tk%dr>

or or
_ 06 (0w
- or <6r tee 8r>
_ (0w K Qe
= _zt(ar +... .+t 6r>G’ (3.7

where (0G/08)dd has the obvious meaning and we have used Gauss’ lemma.
Combining (3.4)—(3.7), we get

DI
(3 +A,)S = G-(ul—|—...+ktk_1uk—|—2%3(uo+.n+tkuk) (3.8)
r Oug © OUk k
+t <—6r +...+t —6r)+Ayu0+...+t Ayuy |.

While it is not possible in general to pick the u; so that the right hand side
of (3.8) is zero, we can make this expression vanish up to the highest power
of t, i.e. we can solve (8, + A)S = (4nt)~Fe="" @W/44tk Ay (2,y) by making
all the terms containing ¢*~("/?)~1 vanish, for i = 0,1, ..., k. This leads to the
following series of so-called transport equations; the first equation is obtained
by setting the coefficient of ¢~ ("/2)~1 equal to zero, and the second by doing the

same for ¢i=(n/2)=1,
Oug r D'
TW + 53“0 = 0, (39)
ou; r D'
- — L )u; i— = , 1=1,... k. 1
r6r+(2D+z>u+Ayu 1 0, i=1 k (3.10)
(3.9) reduces to
Jlnug 10
=———1InD
ar 29r

so ug = kD2, where k = k(6). Since we want uo defined at r = 0, we must set
k equal to a constant. Setting k = 1, we get

uo(z,y) = S — : (3.11)

D(expz " (v))
and in particular

uo(z,z) = 1.

Exercise 2: What goes wrong with the proof below if we pick k to be a constant
other than one?

To find the other u;, we first solve a simpler version of (3.10),

Oui  (TD" ) =0
"or 2D vi="5
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This has the solution kr—*D~'/2  with k = k(f) arbitrary. Operating with
hindsight, we assume that w; has the form w; = kr—*D~'/2, but now with
k = k(r). Plugging this expression into (3.10) gives

ok i
o = —DY2(Au;_y)ri L.
Let z(s) be the unit speed geodesic from z toy , s € [0,7]. Au;_1 is a function of
r along this geodesic, and so the last equation can be solved by an r integration.
Substituting this solution into the assumed form for u;, we obtain

we,) = @)D ) [ Do)A@l p)s s (312)
0
In summary, for u; defined inductively by (3.11), (3.12), we have

(B + A,)S = (4nt)~F e~ ¢k Auy, (3.13)

An induction argument shows that u; € C*®°(U,). We now extend S to a
function on all of M x M. Pick a bump function n € C*°(M x M) with n(z,y) €
[0,1], n=00on M x M — U, and = 1 on U,/,. Set Hy = nS, € C°(RT x
M x M).

In the next definition, we use the notation R® = R+ U {0}.

Definition: A parametrix for the heat operator 0;+ Ay is a function H(t,z,y) €
C®(R* x M x M) such that (a) (0; + Ay)H € C°(R® x M x M) and (b)

Lemma 3.14 Hj, is a parametriz if k > n/2. In fact (0, + Ay)Hy € C'(RO x
MxM)ifk>1+%.

PROOF. We leave the second statement to the reader. To see that (0; + Ay)H
extends to ¢ = 0, first note that H = 0 on R x (M x M —U,), and so (8;+A,)H
trivially extends. On R* x U /s,
n 7‘2
(8t + Ay)Hk = (6 + Ay)Sk = (47rt)77tkefﬁAuk — 0,

as t — 0. Thus (0; + Ay)H again extends by zero on this set. Finally, on
Uc - Ue/27

(0 + Ay)Hk = (0 + Ay)Sk — 2(dn,dSy) + (Ayn)Sk
= () Fe Tt 3,),

for some function ¢(t,z,y) € C*°(R*T x M x M) with at most a pole of order
t~! at t = 0. Since r > £, we may extend (9; + Ay)H by zero.
To finish the proof, we must show that

limy | (4t)" % T n(a,g) (ol ) + .+ ue(a, 1) F )y = (o).
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Now

lim [ (4mt)™ 5 (2, y)e™ T ui(z,y) f (y)dy
—0 M

2

= lim (4nt) " En(z,y)e™ T ui(z,y) f(y)dy
=0 Be/Z(w)

2

+ lim (Ant) "2 n(z,y)e” 7 ui(z,y) f(y)dy.
{20 /M —B. /s (x)

The second integral on the right hand side vanishes as ¢ — 0, since r > €/2.
Using the exponential map as a coordinate chart, the first integral on the right
hand side becomes an ordinary integral over R™ = T, M:

/ () En(z, e uiz, y) f(y)dy
B/a(z)

r2(0,v)

= / (4nt)~Fe” o w;(z,exp, v)f(exp, v)D(v)dv! ... dv"
Be/2(0)CT. M

2 v
/ (4nt) "% e~ o u;i(z,exp, v) f(exp, v)D(v)dv' ...dv",
WM

n 7‘2
with u; extended to be zero off B, /5(z). Since (47t)~2e~ % is the ordinary heat
kernel of R™, as t — 0 the last integral converges to

Since ug(z,z) = 1, we see that

lim [ (4rt) e Tz, y)uo(z, u) f(y)dy = f(z),

t—0 M
and
n 7‘2 ;
lim [ (4nt)”ze” @ n(z,y)t'ui(z,y) f(y)dy =0,
t—0 M
for ¢ > 0.

3.2.2 The Heat Kernel for Functions

In this subsection we will finish the construction of the heat kernel for functions.
Recall that we have a parametrix Hy(t,z,y) which is a good approximation to
the heat kernel for x,y close and t small. To promote this approximation to
a full heat kernel, we use the technique of iterating Duhamel’s formula. This
construction is technical, so we will begin with a general discussion.

Let X,Y be operators on a Hilbert space of functions. We will assume that
X,Y have well defined heat operators e *X etV i.e. a semigroup of bounded
self-adjoint operators satisfying

(0 + X)e X f =0, %im et Xf =1,
—0
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and similarly for Y. In the following, we will denote expressions such as e *X f
just by e *X.

Proposition 3.15 (Duhamel’s formula) Provided e *X+Y) egists, we have

t
o HXAY) _ X _/ o~ (=) (X+Y)yp=sX o
0

PROOF. (see [18]) As in (1.26), e7*X is injective and we denote its (possi-
bly unbounded) inverse by e!X. (Since e~*X is injective and self-adjoint, it is
surjective.) Set B(t) = e *X+Y)e!X Then

% = e‘t(X+Y)(—(X + Y))etX + e HXAY) ot X x —e_t(X+Y)Y€tXa

since formally (and rigorously by the spectral theory of unbounded operators)
eX X = XetX. Thus

t
e X 1= - [Ce X ye g,
0
and so

t
o UXAY) _ X _ _/ e # XAV )y (50X gg
0

¢
—/ e () (XHY)ye—sX gg
0

Given operators A(t), B(t) on our Hilbert space, set
¢
AxB= / A(t — s)B(s) ds.
0

For example, we may rewrite Duhamel’s formula as
e~ HXHY) _ o—tX _ o—UXHY)  (yo—tX),

We denote the A-fold product A x...* A by A** and set A*! = A. It is easy to
check that * is associative, so the notation is unambiguous.

Corollary 3.16 We have
eTtXFY) — o=t X L NT(1)ib 4 (1),

n
=1

J

where
bn — e—tX * (Ye—tX)*n

and
- eft(X+Y) % (YeftX)*n.
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ProOOF. The proof is by induction on n. For n = 0, the corollary reduces to
Duhamel’s formula (with by = 0). For the induction step, we apply Duhamel’s
formula to the e *X*Y) term in r, to get

rn = (eftX _ eft(X+Y) % (YeftX)) % (YeftX)*n

= bn — Tn+1-

The corollary follows.

Given X,Y, we can construct the heat operator for X + Y from the heat
operator of X from the corollary:

e D DC Ve (3.17)
A=1

provided r,,+1 — 0 in the Hilbert space. We now adapt this expression formally
to our setup. Let A(t) be the operator on L?(M,g) with kernel H(t,z,y) =
Hy(t,z,y). We very dangerously assume that A(¢) is like a heat operator, so
that there exists an operator X on L? such that (8; + X)A(t) = 0. Thus
e tX = A(t) and (0; + X)H = 0.Set Y = A— X and K = (8; + A)H. Note that
the kernel of Y A(t) is just Y, H (¢, z,y). Extend the Hilbert space H of functions
to the space of time dependent functions H x R. Then e~t¥X acts on this space
by

¢
—tX _ _ v
e " Y(t,x) —/0 dH/MH(t 0,x,2)0(0, z)dvol(z)

(see Exercise 5, Chapter 4). Thus if B(t) is any operator with kernel B(t,z,y),
A x B has kernel

t
0 M

Interpreting (3.17) at the level of kernels gives

e(t,z,y) = H(t,z,y) +[H* Y (D) (A - X)H)?(¢t,2,y)
A=1

= H(t,z,y) +[H Y (D0 + A)H)™ (¢, 2,9)
A=1

= H(t,z,y) +[H Y (-1 E*(t,z,y).
A=1
This is our formal expression for the heat kernel.
It is remarkable that this formal procedure actually works, as we will now

show. Of course, the hard work involves controlling the error term r,,. To begin,
for A,B € C°(R® x M x M), note that

t
(A% B)(t2,y) = / de/ A(0,7,q)B(t — 0,q,)dg € CO(R® x M x M).
0 M
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Lemma 3.18 Set Kj, = (0;+Ay)Hy. Then Qr = > 5o, (-1 K} exists and
is in C'(R® x M x M) if k > | + (n/2). Moreover, given T > 0, there exists
C = C(T) so that |Qk(t,z,y)| < C-t*~% for all t € [0,T).

Proor. Writing Kj, = (0; + Ay)(nSk) and performing the differentiation, we
easily get
K| < AT)e* /2 < AT)T* VP = B,

for some constants A = A(T'), B. (The reader should check that, as in the proof
of Lemma 3.14, |K}| does not blow up as t — 0, as dn and An have support
bounded away from the diagonal in M x M.)

We claim that

AB)\—lv)\—ltk—(n/Q)-i—A—l

K*At <
B eyl < goa G-+ T +AD)’

(3.19)

where V' = vol(M). The case A = 1 has just been done, provided we readjust
the definition of A. Assuming the claim for A — 1, we have

t
K| < / b /M KL (0,2, 9)] 1Kt — 6,4, )dg
0
t A—27/A—29k—(n/2)+A—2
/ d0/ AB 22 () -

_ AB M 1yA-2y /t grk—(n/2+2-2 49
(k=53+1)...(k—%+X=-2) Jo

IA

Evaluating the last integral finishes the claim.
The right hand side of (3.19) is bounded by a constant times

(th))\fltkf(n/ﬂ
Fk—%+X-2)

(3.20)

so the ratio test shows that Y 5, |K}*| converges. This easily implies that
S (DMK EY converges to a continuous function in ¢, 2,y if k > 2. The
estimate (3.20) also implies |Qx| < C-t¥=("/2) for some constant C. We leave to
the reader similar estimates on the derivatives of K;* which show that Q € C!
ifk>1+ 3.

Lemma 3.21 (i) If P € C°(R® x M x M), then P * Hy € C'(R* x M x M),
ifk>1+m.
(ii) (9 + A)(P * Hy) = P+ P Kg if k > 2+ 2.

PRrOoOF. (i) is left for the reader; the problem is that Hy blows up at zero. For
(ii), by the Leibniz rule,

t
G+A)P+H) = (@+A4,) / 8 /Mpw,x,q)Hk(t—o,q,y) dq
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s—t

= lim P(s,z,q)Hi(t — s,q,y) dgq
M
¢
+/ d0/ P0,z,q) - O:Hy(t —6,q,y) dg
0 M
t
+/ d0/ P(8,2,q) - AyHi(t — 0,4,y) dg
0 M
P(t,z,y)

t
+/ de/ P(6,2,q) - (8 + Ay)H(t — 8,4,y) dq
0 M
P+ Px K.

We now finally produce the heat kernel for functions.

Theorem 3.22 Set e(t,z,y) = Hi(t,z,y) — Qr * Hp(t,z,y). Then e(t,z,y) €
C®(R* x M x M) is independent of k if k > 2+ 2 and is the heat kernel.

PROOF. By our hypothesis on k, e(t, z,y) is C2. The proof of Proposition 3.1
in fact only uses this amount of differentiability, so to prove the theorem, it
suffices to show that e(t,z,y) satisfies the hypotheses of the proposition. By
Lemma 3.21,

(at + Ay)e(tvmv y) = (at + Ay)(Hk — Qp * Hk)
= Kp—Qr— Qr* Ky
= K- DMK - YK K
A=1 A=1
= 0.

We also have

lim [ e(t,e,y)f(n)dy = lm(/MHk(t,w,y)f(y)dy

i
t—=0 J s t—0

_ /M(Qk x Hk)(t,x,y)f(y)dy>

f@) = lim [ (Qx * Hy)(t,2,y) f (y)dy.

M
Now Ry = Qi/(t*("/?) is bounded for all ¢ in some finite interval, so by
Lemma 3.14, for & > 2,

lim | (Qk * H)(t,2,9)f (y)dy = lim ¢*~ (/2 / (R * Hi)(t,2,y) f (y)dy = 0.
50 J =0 M
Thus e(t,z,y) is the heat kernel, and by the uniqueness of the heat kernel must
be independent of k. Finally, Hy — Qy, * Hy, is in C*~("/2) (Rt x M x M) for
any k, i.e. e(t,z,y) € C®(R*T x M x M).
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Exercise 3: Given ¢ > 0,T > 0 and © € M, show that e(t,z,y) = O(t) for
t € (0,T] and y € M \ Bc(x). Hint: Show that this estimate is true for Ky, and
hence for K,i‘ and Q. The integrals for K,’c\ can be handled as in Lemma 4.23.

The construction of the heat kernel for forms follows along the same lines.
First, we prove a product rule for A* on forms as in Lemma 3.3.

Exercise 4: On a Riemannian manifold, define an operation { , ), : ToM ®
(AMT*MQTM) — AFT? M as the linear extension of a®(B1®62) — {(a, B2)B1.
This is a type of contraction. Show that for a function f and a k-form w, we
have

Ak () = (A flw — 2(df, Vo) + fAw.

Hint: By Taylor’s theorem and Exercise 25, Chapter 2, we know that in Rie-
mannian normal coordinates centered at x, g;;(y) = 8;; + O(r?(z,y)) fory close
to x. This implies that to prove the exercise at xr, we may assume that the
metric is flat near x — i.e. g;;(y) = 05 (why?).

Continuing with the construction, we must alter (3.12) by replacing the
term Ayu;_1(2(s),y) with ||sAyu;—1(z(s),y), where ||; denotes parallel trans-
lation along the geodesic z(-) from z(s) to . We then define Sy, Hy, K}, as for
functions. To compute the growth of K}, we use the pointwise Hodge norms
|w|2 = (w,w)z on w € A*¥T*M. The analogue of Lemma 3.18 then holds. The
rest of the construction is straightforward. Complete details are in [56].

3.3 The Asymptotics of the Heat Kernel

In accordance with §1.1, we write A(t) ~ Zzozko byt if for all N > ko,

Note that > bit*, which is called the asymptotic expansion of A(t), need not
converge for any value of ¢.

Proposition 3.23 e(t,z,z) has the asymptotic expansion
o0
e(t,z,z) ~ (4nt)~"/? Zuk(m,w)tk.
k=0
PRrOOF. We know
e(ta , .’L’) = (Hk - Qk * Hk)(t, z, .’L’),

for any k >> 0. Since |Qx| < C - t*("/2) we have (47t)"/?|Qy, * Hy| < C - tF+1,
As (47t)"2Hy(t, 2, 2) = uo(®,x) + w1 (z, )t + ... + ug(z, z)t*, we see that

(Amt)2e(t, x, ) = uo(x,x) + ... +up(x, 2)t* + R(t, ),
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where lim;_,o(R(t, z)/t*) = 0.

Exercise 5: Show that for x,y close enough, we have

—r2(z,y)/4t

et y) — gy Yo Uz, y)th=(/2)
lim

t—0 tN =0

Conclude as in Ezercise 8 that for x # vy, e(t,z,y) ~ 0.
(i) It is unclear from the construction of u;(x,y) whether u;(x,y) = ui(y, x).
Does this symmetry follow from the symmetry of e(t,x,y)?

This gives the important asymptotic expansion for the trace of the heat
kernel:

Theorem 3.24 Let {)\;} be the spectrum of the Laplacian on functions on

(M,g). Then
ST et~ (ant) 2 S agtt,
i k=0
with
a :/ ug(z,x) dvol(x).
M
PROOF.
Ze_)\it — / e(t,z,z) ~ / (47Tt)_"/2 Zuk(m,»'lf)tk dvol
7 M M k
~  (4t)"/? Z (/ ug (2, T) dvol) tk.
P M

We can now give the first example of how the spectrum of the Laplacian on
functions determines interesting geometric quantites. We say that two Rieman-
nian manifolds are isospectral if the eigenvalues of their Laplacians on functions,
counted with multiplicities, coincide.

Corollary 3.25 Let M and N be compact isospectral Riemannian manifolds.
Then M and N have the same dimension and the same volume.

PRroOF. If {\;} denotes the spectrum for M and N, and if dim M = m,dim N =
n, we have

(drt) 2 gj ([ wm) e ~ e
~ (4wt)—“/2g( [ ) e
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This immediately implies m = n. Thus

mm%ﬂ&%%m—ﬁﬁmm

~  (4mt)~m/? Z (/M uM (z,2) — /NukN(:c,:c)) tk.

k=1

| w@a) = [ oo,

and by iterating this argument,

/MukM(x,x) =/Nuiv($7$)a

for all k. In particular, since ug(z,z) = 1, we obtain vol(M) = vol(N).

Again, this implies

Exercise 6: Show that for the circle of circumference 27, we have u;(xz,x) =0
for i > 0. This recovers Jacobi’s formula (Theorem 1.12). Conclude that any
manifold isospectral to this circle must be isometric to this circle. Hint: From
§1.1, the heat kernel on S' is asymptotic to the heat kernel on R restricted to
an interval of length 2m.

The proof shows that in fact there are an infinite sequence of obstructions to
two manifolds being isospectral, namely the f  Uk- Since the first integral con-
tains basic geometric information, it is natural to investigate the other integrals.
We will now begin to compute u;(z,z). Recall that R,, VR,, V2R,, ... denote
the covariant derivatives of the curvature tensor at z, and that a polynomial P in
the curvature and its covariant derivatives is called universal if its coefficients de-
pend only on the dimension of M. We use the notation P(R;, VR, ..., VFR,)
to denote a polynomial in the components of the curvature tensor and its co-
variant derivatives, computed in a Riemannian normal coordinate chart at x.

Lemma 3.26 On an n-manifold,

u1(z, ) Pi'(Ry),
ui(z,2) = PRy, VRy,V?R,,...,V*™*R,), i>2,

for some universal polynomials P

Proor. Of course, ug(z,x) = 1, but note further that for y close to =z,
uo(z,y) = det™1/2 g(y) has a Taylor expansion in the components of y, with
coefficients universal polynomials in R,, VR,,..., because (i) the g;; have such
a Taylor expansion by Theorem 2.55, and (i) #~!/? has its ordinary Taylor ex-
pansion. Assume by induction that u;—1(x,y) has a Taylor expansion in y, with
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coefficients given by universal polynomials in the curvature and its covariant
derivatives, for all z,y € M close enough. We have the recursion formula

i) =~ (@,y) detly)~* / det(x(s))* Ayui 1 (2(5), y)s' " ds,

where r = d(z,y) and z(s) is the geodesic from x to y = x(r). Note that if
y = (y',...,y") in Riemannian normal coordinates at z, then r(y) = gi;y'y’
(check this), and so r—(y) has a Taylor expansion in y, with coefficients given
by universal polynomials as above.

Exercise 7: Show that if u;—1(x,y) satisfies the induction hypothesis for all
z,y close, then so does Ayu;_1(x,y). Hint: Use the local expression (1.14) for
A, and show that g has such a Taylor exzpansion.

It follows from the exercise and the last equation that wu;(x,y) also satis-
fies the induction hypothesis. Setting r = 0 computes u;(z,z), which is just
the constant term in the Taylor expansion of u;(z,y), and is thus a universal
polynomial in the curvature and its covariant derivatives.

We now determine which curvature terms may occur in the u;(z,z) by a
scaling argument.

Exercise 8: (i) Pick A € R and consider the scaled metric \%g. Show that
AN =\~ 2A9, where A9 is the Laplacian for the metric g. Conclude that the
spectrum of AN'9 is {A72\;}, where {\;} is the spectrum of AY.

(it) Show that if {¢;} is an orthomormal basis of L*(M,g) consisting of
eigenfunctions of A9, then {\~"/2¢;} is an orthonormal basis of L?(M,\?g)
consisting of eigenfunctions of AN,

(i) Let Rg,Vg denote the curvature tensor and the iterated covariant de-
rivative for the metric g, respectively. Show that V];ggR)\2g = /\*z’kV’;RQ.

Let uf(z,z) denote the asymptotic coefficients for the heat kernel for the
metric g.

Lemma 3.27 For A € R, uzzg(x,x) = A2k (2, 2).
Proo¥F. By Proposition 3.1 and the last exercise, we have

Hma) = PP

= X Ze** ()

= A" ()\ %t z, ).
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Thus

1 A2 2 _ _
e up Yz, a)th ~ eNI(t,z,m) = N "I\t @, 1)
&

W ;“i(x, z) (A2t

1 —2k k
W ZA ui(w,x)t ;
k

which implies
Mg _ -2k, 9
up ¥ = A" "uy,.

Fix i and n. Let M = {m} denote the set of monomials in P]*, and let m;(g)
be this monomial computed for a metric g on an n-manifold. Each m;(g) is of
the form (V¥ R)P1 ... .- (V%< R)Ps for some natural numbers ki, ..., kg; p1, .- -, Py
depending on j (but not on g).

Lemma 3.28 For any monomial (VK1 R)P1 - ... (VFaR)Pa in PP, we have

Proor. We know that

u;\2g(m,$) =A% (z,x) = A7 Z m;(g).

mjEeM
On the other hand, since V’;ggRAzg = X2 *VFR, by Exercise 8, we have

wiez) = > mi(\g)

m; EM

Z A Es(2+ks)l)smj (9).

mjEM

Combining these two equations gives two equal polynomials in A, which implies
that the coeflicients and exponents in the polynomials must agree. This easily
gives

—2i ==Y (2+ ky)ps

8

for each monomial.

In particular, when i = 1 each monomial in P{* satisfies 1 = > _(14(ks/2))ps,
which shows that the only possible monomial has k1 = 0 and no other k’s. In
other words, P is a linear function with no constant term, and thus u(z, z) is a



106 CHAPTER 3. THE CONSTRUCTION OF THE HEAT KERNEL

linear function of the components of the curvature tensor at x, with no covariant
derivative terms appearing. This monomial cannot be, say, some R;jx; at x, as
this component depends on the choice of coordinate chart, while uy (z, z) is inde-
pendent of choice of coordinates (since e(t, z, z) is). The expression R;;x R¥*! is
independent of the coordinate chart, but is quadratic in the curvature. A little
more experimenting should convince the reader that the only linear combina-
tion of curvature components that produces a well defined function u; (z,z) on
a manifold is the scalar curvature s(x) = R:; Thus there exists a constant C
such that uq(z,z) = C - s(z). We really only care whether or not the constant
is nonzero.

Proposition 3.29 u,(z,z) = ¢s(z).

PROOF. We just sketch the proof; details are in [4, pp. 221-222]. Because
Pp* is a universal polynomial, it suffices to compute the constant C' on one n-
manifold, which we take to be S™ with the standard metric. On this manifold,
we can calculate explicitly in Riemannian normal coordinates. For example,
for y close to z, write y = exp, rv, for some v € T, M with |v| = 1. Then
det g(exp, rv) = (r lsinr)" 1, and so

i (n=1)
o(r) = wo(z,exp, rv) = (Sl¥
_ (n=1) , (n-1)(Gn-1) 4 6
= 1+ 13 e+ 1440 r* +0(r),
as r — 0. Moreover, Theorem 2.63 gives, for 7 € [0, 1],
Ayug(z, exp, Trv)
o _ \COSTT
= ")+ (=D (o)
- (” — +0((Tr)2)>
2 —
+(n = 1) (%(1 - (T;) - 0((77«)4))) (” Lor 4 O(TT)3> .
T

We leave to the reader the computations of the Taylor expansions at r» = 0 for
(r~tsinr)~("=1/2 etc. Performing the change of variables 77 = s in (3.12),
and plugging all these expansions into the formula

1
/ V/det exp,, (T7v) Ayuo(z, exp, Trv) dr,
0

ui(x,exp, rv) =

1
\/detexp_ rv
we get up (T, exp, ry) = W + O(r?). Thus
n(n —1)

6

on S™. By Exercise 8, Chapter 2, s(z) = n(n — 1) for all z € S™, which gives
the result.

ui(z,z) =
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As anticipated, the calculation of u; gives another topological obstruction
to manifolds having the same spectrum.

Theorem 3.30 Let (M, g) and (N, h) be compact isospectral surfaces. Then M
and N are diffeomorphic.

PROOF. As noted in the proof of Corollary 3.25, we have

/M uM (z,z) dvol(z) = /Nu{\'(:c,x) dvol(z).

On a surface, the scalar curvature is twice the Gaussian curvature, so by the
Gauss-Bonnet theorem,

6mx (M) :/ u} (z,z) dvol(z) :/ ul (z,2) dvol(z) = 6mx(N).
M N
However, oriented surfaces with the same Euler characteristic are diffeomorphic.

The corresponding results for us(z,x) are not encouraging. It is shown in
[30] that

1 .. .
(2Riju R () + 2R, R7*(z) + 55°(z) — 12As(z));

uy(x,x) = 360

as with uy, it is relatively easy to determine which curvature terms occur in us,
but nontrivial to determine the coefficients of the terms. Unfortunately, || M U2
has no topological significance. The best one can do is to prove results such
as: if (M, g) and (N, h) are isospectral three-manifolds, and if M has constant
sectional curvature, then so does N [4, Prop. E. IV.18].

The results for the higher u; are downright discouraging. We have

_ ijkl;
uz(z,2) = C - Rijri;m RV™™ + ..,

where R7Fm = gma Riikl, and we have omitted approximately 40 terms. At the
next stage, u4 contains over 200 terms, some involving four covariant derivatives.
Thus, while the higher u; tell us more and more information about the geometry
of isospectral manifolds, this information rapidly becomes too complicated to
be of use.

Another possibility is to compute the asymptotics for the heat kernels on
p-forms. As for functions, it can be shown that

Pt,0,9) = 37 e (@) © 61(y),

where {¢;} is an orthonormal basis of L2A*T*M with A¥¢; = X\;¢;. As before,

Ze At — Ty( *tAp):/ tr eP(t,z, ) dx,
M
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where tr = tr, denotes the pointwise trace on A*T*M ® A¥T*M given by the
metric, as in Exercise 7.

Exercise 9: Let I = (iy,...,ip) and set dz! = dz'' A...Adz% as usual. Show
that if o = arj(z,y)de! @dy’ (where J is another multi-index of length p) is the
local expression for a double form o, then tr, a(x,z) dvol(z) = arsdz! A xdz”.

Patodi’s construction of the heat kernel for forms yields an asymptotic ex-
pansion of double forms

1 oo
ep(t,.’E,lT) ~ W Zuz(.’ﬂ,_’[:)tk
k=0

Thus

1
§ —Ait E k
€ ~ (4mt)n/2 (/Mtr ug) s
k

which as before implies that manifolds whose Laplacians on p-forms are isospec-
tral have identical values for [ tr(uf) for all k. However, scaling arguments as
for functions show that tr(u}) contains the same curvature terms as uj, with
possibly different coefficients. Thus there is no new topological information in
these asymptotic expansions, and the new geometric information is not helpful.

Nevertheless, in the next chapter we will show that certain combinations
of these asymptotic coefficients tr u% for different p contain very important
geometric and topological information.

3.4 Positivity of the Heat Kernel

In the Brownian motion model of heat flow on functions, we think of e(t,z,y)
as the probability that a particle starting at  will end up at y in time ¢. This
is not a precise interpretation, but it suggests that e(¢,z,y) should be positive
for all ¢, z,y, as we will show in this section.

In the proof, we only show e(t,z,y) > 0 and then appeal to a maximum
principle to get strict inequality. We won’t cover the maximum principle here,
as we only need e(t, z,y) > 0 for the proof of the Chern-Gauss-Bonnet theorem
in Chapter 4.

Theorem 3.31 For all t,z,y, we have e(t,z,y) > 0.

ProoF. We follow [16]. Pick a large integer N and € > 0 such that ug(z,y) is
defined for k= 1,..., N for all z,y with r(z,y) <e. Fix yo € M, T > 0, pick a
small positive number ¢ and set R = Rs.7 = M x [0,T]\ (Bc(yo) % [0,4]).

As a function of x, we claim that e(t, z,yo), dze(t, z,y0), Aze(t, z,yo) are in
L?(R). For e(t,z,y0), the only problem is the behavior of the heat kernel at
t = 0. However, we have deleted the neighborhood of yy, where the heat kernel
blows up as t — 0, and away from this neighborhood the heat kernel vanishes
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as t = 0 by Exercise 5. Moreover, since ug(z,z) = 1 > 0, there is a constant
Kn > 0 such that e(t,z,y) > —Knt" on R. Thus we can use Fubini’s theorem
to establish e(t,z,y) € L?(R). The arguments for the other functions are similar;
one must establish asymptotic expansions for these functions as in Exercise 5
via the (unproven) estimates at the end of Lemma 3.18.

We group some technical properties needed for the proof as an exercise.

Exercise 10: (i) Let u € Hi(M). Set

co={5

Show that u_ € Hy(M). Hint: Take smooth functions u; with u; — u in Hj.
Show by smoothing (u;)— that (u;)— € Hy. Now show (u;)— — u_ in Hy. Note
that this proof does not work in H.
(ii) Consider d as a bounded operator taking Hy(M) to L?AYT*M. Show
that for u € Hy
_ [ du(z), u(z) <0,
du_(w) = { 0, u(z) > 0.
(iii) For f € L2AYT*M,u € Hy (M), show that (f,du) = (5 f,u), where { , )
denotes the L? inner products.
(iv) Show that d;le(t,z,y)_|* = 2(Oce(t, z,y)_,e(t,z,y)_). Hint: derive an
expression for Oie(t,z,y)_ similar to the expression for du_ in (ii).
(v) Let M be a manifold with boundary. Use Stokes’ theorem to show that
for smooth functions f,g on M,

/ (df,dg)dvol = / (Af, g)dvol — / xfdg.
M M oM
Conclude that the same equation holds if g € Hy(M).

Set e = e(t, z,y0)- Using (ii), (iii) and (v) (Stokes’ theorem for each value of
t €10,4]), we get

0 < /(de,de_) dvol(z)dt
R

/(Ae,e_)—/ xe_de
R BBe(yo)X[O)‘;]

= —/(Bte,e_)—/ xe_de. (3.32)
R 0B (yo) x[0,0]

Since ;e = Ore whenever e_ # 0, the first term in the last line of (3.32) is

_/R@te,e_) _/the_,e_) = —%/Ratle—l2

1 1
——/ Ie—l2+—/ le-|*. (3.33)
2 Jmx{T} 2 JB.(yo) {6}
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The additional integral in the last line over (M \ B(yo)) x {0} vanishes by
Exercise 3. It follows from the asymptotic expansion in Exercise 5 that the last
terms in (3.32), (3.33) vanish as § — 0. (For the term in (3.33), we use again
that uo(z,y0) > 0 for € small enough, and so e_ = 0 on this neighborhood.)

Thus we obtain )
0 S __/ |€_|2,
2 JmxqT)

and so e = 0. Now that we have e > 0, the maximum principle for parabolic
operators implies e > 0 [57].



Chapter 4

The Heat Equation
Approach to the
Atiyah-Singer Index
Theorem

The Atiyah-Singer index theorem is a deep generalization of the classical Gauss-
Bonnet theorem, including as special cases the Chern-Gauss-Bonnet theorem,
the Hirzebruch signature theorem, and the Hirzebruch-Riemann-Roch theorem.
Although the index theorem is about 35 years old at this point, it continues
to have new applications in areas as apparently diverse as number theory and
mathematical physics. The index theorem and its various generalizations (fam-
ilies index theorem, K-theoretic versions, etc.) admit many interpretations. We
will choose the point of view that the index theorem expresses topological quan-
tities in terms of geometric ones, just as in the Gauss-Bonnet theorem. This
viewpoint leads to a heat equation proof of the index theorem, suggested by
McKean and Singer [43] in the late 1960s and established by Gilkey [29], Patodi
[55, 56], and Atiyah, Bott and Patodi [1] in the early 1970s. The heat equation
method has since been refined by Getzler [28] (cf. [5]).

In this chapter, we will give a complete heat equation proof for the Chern-
Gauss-Bonnet theorem, and state without proof the Hirzebruch signature theo-
rem, the Hirzebruch-Riemann-Roch theorem, and the Atiyah-Singer index the-
orem. Complete proofs can be found in [5] and [30]. We have also included a
short introduction to characteristic classes.

4.1 The Chern-Gauss-Bonnet Theorem

The key ideas in the heat equation method are (i) by Chapter 1, the long time
behavior of the heat operator for the Laplacian on forms is controlled by the

111
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topology of the manifold in the form of the de Rham cohomology, (ii) the short
time behavior is controlled by the geometry of the asymptotic expansion, as
explained in Chapter 3, and (iii) certain combinations of heat operators will
have time independent behavior. This combination of topological information
therefore has a geometric interpretation, made explicit by the Chern-Gauss-
Bonnet theorem.

4.1.1 The Heat Equation Approach

Let M be a closed, oriented, connected n-manifold. We begin with a crucial
observation of McKean and Singer [43]:

Lemma 4.1 For A € R*, let E] be the (possibly trivial) \-eigenspace for A9.

Then the sequence

0—E % L E—0

18 exact.

PROOF. If w € EY, then A ldw = dA% = Adw, so dw € EIt'. Thus the
sequence is well defined, and of course has d> = 0. If w € E{ has dw = 0, then
A = AYw = (§d + dé)w = déw, and so w = d (50w) , since X # 0.

Exercise 1: Show that the lemma is equivalent to the statement that

d+6: P EF — P EF!
k k

is an isomorphism. Conclude that

> (-1)?dim E{ =0.

q

Corollary 4.2 Let {\!} be the spectrum of AY. Then

Y (1)1 et = Y (~1)¢ dim Ker AL,

q q

PRrOOF. By the exercise,
!
I ISES WD D
q i q
where the sum "' is only over those i for which A? = 0. Thus

ZI e~ Nt = dim Ker AY.
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As a result,

DD et =3 -y e

q

is independent of ¢, which of course means that its long time behavior is the same
as its short time behavior. We know that the long time behavior of Tr e *A" is
given by the de Rham cohomology, while the short time behavior is controlled
by the geometry of the manifold. In particular,

x(M) = Z(—l)q dim H} (M) = Z(—l)q dim Ker A?

q q

= Z(—l)qTr e A

q

= Z(—l)q/ tr ed(¢t, z,z) dvol , (4.3)

q M

which yields

=

(M) ~ 47rt </ Z 1)%tr u} (z,z) dvol ) tk,

where the u] are the coefficients in the asymptotic expansion of Tr e~ A% Since
x(M) is independent of ¢, only the constant term on the right hand side can be
nonzero.

Theorem 4.4

s n . . _ 0, k
(4m) ™/ /MFZO(—D tr ui(x, @) dvol —{ X(M), &

)
, dim M even.

[N

INIEINTE

Exercise 2: Re-prove the following result from Chapter 1: if 7 : M' — M is
an L-fold cover, then x(M') = £- x(M). Hint: We may assume that M is even
dimensional. Fiz a metric g on M and give M' the pullback metric. Show that

tr uz’Ml (z',2") = tr ulM(n(z'),w(2')), for all z' € M' and all g, k.

Exercise 3: Show that tr uj(z,z) = tr u, ‘(z,z). Hint: first show that

_ q _ n—q
AT _ A

*e * .

Corollary 4.5 (Gauss-Bonnet Theorem) Let M be a closed oriented sur-
face with Gaussian curvature K and area element dA. Then

:i/ K dA.
27TM
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PROOF. By the last theorem and exercise, together with Proposition 3.29,

1 2 1 [ 2K
= — bl q q = — _— = 1
x (M) y /qu_o( 1)%tr u] dA i /M( 3 tr uy) dA. (4.6)

We know that tr ul(z,z) = C - s(z) = 2C - K(z) for some constant C. Since
the standard S? has constant Gaussian curvature one, we get

1 1 11

Therefore, C' = —(2/3), and (4.6) becomes x(M) = (2r)~" [,, K dA.

Of course, this is a very elaborate and ungeometric proof of the Gauss-
Bonnet theorem, but it shows that Gauss-Bonnet generalizes to a result holding
in all dimensions. In odd dimensions, it only re-proves the result x(M) = 0
(check), but in even dimensions it shows that the Euler characteristic can be
obtained by integrating an expression in the curvature and its covariant deriva-
tives. On the other hand, we expect this expression to be quite unmanageable
in high dimensions, as it involves an enormous number of curvature terms with
many covariant derivatives.

In contrast, Chern’s generalization of the Gauss-Bonnet theorem [17] from
1944 is as follows:

Theorem 4.7 (Chern-Gauss-Bonnet Theorem) Let dim M = n be even.

Then
nm=/w,
M

where the Euler form w is given in a local orthonormal frame by

w=cn »_ (g0 0)(sgn T)Ro1)e2)r(1)r(@) - - - Ro(n-1)o(n)r(n-1)r(n) dvol ,
o, TEX,

with ¥, the group of permutations of {1,...,n} and

(-1
ENCORE PN
Computing in an orthonormal frame can be done as in (2.34). Equivalently,
we can choose a coordinate chart (z!,...,2") and an orthonormal frame (X1,

.., Xpn) of T'M near a given point, and transform the R;;x, for the z coordinates
into the corresponding R;jre = Rf; ¢ for the frame:

Rg‘kl = qurin(mp)Xj (2%) Xk (z") X¢(2°).

The (—1)™/2 factor in ¢, is due to our sign convention for R;jx in (2.9). To
make sure the signs are right, we check the case dim M = 2. By (2.19), the
Euler form equals

1

1 1
——(R1212 — Ri221 — Ro112 + R2121)dvol = ——Rj212 dvol = —KdA.
8w 27 2w
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Thus the Chern-Gauss-Bonnet theorem generalizes the classical Gauss-Bonnet
theorem.

In higher dimensions it is more difficult to extract the curvature information
encoded in the Euler form. For example, if M has constant negative curvature,
then by Hirzebruch proportionality [33] the sign of each term in the Euler form
is (—1)4im M/2_ The Chern-Gauss-Bonnet theorem thus confirms the Hopf con-
jecture for compact manifolds of constant negative curvature (regardless of the
existence of such manifolds).

Moreover, we have the following topological obstruction to a manifold ad-
miting a flat metric.

Corollary 4.8 Let M be a compact oriented manifold admitting a flat metric.
Then x(M) = 0.

While this is not helpful in odd dimensions, it provides many examples of even
dimensional manifolds (spheres, projective spaces) which do not admit flat met-
rics.

Exercise 4: Show that the Euler form for a four-manifold equals

167r2 Z 1)%r ul(z,x).

Warning: This is a nontrivial calculation. As in the proof of Gauss-Bonnet, you
must calculate tr ul(z,z) = AR;j1y R + BR;; R + Cs®> + DAs by computing
x(M) on enough four-manifolds to determine the constants A, B,C,D. Then
you must do the same for tr u3(x, ). Finally, you have to rewrite the Euler form
to see that it agrees with 3 (=1)%tr uj(z,z). In particular, the coefficient of As
that appears in this sum must vanish, since As involves two covariant derivatives
of the curvature (why?), and the Euler form has no covariant derivatives. For
details, see [4], [30].

These considerations led McKean and Singer to conjecture that in all even
dimensions,

w(z) "/2 Z 1)%r un (z,z).

As in the last exercise, this conjecture would imply a “fantastic cancellation”
of the numerous terms containing covariant derivatives of the curvature in the
individual tr u? /Q(z, z). This conjecture was first shown by Patodi in 1972 using
very technical classical tensor calculus, and his approach was extended in [1] to
a heat equation proof of the Atiyah-Singer index theorem (see §4.2.3). A much
clearer proof was given by Getzler around 1983, who realized that the necessary
cancellations reflected properties of endomorphisms of Clifford algebras. In the
next subsection, we will prove the Chern-Gauss-Bonnet theorem along these
lines.



116 CHAPTER 4. THE ATIYAH-SINGER INDEX THEOREM

It might be wondered whether the Chern-Gauss-Bonnet theorem can be
refined to show that the individual Betti numbers are given by the integral of a
universal local expression €*(g) = ek(g)(x) in the Riemannian metric. In fact,

no such formula is possible. For if g*(M = [ye € ,and m: M' — M is an
{-fold cover of M, then as in Exercise 2,
srar) = [ o=t [ )= 5ton),
MI

since w : (M',7*g) — (M, g) is a local isometry. However, the Betti numbers of
covering spaces do not satisfy this relation in general.

4.1.2 Proof of the Chern-Gauss-Bonnet Theorem

In this subsection we will present a fermion calculus proof of the Chern-Gauss-
Bonnet theorem due to Parker [53]. Other fermion calculus proofs exist [18, 23],
but involve either stochastic methods or more involved functional analysis.

We may assume that dim M = n is even. To fix the notation, let z,y € M
have distance r = r(z,y) small enough so that there exists a unique minimal
geodesic y(s) from z to y. We define an approximate heat kernel for the Lapla-
cian on functions by

_ 1 (g
E(t,m‘,y) = W@ ( ’y)/4tu0(w,y). (4_9)

Recall from (3.11) that uo(z,y) = (det(P(z,y)dexp,)) /2, where P(z,y) :
TyM — Ty M denotes parallel translation along ~.

Parallel translation induces a linear isomorphism P = P(z,y) : A*T;M —
AT M. Let A = V*V + R be the Weitzenbtck decomposition of the Laplacian
on forms of mixed degree. We define an approximate heat kernel on forms by

é(t,x,y)zEu,m,y)-exp(— [ @ mp)a.0 ds)P<x,y). (4.10)

(On functions, & = FE, and on n-forms we omit the exponential term.) More
explicitly, let {6#?(s)} be a parallel orthonormal frame of AT}, M and set

R (50" (s) = a’(s)87(s). For a form v = v78' defined along 7,

(PT'RP(y(s),2))(v) = vr(z)aj(s)8” ().

The motivation for this formula will be given below.

For fixed t, z, the heat kernel e(t, z, z) for the Laplacian A acting on forms of
mixed degree can be considered as an endomorphism of A*Ty M. In the notation
of §2.2.2, this endomorphism has a component indexed by {1,...,n}{1,...,n},
which we denote by e(t,z,z)2,. For any endomorphism A of A*TFM, we let
exp(A) denote the power series expansion > (A*/k!); in all the cases we will
consider, A will be nilpotent, so this sum will be finite.
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Theorem 4.11 There exists a positive constant C such that for all t € (0,1]
(e — &)(t,z,x)2n|| < Ct. (4.12)
Here the norm of an element in
Hom(A*T M, AN*T; M) = (AT, M)* ® (A*T, M)

is induced by the Riemannian norms on 7, M, Ty M.

The proof of the theorem will be given below. As for its significance, we know
that the parametrix Hy for the heat kernel satisfies ||e(t,z,x) — Hy (¢, z,2)||
< Ct for k >> 0, but Hy involves many covariant derivatives of the curva-
ture. In contrast, € has no curvature derivatives, and the theorem says that the
supertrace of e — € is already O(%).

In particular, we see from (4.3) that

(M) = /Mtr((—l)Fe(t,m,m)) dvol
= / t((—1)F e(t, 7, 3)2n) dvol ,
M

by Proposition 2.30. Assuming the theorem, we obtain
(M) = / tr((=1)7&(t, 2, 2)an)dvol + O(t)
M

as t | 0. x(M) is independent of ¢, so
(M) = / t((—1)F&(t, 2, 2)n) dvol .
M

Since E(t,z,z) = (4nt)~™? and P(z,z) = Id, we find

1

/M tr((—=1)F (exp(—tR(x)))2n) dvol . (4.13)
We claim that
exp(—tR)2n = %(—1)’“15’“}2’c + O(tF+1), (4.14)

where k = n/2. Writing R = R;jreajajaja; and expanding exp(—tR) as a
power series, we see that the first term in exp(—tR)a, is (1/k!)(—1)*t* R since
no coefficient of a lower power of ¢ contains n a’s and n a*’s. This may not be the
only term contributing to (e~ %)y, ; higher powers of —t R may have components
of degree 2n, since reshuffling the a’s and a*’s to get them in increasing order
introduces terms of lower degree via (2.27). However, these higher contributions
are all O(t**1), so the claim is established.
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By (4.13), (4.14), we have

_1\k
x(M) = % /M tr((—l)FRk) dvol + O(t),

and as above we conclude that

(-1)* / F pk
M)=-~—"— -1)"R 1.
X(01) = o | (=DFRY dvo
It follows from Lemma 2.35 that

_1\k

in the notation of Theorem 4.7. This completes the proof of the Chern-Gauss-
Bonnet theorem, modulo the proof of Theorem 4.11.

The proof of this latter theorem proceeds in a number of steps.
Lemma 4.15 There exists a constant C > 0 such that
(e —&)(t, z,y)|l < Ctlle(t, z, y)ll (4.16)

fort <1 and x,y close.

PRrOOF. In the case of functions, we have

efr2(z,y)/4t

(e = E)(t,2,y)]

e—r2(z,y)/4t

u (.’IJ )(i uk(x’y)tk-i-()(tN))‘
(4mt)n/2 ol& Y uo(z,y)

k=1

IA

Ct|E(t,2,y)|,

since ug(x,y) is nonzero for z,y close.
In the case of forms, we first set

ei(t,z,y) = E(t,z,y)P(z,y).

This is just the first parametrix for the heat kernel on forms. As above, we have

lI(e = ex) (2, 9)|| < Ctller(t, 2,)]|-

Moreover,

(e —ex)(t =, y)ll
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= ||BEt zy)- Kexp(— /0 t(P—lRP)(v(s),m) ds)>P(may) -P (w,y)]H

t t
= E(t,x,y)-[(Id—/o 19—1RP+%(/0 P7'RP)? +..)P(z,y)

~Pla)]

= ||Bt,2,9) - 1014 = R@)t + 0@ P(ayy) - P(w,y)]H
Ctlles(t, z,y)l|- (4.17)

IA

(In the second line, we used the definition of the exponential, and in the fourth
line we applied Taylor’s theorem to the integrals.) Combining the last two
equations gives

(e —&)(t, z, y)|l < Ctllex(t, =, ). (4.18)

We have to replace e; on the right hand side of (4.18) with e. From (4.17) we
have ||te; (t, z,y) — té(t,z,y)|| < Ct2e(t,z,y), and substituting this in the right
hand side of (4.18) gives ||(e — &)(t,z,v)|| < Ct||le(t,z,y)|| + C*2||e(t, z,y)]|.
Continuing this process leads to

l(e—e)t,z,y)l < Ctlet z,y)|+C*|elt,z,y)ll + ...+ CVtV|et, z,y)|
+CNtN |le(t, z, )],

for any N > 0. The last term is O(t2) for N sufficiently large, since ||e(t, z,y)|| =
O(t~™/?), and so we obtain

(e —e)(t, z,y)ll < Ctllet, z, y)ll,

which finishes the proof.

Remark: Using the techniques in the last paragraph, we can also show that
for the heat kernel on functions,

(e = E)(t, z,y)| < Ctle(t, z,y)|- (4.19)

We now fix £ € M and set r = r(y) = r(z,y) to be the distance from z
to y. There exists p > 0 such that there is a unique minimal geodesic from z
to y whenever r(y) < p. Choose a smooth bump function ¢(y) = ¢(r(y)) with
o(y) € [0,1], ¢(r) = 1 for r < p/4, and ¢(r) = 0 for 7 > p/2. Since € is a
parametrix, ¢é(t,z,y) approaches the delta function centered at z as t — 0.
The defining properties (1.24) of the heat kernel give

(675 + Az)(e - ¢é)(t7x7y) = _(675 + Az)¢é(taxay)7
(4.20)

hm(e - ¢é)(t7$7y) = 07
t—0
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where the last line is an equality in L2(A* ® A*).

Exercise 5: Given a time dependent form ¢ (zx,t) € A*T*M ® R, show that the
solution ¢(x,t) to (O + A)p(x,t) = ¢(z,t) is given by

t
¢($,t) :/0 ds/Me(t—s,x,y)A*y¢(y,s),

where x, indicates that the star operator acts in the y variable.

By this exercise, the solution to (4.20) is

(e — ge)(t,z,y) / ds/ —8,2,2) Nx,(0 + A)ge(s,z,y). (4.21)
To proceed with this Duhamel-type formula, we need to calculate
(6t + A)¢é(57 2, y)

As a preliminary step, we compute (0; + A)eé(t, x,y) for z,y close. The compu-
tation is fairly horrendous, so keep in mind that we really only care about the
short time behavior of these terms.

Set

t
B(t.ay) = [ PRP((5).2) ds,

so that & = EeBP. We have (9; + A)E = uy *AugE from (3.13). Combining
this with Exercise 4, Chapter 3, we get

0y + Ne(t,z,y) = (0;+A)Ee BP 4+ Ed, (e BP)+ EA(e BP)
-2(V(e B P),VE)

ug ' Auge — Ee PP 'R,P,P + EA(e”2P)
—2(V(e~BP),VE),

where P, = P(y(t),z), Ry = R(v(t)). Here we use VE and dFE interchangeably.

Exercise 6: (i) For fized x,y, parallel translation P is an element of Hom(T, M,
T,M). The bundle Hom(TM,TM) =2 TM ® T*M has a natural connection
V induced from the Levi-Civita connections V,V' on TM,T*M, respectively,
namely

Vwen) =Vwen+weVny

(see Exercise 11, Chapter 2). Check that this connection corresponds to a con-
nection on Hom(TM,TM), denoted ¥V for short, characterized by

Vx(A(V)) = (VxA)(V) + A(VxV),
for A € T(Hom(TM,TM)), V € I(TM), X € T, M.
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(i) Show that parallel translation is parallel in radial directions. In particu-
lar, VxP =0 for all X € T, M. Hint: extend V to a parallel vector field along
radial geodesics at x, and let X be the vector field O, near . V,.(P(V)) =0 by
definition of parallel translation, and similarly V,V = 0. Thus V,.P = 0.

From the exercise, V(e"BP) = (Ve~P)P, so we may drop the parentheses.
Note that Pt_lR.Y(t)Pt is differentiable in ¢. Recalling that P = P(y,x),Ro =
R, we have

_ P 'R,P, + PR, P
(6t+A)é(t,.Z',y) = UO_IAUOé%—Ee*B( t Rt t:’ 0 RO O)t

—Ee BRyP + E(V*V + Ry)(e P P)
—2(Ve BP,VE)

= wuytAugé + Ee PO(t)P + EV*V(e B P)
—2(Ve BP,VE)

= uytAugé + Ee PO(t)P+ V*V(e BP)P 'ePe
—2(Ve B P, Vug)u, ' P~'ePe

P

1
— (Ve BP,vr)P lePe.
2t
In summary, for x,y close we have
(0 + A)é(t,z,y) = Ge,
for
G(t,z,y) = O(t) +uytAug+ V*V(e PP)P~ 1B
—2(Ve BP,Vug)ug' P 'eP?
1
—— (Ve BP,vr2)P~1eB.
2t
Note the O(1/t) term.
Exercise 7: Show that the O(t) term is an endomorphism which has an expan-

ston
Ajt+ Ast® + ...+ AxtN + OV

for any N, where each Ay contains two a’s and two a*’s. Hint: The Tay-
lor series expansion for B in t gives the Ag. In particular, Ay is Ro. Then
Ay = V,Ry. Since V.6 = 0 at z, we have V,a; = Veaf = 0 at . Thus
Ay = =0, Rijreaiajagae. For the higher Ay, note that Vi~'aj = bia}, where
VE-1gi = bjﬂj.

Since ¢ is a radial function, by Gauss’ lemma we get

(O +Az)pe = ¢(0: +Az)e+ Ap-e—2(Ve,Ve)
$GE + Ap - & — 20, - Vye.
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Now
V.e = V.(BeP)P
= —%é + uo(Vruo)é + E(V,e™P)P
= —Zité + uo(Vyup)e + (Vre B)ePe.
This gives

(Or+Az)pe = ¢Ge+ Agp-é
—28T¢(—2Lté + uoV,rup€ — eV, B).

Thus we can write

where H blows up at worst like 1/t as t — 0. Because of the presence of ¢, this
equation holds for all z,y € M.

We wish to substitute (4.22) back into (4.21) in order to estimate e — e.
However, the Heé term may be unintegrable near t = 0 due to the ¢! term on
the region where ¢ is nonconstant. The following technical lemma, shows that
no such problem occurs.

Lemma 4.23 Set = p/12 and let @ = B, ;5(x)\B,4(x). There exist constants
C,86 > 0 such that for 0 <t <1 andr =r(z,y) < p,

ds

—s,x,2) Nx He(s,z y)H < Cexp(—8/t)E(t,z,y). (4.24)

ProOF: We use the convention that C' denotes a constant whose value may
change from line to line in the proof. As in Exercise 3, Chapter 3, the com-
pactness of {(t,z,2z) € [0,1] x M x M : r(z,z) > 3u} implies that the smooth
function ||e(t, z, 2)|| is bounded on this set. Similarly, there exist constants ¢;, ca
such that |H| < ¢;/t and ¢; ' < ||uge P P|| < ¢z on {(s,2,y) € [0,1] x M x M :
r(2,y) < p/2}. Thus the left hand side of (4.24) is bounded above by

t
C/ %/Mﬂs)_n/(l exp(—17(z,y) /4s) dvol..
0 Q

Since r(z,y) > r(z,z) — r(z,y) > 2u > 2r + 20 for some § > 0, we see that
r?(z,y)/4s > r%/2s + 6/t for s € (0,t]. Thus the last integral is bounded above
by

t
Ce %/t / s~ (/D=L exp(—r?/2s) ds,
0
where this C' equals to the old C times the volume of €. There exists a constant

D such that s~ ("/2)~1 < Dexp(r?/4s) < Dexp(r®/4t) for s € (0,1],s < t, so
the last integral is bounded above by

t
Ce™0/t / exp(—r?/4t) ds = Ce™*/* exp(—r [4t) - .
0
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Since t < D'(4xt)~"/2 for some constant D' for t € (0,1], we can bound this
last line by
Ce™ 3/t (4rrt)~™/% exp(—r? /4t).

Finally, since the function wug(z,y) is bounded away from zero on B,(z), this
last expression is bounded above by

Ce 'E,
which finishes the proof.

If we now substitute (4.22) into (4.21) and use this lemma, we obtain

t
et o,y) = elt,zy)+ / ds / eft — 5,2,2) A +.G(s, 2, y)e(s, 2,1)
0 BP/4(E)
+Fe_5/tE’(t,;c,y),

for some bounded function F'. Note that H = G on B,/4 and that the last
integral can be taken over all of M, due to the presence of ¢ in H. For ¢t < 1,
the last term in this equation is bounded above by a constant times ¢V E for any
N > 0. Since E(t,z,y) is O(t") for any N if z # y and is O(t—"™/?) for z = y,
this last term does not contribute to the asymptotics of e — e as t — 0.

Recall that any endomorphism A of A*T*M has the decomposition A =
c!? A;; in the notation of (2.28). We define the £t degree of A to be

4 .
A= E ¢’ Ary;
[T|-+1J|=¢

this notation extends the notation e(t, x, )2, defined previously. Now the iso-
morphism P : A*T;M — A*T;M given by parallel translation yields an iso-
morphism

Hom(A*T; M, A*T;M) = End(A*T;M),
B — P loB,
and so we can define By to be (P~! o B),. In particular,

Id, £=0,

Note that for the composition of endomorphisms, we have
(AB); = > A.By.
a+b=¢
Using Lemma 4.15, we find

¢
ds/ e(t —s,2,2),
/0' BP/4($) Z

IE=e)anll < ‘
a+b=2n
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Az (G(s,2,9)e(s,2,9))

+|Fe_‘5/tE_(t z,y)|

ds e(t—s,2,2)q

By ja(z a+b 2n

A *z (G(s,2,9)€(s,2,9))s

(t—s) Z e(t—s,2,2)q

P/4(w) a+b=2n

ds

Az (G(s, 2, 9)e(s,2,9))s

+|Fe 0t E(t,m,y)|.

To prove Theorem 4.11, we can ignore the last term in this inequality. Compar-
ing the two integrals, we see that the second integral has an additional power
of t coming from the ¢t — s term. Thus it suffices to show that

ds et —s,x,2)a N*,(G(s,2,9)e(s,2,9))p|| < Ct. (4.25)

By /a(z) a,+b 2n

The first step is to estimate &,. As previously noted,
t

B(t,y) = / P'RP(2,(s)) = B(0,) + tR(z) + O(2) = O(t).  (4.26)
0

By Exercise 7, as a nilpotent endomorphism of A*Tj:(s M, R adds in two a;’s
and two a}’s, as does the nilpotent endomorphism B. We have

_1\k( [t p-1 k
(e—B)a: (Z( 1) (fokf') RP) ) . (427)

k a

Clearly the first term on the right hand side of (4.27) that can contribute a of
each of the a;, a} occurs at k the first integer with k > (a/4), and by (4.26), this
contribution is O(t%/*). As in (4.14), this may not be the only term contributing
to (e~P),. However, these higher contributions are all O(t'+(#/4)) and so we
conclude that (e %), = O(t*/4). Since E is a function and hence has E = (E),,
we obtain

le(t, z,9)all = |1 E(t,z,9)(P(z,y) - e~ P)all < CE(t, 2, y)t*/* (4.28)

for some constant C' > 0.
The computation of (Ge), proceeds similarly. For example, one term in
(Ge)p equals

> (V V(e EP)) (P eP) e,
e+ f+g=b
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= Y 0HO(T 059 Bs, 2,y)

e+ f+g=b
= O(s"*)E(s,2,y).

For as in Exercise 7, V*Ve™P is a complicated expression involving covariant
derivatives of B. By that exercise, each covariant derivative term contributes
two a;’s and two a}’s. All other terms in (G&), are also O(s*/4)E(s, z,y), with
one exception: the term

1
(g(Vr Ve BP)P~1ePe), = O(t/H1). (4.29)
Ignoring this term for the moment, we can estimate (4.25) by

ds

e(t—s,x,2)a N*,(G(s,2,9)e(s,2,9))s (4.30)

Boa (z) a+b 2n

ds

w—@wﬂmﬁﬁEu—&a@AnE@amy
B,/a(2) a+b 2n

To proceed, we prove a simple estimate on E. Since the heat kernel on
functions satisfies e(t, z,y) > 0 by Theorem 3.31, we have

E(t —s,z,2)E(s, z,y)dvol,

B,/4(z)

/ le(t — 5,2, 2) (1 + O(t — 8))]
p/4($)

x[e(s, z,¥)(1 + O(s))]dvol,

= e(t — s,x,2)e(s, z,y)dvol, | + O(t)
B,/a(z)
< / e(t —s,z,2)e(s, z,y)dvol, + O(t)
M
= e(t,z,y) +O(1)
= E(t,z,y)(1+0(t) + O(t)
< 2E(t,z,y), (4.31)

for small ¢. Here we have used Lemma 4.15, (4.19) and the trivial estimate
t—s<t.

Except for the term in (4.29), (4.30) is thus bounded above by a constant
times

B(t,2,1) / ds 3 O((t— )*/1)0(s%) = E(t, z,5)O(t™/DH) = O(t).
a+b=2n
(4.32)
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Therefore (4.25) will be shown once we handle the exceptional term (4.29).
For fixed z, this term is O(r) in r = r(=z,y), since Vr? = 2rdr (except at
r = 0 where r is not differentiable). Since it also has a 1/s term in it, (4.29)
contributes a term to the estimate (4.30) of the form

t
/ ds/ E(t —s,2,2)E(s, 2,y)0)O((t — 5)**)O(s®/H=1) dvol,
0 By /a(x)
t
- / ds O(tm/2-1) / O(VE(t — 5,3, 2)E(s, 2,y) dvol.. (4.33)
0 Bp/4(z)

(The O(s(*/9=1)) term comes from

%((VT, Ve BP)p~lePe), = 1 Z (V,e B .eP) e,

c+d=b

(VreB - eP). involves V, B which is treated as in Exercise 7.)
We now set = y and estimate (4.33). Since E is positive, it suffices to
estimate

/ e @ /A=8) (5 ) e (50)/45 dyol.
B,/a()

In Riemannian normal coordinates centered at z, the metric is given by g;;(2) =
8;+0(|z|?), so for small p we can estimate the last integral by a constant times

/ e_lzlz/‘l(t_s)|z|e_‘z‘2/48 dz, (4.34)
|z|<a

where this integral is in R™ and « is some constant.
We claim that this integral is O(t("*t1)/2) for n even. Converting to polar
coordinates, we find that (4.34) is bounded above by a constant times

/a pre—tirl? /as(t=s) g — l/a pe—tir?/as(t=s) g
0 2 -

For n = 0, an explicit integration (from —oo to 0o) shows that the integral
is O(t'/?). For odd n, the right hand integral vanishes. For even n, writing
r™ = ™ 1 and doing an integration by parts gives

/Oé Tneft\r|2/4s(tfs) dr = 2(” - 1)tS(t - 8) /a Tn72eft\r|2/4s(tfs) dr
— O(t(n+1)/2)

by induction.
Plugging this estimate for (4.34) into (4.33), we see that the exceptional
term (4.29) contributes

t
/ ds O(t("/2)—1)o(t(n+1)/2) - O(tn+(1/2))‘
0
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This completes the proof of Theorem 4.11.

Since the key to this hard technical argument is guessing the right approxi-
mate heat kernel (4.10), we should motivate its appearance. Of course, by 1944
it was known that the integrand in the Chern-Gauss-Bonnet theorem must be
the Euler form. The fermion calculus was developed in the early 1980s (although
an earlier version was known to physicists as the Berezin integral, and one can
argue that Patodi’s proof implicitly uses fermion calculus). After the crucial
insight that only e(t, z, )2, contributes to the integrand, it is easy to show, as
we did, that replacing e(t, z, x)2, with &(t, z, z)a, gives the Euler form. So some
clever guesswork could lead to conjecturing Theorem 4.11.

Alternatively, one can argue as follows. The interpretation of heat flow
as Brownian motion leads to the construction of a family of measures pg, the
Wiener measures, on the space of continuous functions C = C([0,¢t], M) from
[0,%] to M with fixed value z¢ at t = 0. For z € C, it is standard to denote z(t)
by z;. If E; denotes expectation with respect to p;, then we have

e "2 f(2) = E(f(x1))

for f € C*°(M). Moreover, if V:M — R is a smooth function, then the
Schrodinger operator O = A + V' has a heat semigroup given by the famous
Feynman-Kac formula

e_tuf(xo) = E(f(mt)efoi V(zs) ds).

On forms, both the Bochner Laplacian V*V and A* generalize the Laplacian
on functions. From the Brownian motion point of view, the Bochner Laplacian
is more natural, in that the Weitzenbéck formula AF = V*V + R yields a
Feynman-Kac formula

_ k
et W (1, .y vp) = E(wg, (V1. .., 0k)),

where vf satisfies the covariant differential equation Vitvf = PEt,mORz,vg . (Since
x is not differentiable in general, this must be interpreted as a stochastic integral
equation.) Thus formally, v} = exp( fot Py, woRs vl ds). A reference for this
material is [23].

The formulas for the heat operators on functions and forms differ superfi-
cially by the term exp( f(f Py, 4oRz, 0] ds). One might expect that for short
time, heat tends to flow along geodesics; ?recise statements and proofs are in
[49], [52]. Thus we can hope to replace [; Py, zoRs,v) ds just by an integral
along the geodesic from z¢ to xz;, at least to O(t). Since we are interested in
e(t,z, ), the term wg(z,y) in e(t,z,y) is just one. Putting this all together,
we conclude (with perhaps little confidence) that é(¢,z,z) should approximate
e(t,z,x) fairly well for small time.
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4.2 The Hirzebruch Signature Theorem and the
Atiyah-Singer Index Theorem

4.2.1 A Survey of Characteristic Forms

In Chapter 1, we saw how to construct de Rham cohomology classes analytically
via the Hodge theorem. In this subsection, we give a quick overview of Chern-
Weil theory, which produces cohomology classes directly from the curvature of a
Riemannian metric. At the end, we outline how these constructions carry over
from the Levi-Civita connection on 7'M to connections on vector bundles.

Let M be a connected, closed, oriented n-manifold as usual. We claim that
the map [ : H75(M) — R given by [w] = [}, w is an isomorphism (see Chapter
1, Exercise 33). The map is well defined by Stokes’ theorem, and is surjective
since fM dvoly > 0 for any metric g. Since H}z(M) = R by Corollary 1.47, the
map must be an isomorphism. As a result, two n-forms are cohomologous iff
their integrals over M are identical.

In particular, the Euler forms w,,w, are in the same cohomology class by
the Chern-Gauss-Bonnet theorem. Thus, in contrast to Hodge theory methods
in which the metric is fixed, the Euler form is a curvature expression whose
cohomology class is independent of the metric.

We now outline the Chern-Weil prescription for producing other expressions
in the curvature whose cohomology class is independent of the metric. Given a
local frame of TM, by which we mean a set {s;(z)} of n linearly independent
vector fields defined over some neighborhood in M, we define the connection
one-forms {w}} for the Levi-Civita connection V by

Vs;(z) = wg (2)si(x).

For example, if s; = 8;, then wi = T} dz’ by Definition 2, Chapter 2. Note
that the wj- are only defined locally, and depend on the choice of local frame.
We also define the curvature two-forms by

i g i Ak
2 = dw) — wi Awj.

We set 2 = (92%) to be the matrix of curvature two-forms and set d2 = (d€2}).
We define multiplication of matrices of forms by the usual matrix multiplication
rule where we wedge the entries:

(a;-) = (bf)(c}c) =3 aj- = b? Ach.

We similary define the Lie bracket of matrices of forms, where the Lie bracket
for matrices is given by [X,Y] = XY —Y X. In particular, we have by definition

1
Q:dw—w/\w:dw—i[w,w]. (4.35)
Exercise 8: (i) Show that if {s;} is an orthonormal frame with dual frame {67}

of one-forms, then . .
Q% = Riy,0" A6,



4.2. INDEX THEOREMS 129

with the curvature tensor components computed in this frame.

(it) Show that if {s;} is an orthonormal frame, then Q; = —O}. Hint: replace
X,Y,Z by sk, s;,5; in the first equation in (2.24).

(#i) Show that if we change from one frame to another, then Q changes
to T71QT, for some invertible n x n matriz T. Conclude that Q is a globally
defined matriz of two-forms, i.e. Q defines a linear transformation (on what
space?) that is independent of coordinates.

(tv) Prove the Bianchi identity

dQ = [w, ]
by differentiating (4.35).

Let M, (F) denote the set of n x n matrices with entries in F, where F is
R or C. Let P : M,(F) — F be an invariant polynomial in the entries of the
matrices, i.e. P(T 1XT) = P(X) for all X € M,(F) and invertible T € M, (F).
For example, we could set P(X) = Tr X, P(X) = det X, or (for F = C) P(X)
could be the i** elementary symmetric polynomial in the eigenvalues of X.
It is a standard result that these examples generate the algebra of invariant
polynomials.

An invariant polynomial P can be evaluated on the matrix 2, if it is under-
stood that the multiplication operations in P are replaced by wedge product, to
produce a form P(Q) € @, A?*T* M. If we assume that P is homogeneous of de-
gree ¢, then P(Q)) € A2¢T* M. By Exercise 8, P(Q) is independent of coordinates
precisely because P is invariant. For example,

Tr(Q) =0 + Q3 + ...+ Q.

However, this expression is zero since (2 is conjugate to a skew-symmetric ma-
trix by the last exercise. The same vanishing occurs for the odd elementary
symmetric polynomials, but the even polynomials need not vanish.

Lemma 4.36 Assume that P is homogeneous of degree q.

(i) P(Q) is always closed.

(i) If Qy is the curvature matrixz associated to a metric g1 on M, then there
exists a (2q — 1)-form 6 = 6(Q, Q1) such that P(Q) = P(Q4) + db.

PROOF. (i) The coefficient C'(X71,...,X,) of t1-.. .-t in P(t1 X1+...+t,X,) is a
symmetric multilinear function of X7, ..., X,. Wecall (1/¢!)C = p(X1,...,X,)
the complete polarization of P. It satisfies p(X,...,X) = P(X). This can be
easily derived from P’s Taylor expansion using

54

C=———— P(t1 X o+t X)),
oty -...-dt, bty (t1 X1 + + 14 q)

The invariance of P implies

p(T'X\T,... . T'X,T) = p(X1,...,X,). (4.37)
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Given Y € My, let T'(t) be a one parameter family of invertible matrices with
T(0) =1d,7(0) =Y. Note that

a1 paxr—ix,v),
dt|,_,
Differentiating (4.37) gives
q
> p(Xy,.. . [X5 Y], X)) =0 (4.38)
i=1
But then
dP(Q) = dp(Q,...,Q) =gp(dQ,...,Q)

= qp([Q7w]JQ7"'JQ)=07

by the Bianchi identity and (4.38).

(ii) For t € [0, 1], define a family of operators V; : I'(TM) - T*M @ I'(T M)
by Vi = (1 — )V + tV1, where Vg, V; are the Levi-Civita connections for
g = go, g1, respectively. Equivalently, we have V; = V¢ + ta, for a = V; — V.

Each V; has an associated matrix (w;) of one-forms defined by V.s; =
(wt);'-si; it is easy to check that wy; = wg + ta, where we use a to denote also the
matrix of one-forms for the operator Vo — V;. We define a “curvature” matrix
by () = (dw; — (1/2)[wy, we]) with Qg = Q.

A direct computation gives

1
Q = Qo + t(da — [wo,]) — §t2[a,a].
Thus

%%P(Qt) = plda— [wo,a] — tlasa], ..., Q)
= p(da — [wi,al, Ly ..., Q).
Now
dp(a, Qy, -, Q) = p(da, U, - - ., Q) — (g — Dpla, [we, ], U, - - -, Q).
Moreover, as in (4.38),

p([wt,a], Qt, feey Qt) — (q — l)p(a, [wt, Qt],Qt ey Qt) = 0

(The minus sign appears in the last equation because the first entry in p is a
one-form rather than a two-form.) Combining the last three equations gives

1d

EEP(Qt) = dp(a,Qt, .. -7Qt);
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and so
1 1
P() = P(Q) = [ dpla ... ) dtzd(q/ p(oy Q. 0) dt)-
0 0

Setting (2, ) = q f, p(a, Q, ..., Q)dt finishes the proof.

Thus to each invariant polynomial P, homogeneous of degree ¢, and each
Riemannian metric g on M, we may associate a characteristic form P(Q) such
that the characteristic class [P(Q)] € H3%(M) is independent of g. For the
even elementary symmetric polynomial P»;, the associated cohomology class
(—1)![P2;(2)] € HAL(M) is called the i*" Pontrjagin class of M; any character-
istic form P(2) is a universal polynomial in the Py;(12).

Exercise 9: Let f : N — M be an immersion. If g is a metric on M, show
that f*g is a metric on N. Show that for any invariant polynomial P, we have
[P(Q-4)] = F*[P(Q)] € HIL(N). Hint: first show that Qp-y = f*Q,.

If we restrict attention to a subset of M,(R), we may find new exam-
ples of invariant polynomials. In particular, for n even consider the equation
P(T7'XT) = P(X) for X a skew-symmetric n x n matrix and 7' € SO(n).
There is exactly one new invariant P (up to multiplication by a constant), the
Pfaffian Pf(X) of the matrix. The Pfaffian is a polynomial with integral co-
efficients characterized (up to sign) by the equation (Pf(X))? = det X. For
example,

Pf( _Oa 8 ) =a, (4.39)

and if (a;;) is a skew-symmetric 4 x 4 matrix, then Pf(a;;) = a12a34 — a13024 +
a14a23. In particular, if dim M = 2, then with respect to a local orthonormal
frame {6'} of T*M we have

o (0 o
=y )

which implies by Exercise 8
Pf(Q) = Q3 = R},,0" A6 = 2R} ,0" A 67 = —2K dA.

(By the remark at the beginning of this section, the fact that [Pf(w)] is inde-
pendent of the metric is thus equivalent to [ u K dA being independent of the
metric, which finally furnishes an explanation for the remarkable nature of the
Gauss-Bonnet theorem mentioned in Theorem 2.6.) In fact, the Euler form w
of §4.1 is precisely given by

g2
_ ((471))n ),

as the next exercise shows.
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Exercise 10: (i) Let V be an oriented real vector space of dimension n = 2m
with positively oriented basis 11, ...,¥n. Set ) = (Y1,...,%,). Let w = (wy;) be
a skew-symmetric matriz. Consider the two-form in A*V given by %wjkwj Ay,
which we denote by %'gbthp. Define the Pfaffian of w by

1,1 m
— (§¢tw¢) =Pi(w)1 A... Ay, (4.40)
Show that Pf(w) is a homogeneous polynomial of degree m in the entries of w,
and verify (4.39).

(1) Now assume that V' has an inner product and that 1, ...,%, and pi,
-, Uy are two positively oriented bases. Let w:V — V be a skew-adjoint trans-
formation with matrices (w;/’j), (wfs), with respect to the ¢ and p bases. Show
that

Pf(AwA?) = Pf(w) det(A),

where A is the matriz expressing v; in terms of pj. Conclude that Pf(w) is an
SO(n) invariant polynomial on skew-symmetric matrices. Show also that

Pf(w¥)n A ... Athp = PEW")pr Ao A pin.

We denote either side of this equation by Pf(w)dvol, a well defined element of
AV

(i1i) Complexify V to Vo = V ®r C. Consider the skew-Hermitian trans-
formation iw on V. Check that its eigenvalues are all real, and that if v is
an eigenvector, then so is its complex conjugate v. Conclude that Vo has an
orthonormal basis of eigenvectors vi,V1,-..,Vm, Uy, with eigenvalues denoted
+A1, ..., £ . Define real vectors

V1 + U1 l"Ul - Zl'l)_l
= 2 o —
2 7 2

w1 , etc.
Show that ww; = —Ajwe,wws = Ajwe, etc. Conclude that there exists B € O(n)

such that
0 M

-1 0
BwB! =

0 An
—Am 0

Thus Pf(BwB?) = £Pf(w). Use (i) to show that Pf(w) = A1 -...- Ay. Conclude
that Pf(w)? = det(w). Show that in fact Pf(w) is the positive square root of
det(w) by considering the case \y = ... = Ay, = 1.

(iv) Given an oriented Riemannian n-manifold M, choose a local positively
oriented orthonormal frame of T*M. By Exercise 8(ii), the corresponding cur-
vature matriz Q is skew-symmetric. Show that the n-form Pf(Q) is independent
of choice of frame.



4.2. INDEX THEOREMS 133

(v) Relabel Y, ..., 0m as al,...,ak and Ymy1,...,%n 6 a1,...,an in the
notation of §2.2.2. Show that

Tr((=1)Fet/D¥' 0¥y = mIPf(w)t™ + O(t™ ).
Conclude that P£(QY) equals the Euler form up to a factor of (—1)™(4mw)~™.

Remark: We now assume familiarity with singular homology and cohomology.
Define the Euler class e = e(M) to be [w] € HJp(M) = HE,, (M;R); a purely

topological definition of the Euler class is in [47]. From the proof of the de
Rham theorem mentioned in §1.4, it follows that for any closed n-form «,

/| a=(eLp,

where [a] also denotes the singular cohomology class associated to the de Rham
cohomology class of a, and [M] € H,(M;R) is the fundamental homology class.
We have

() @ 3™ (—1)7 dim Ker A7 2 /Mw D (e, [M]).

q

In this equation, (1) follows from choosing a Riemannian metric on M and
using Hodge theory, (2) uses the heat equation method, and (3) uses a combi-
nation of Chern-Weil theory and the de Rham theorem. The final form of our
generalization of the Gauss-Bonnet theorem is thus a theorem in differential
topology,

x(M) = (e, [M]),

proven in our case by geometric means.

Much of this section generalizes to connections on vector bundles. Here a
connection V on a real or complex vector bundle E is a map V : ['(E) —
I'E ® T*M) satisfying V(fs) = df - s + fVs, for all s € T'(E), f € C*(M)
(cf. §2.2, Definition 2). If {s;} is a locally defined set of sections such that
{sj(z)} forms a basis of the fiber E, at each z in the domain of the s;, then
Vs; = wis; for some matrix (w?) of one-forms. We call the matrix of two-forms
(Q%) defined by Q% = dw? — wj A wf the curvature of the connection V.

Exercise 11: (i) Show that the curvature is independent of the choice of the
{s;}, and is thus a globally defined matriz of two-forms.

(ii) Let V be the Levi-Civita connection for a metric g on M. Replace E
above by TM, and show that the two definitions of the curvature matriz of the
Levi-Civita connection coincide. Hint: let sj = 0.

Now assume that E is a complex vector bundle. For any invariant polyno-
mial P, homogeneous of degree g, we have as before that [P(Q)] € H%(M) is
independent of the choice of connection on E, and thus provides a topological
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invariant P(E) of the vector bundle. For the elementary symmetric polynomial
P;, P;(E) is called the i** Chern class of E.

Exercise 12: Let E,F be vector bundles over M, and let f : E — F be a
smooth bundle map. If V is a connection on F, define f*V and show that it is a
connection on E. If P is an invariant polynomial, show that f*P(F) = P(f*F).

4.2.2 The Hirzebruch Signature Theorem

In this subsection we will outline a heat equation proof that the signature, a
subtler topological invariant than the Euler characteristic, is also given by the
integral of a characteristic form. As in the last subsection, this result can be
interpreted as a purely topological statement.

Assume dim M = 4k. Define the intersection pairing

-+ Hip(M) ® Hip(M) » R

by
[w]-[n]=/Mw/\n-

This is a symmetric bilinear form and is well defined by Stokes’ theorem:

/(w+d0)/\n = /wAn+/ df An

M M M

/w/\n+/ d(0/\n)—/ 0 A dn
M M M

[ wnn,

M

as dn = 0. Moreover, the intersection pairing is nondegenerate, i.e. if [w]-[n] = 0
for all [n], then [w] = 0.

Exercise 13: Prove this nondegeneracy. Hint: Pick a harmonic form o € |w].
Show that *o is also harmonic, and that [o] - [*a] > 0, if [w] # 0.

Thus there exists a basis {[w;]} of H2K(M) such that the matrix ([w;] - [w;])
of the intersection pairing diagonalizes to

1

(4.41)

with, say, p plus ones and ¢ minus ones.



4.2. INDEX THEOREMS 135

Remark: For the reader familiar with singular cohomology theory, we can
define the intersection pairing on the free part of HZF, (M;Z) using the cup
product, the singular cohomology analogue of the wedge product in de Rham
cohomology. The matrix of the intersection pairing with respect to any Z-basis
of the free part of H2F, (M;Z) will then have integer coefficients. However, there
exist topological four-manifolds M whose intersection pairing matrix cannot be
diagonalized over Z, i.e. there exists no change of basis transformation with
integral coefficients taking the intersection pairing matrix to the form in (4.41).
Donaldson applied deep geometric techniques to show that if this M possessed a
smooth structure, then the matrix would have to diagonalize via such an integral
transformation ([22],[25]). This produced the first four-dimensional example
of a topological manifold admitting no smooth structure. No such examples
are possible in dimensions one and two. Whether such examples can exist in

dimension three is among the most important unsolved problems in topology.

We set the signature (M) of M to be p — ¢, the number of plus ones
minus the number of minus ones in the diagonalized matrix. The signature is
an invariant of the smooth structure of M, and by de Rham’s theorem it is in
fact a topological invariant. As for the Chern-Gauss-Bonnet theorem, we will
find an analytic method for computing the signature in terms of a Riemannian
metric, and then use the heat equation method to evaluate the signature.

We set the index of an operator D : H — H on a Hilbert space H to be

index(D) = dimKer D — dimKer D*,
provided both numbers on the right hand side are finite.
Exercise 14: Show that x(M) equals the index of

d+46: @ L2A?RT* M — EB L2AZRHIT* g
k k

Let A* = @, L?AT*M be the space of complex valued forms on M*,
and define an endomorphism 7 : A* — A* by 7|p2per 0 = i9(a=D+ky o that
72 = 1. This yields a decomposition A* = AT @A~ into the (sections of) bundles
A* = {w € A*;7w = w} of the £1 eigenspaces of 7. (We are being sloppy in
not distinguishing between a bundle and its sections.) Set d + ¢ = P, (d? + §7)
acting on forms of mixed degree, and let D = (d+0)|5+. D is called the signature
operator on M.

Exercise 15: (i) Show that D : At — A~ and that D* =d+§ : A= — AT,

(ii) Show that if w is a harmonic form in L>2AIT*M , then w+Tw € Ker D|p+.
Conclude that for q # 2k the map w + Tw = w — Tw gives an isomorphism

o~ X
Ker D|A+m(Ker Ad@Ker Atk—a) —> Ker D |A—n(Ker Ai@Ker Atk—a)-
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By the last exercise, we see that

index(D) = index(D|A+nAzk) = dlm Ker (D|A+nA2k) — dln’l Ker (-D|A— mAZk)
= dim(AT NKer (d + 6)|p2x) — dim(A~™ NKer (d + §)|2x)-

For w € AT NKer (d + §)[p2¢, we have xw = w (as 7 = * on A?¥), so

[w]-[w]z/Mw/\w=/Mw/\*w>O.

Similarly, for w € A~ NKer (d + §)|52+, we have [w] - [w] < 0. Since
H2% =~ Ker (d + 6)|p2r = (AT NKer (d + 8)[p2r) @ (A~ NKer (d + 6)[p2x),

it follows that
index(D) = a(M).

Thus, in analogy to Exercise 14, we have an analytic expression for the topo-
logical invariant o(M).

Exercise 16: Show that o(M x N) = o(M)o(N). Hint: Put a product metric
on M x N and express dyxn,0mxn in terms of dar,dn,0nr, 0. Let {ai}, {35}
be bases of Ai;, Ay, respectively, and let {n;},{p;} be bases for AL, Ay, respec-
tively. Show that A}, n has basis {a; ®n;,8; ® p;}, and that Ay, has basis
{o; ® uj, B ®n;}; see Exercise 47, Chapter 1.

The next step is to convert this analytic expression into a geometric one.
Define Laplacians

AT = D*D=(+d)(d+6) =6d+ds: AT — AT,
AT = DD*=6d+dé: A" = A™.

By a straightforward modification of the construction of the heat kernel for
forms, it can be shown that A* have heat kernels e*(¢,z,y) and associated
heat operators etA% Asa result, the Hodge theory techniques of Chapter 1
yield an eigenform decomposition for A* with respect to A%. Similarly, if Ef
is the \-eigenspace for A%, then D : E} — E| is an isomorphism if A # 0.
Thus

o(M) = index(D)=Tre A" — Tre=tA~
1 p—
= @ tra;rk(sv,a:) —tra%(a;,;y)) dvol ,

where

1 = 4
et (t,x,x) ~ e Z a; (z,z)t".
k=0

Even without identifying the form tr aj, — tr a,,, we can still obtain infor-
mation about the signature. Given oriented 4k-manifolds M, My, we form the
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connected sum My# M,y by deleting 4k-disks D; from M;, and then identifying
one boundary component of the cylinder C = S**~! x [0,1] with dD; ~ S*—!
and the other boundary component with 0D,. With a little care, the resulting
manifold is oriented.

Corollary 4.42 o(Mi#Ms) = o(M1) + o(M>).

PROOF. Put metrics g; on M; By a partition of unity argument, we may put
a metric § on M;#M, which agrees with g; on M/ = M; — D;. If we denote
tr aj, (z,2) —tr ay;,(z, ) by Li(z), then Ly (z) for the metric § agrees with Ly, ()
for the metrics g;, for ¢ € M}, since Li(x) is computed by a local expression in
the curvature of the metric and its covariant derivatives. Thus

O'(Ml#MQ) = /M#M Lk:/,Lk"'/CLk'*'/,Lk
1 2 1 2

/Lk_/ Lk+/Lk+/ Lk_/ Ly
My D1 C Mo Do

= U(M1)+/,S4’° Ly + o(M>),

since (taking care for the orientations) S** = D; UC U Dsy. Now H2¥(S%F) =0,
80 [ga L = 0(S**) = 0 for any metric on the sphere. (Note that the smoothing
process used to form § ensures that g; and § patch together to form a smooth
metric on the sphere.) Thus o(Mi# M) = o(M1) + o(Ma).

Exercise 17: (i) If M' is an £-fold cover of M, show that o(M') = £ -a(M).
(i3) Compute x(M#N) in terms of x(M),x(N).

We now identify the integrand tr a;k —tr ag;, in the formula for the signature.
Once again, this expression a priori contains many covariant derivatives of the
curvature, but in fact turns out to be an invariant polynomial in the curvature,
by the work of Patodi [55], Gilkey [29], Atiyah, Bott and Patodi [1], and Getzler
[28]. The supersymmetric derivation of this polynomial is more difficult than in
the Chern-Gauss-Bonnet case, since the square of the signature operator does
not have a good Weitzenbock decomposition (see [5], [59]).

To define this polynomial, called the Hirzebruch L polynomial, it is enough
to define it on a diagonal matrix. We first define a formal Taylor series of the
entries by

A1
Ly,
Aak
_#
tanh \;

4k 2q
= H (1+1/\?— i/\;-‘4—...4—(—1)‘1*122‘13 ’\L+>
‘ q'
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where By is the ¢*® Bernoulli number. We now define the Lj, polynomial to be
the component in degree 2k of the Taylor series for L;. When evaluated on a
curvature matrix, this component is denoted L (Q)a4s.

Exercise 18: Let (M, g), (N, h) be manifolds of dimension 4k, 4L, respectively,
and let g ® h denote the product metric on M x N. Show that Ly¢(Qeen) =
Li,(Qg)Le ().

Theorem 4.43 (Hirzebruch Signature Theorem)

O'(M) = /M Lk(Q)4k

Exercise 19: Compute o(T*) in three ways: (i) directly from its definition,
(i3) by finding the +1 eigenspaces of * on H3n(T*), and (iii) by the Hirzebruch
signature theorem. Hint: In the last two parts, use the flat metric.

As with the Chern-Gauss-Bonnet theorem, the signature theorem admits a
purely topological formulation via Chern-Weil theory and de Rham’s theorem.
Since the L ()4 is a symmetric polynomial of even degree in the entries of the
curvature matrix, it is a polynomial in the even degree elementary symmetric
polynomials, and hence a polynomial in the Pontrjagin forms. For example, if
we denote the i** Pontrjagin form by p; = p;(Q), then

1. Iy = %pl:
2. Ly = 41—5(7p2 —p?) (where p? = p1 Ap1),
3. Ly = 15175 (381ps — Tlpspy — 14p3 + 22pop7 — 3pt).

It is a good exercise to work out at least Ly, L. In particular, we get nontrivial
integrality results. From

o0 =3 [ o,

we must have [, p1 € 3Z. (For us, [,,4p1 is a priori only a real number, but
a more careful treatment of Chern-Weil theory shows that the integral of any
polynomial of degree 4k in the Pontrjagin forms over a 4k-manifold must be
an integer. Here we get the added information that [, , pi is divisible by 3.)
Similarly,

/ . (381py — T1pspr — 14p3 + 22popi — 3p1) € 14175Z.
M

Exercise 20: (i) Let M, N be oriented cobordant manifolds, i.e. there exists an
oriented (4k+1)-manifold W such that OW is the disjoint union of M and —N,
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where —N means N with its orientation reversed. Show that o(M) = o(N).
Hint: Put a metric g on W such that in a collar M x [0,1] of M, g is a product
metric, i.e. g = gn ® dt?, where gar is a metric on M and dt? = dt @ dt is the
standard metric on [0,1]. Make sure that g is also a product metric gy @ dt*
on a collar of N. If i : M — W is the inclusion, show that i*Qy = Qg,,, and
similarly for N. Conclude from Ezercise 9 that i* Li,(Qg)ar = Li(Qg,, )ak. Thus

o(M) - o(N) = /M (R )i — /N L (R )ax = /W dL(y) a5 = 0.

(#i) Note that every oriented closed two-manifold is the boundary of a three-
manifold, and hence is cobordant to the empty set. Why can’t we modify the
previous argument to conclude that the Euler characteristic of a closed oriented
surface is zero?

Remark: The signature theorem, and the companion Hirzebruch-Riemann-
Roch theorem in the next subsection, are striking because of the complicated
coefficients of the characteristic forms. As motivation for the appearance of
the L polynomial, it follows from cobordism theory that since the signature is
unchanged under oriented cobordism, and is multiplicative for product mani-
folds, the signature must be given by a polynomial in the Pontrjagin classes.
(Of course, these properties of the signature have purely topological proofs.)
The signature of the complex projective spaces CP?* is easily seen to be one.
Thus the L polynomial must (i) be multiplicative (cf. Exercise 16), (ii) be a
cobordism invariant (which holds for any polynomial in the Pontrjagin classes
as in Exercise 20), and (iii) have [po« Lk(Qy) = 1. Properties (i), (i) show
that L on a diagonal matrix must be the product of an even function of the
entries, and property (iii) determines that even function. Hirzebruch’s original
topological proof of the signature theorem along these lines is in [47].

4.2.3 The Atiyah-Singer Index Theorem

Before stating the Atiyah-Singer index theorem, we give two more examples
of operators for which the heat equation method yields results along the lines
of the signature theorem. First, let £ be a Hermitian vector bundle over a
Riemannian manifold (M2*, g) with compatible connection V; as in Chapter 2,
this means that d(s,s’) = (Vs,s') + (s,Vs') for all s,s" € I'(E). We form the
twisted exterior derivative dy : A*T*M @ E - A*T*M ® E by the formula
dy(w®s) = dw® s+ (—1)%8y A Vs, where in the last term w is wedged with
the one-form part of Vs. We let Jy be the adjoint of dy with respect to the
inner product on A* ® E induced by

W®sn®s) = / g(w,m)s, ') dvol .
M

Extend 7 to an endomorphism on A* ® E by 7(w ® s) = 7w ® 5. We define AT
as before to be the +1 eigenspaces of 7, and finally define the twisted signature
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operator
Dy =dvy + v AE‘—)AE

While the index of Dy no longer has a topological interpretation, its multiplica-
tivity properties suggest that we should have

index(Dy) = /MZ”c (L () P(02%))2k»

for some characteristic form P applied to the curvature Qy of V.

Exercise 21: Define the Chern character ch(E) = [ch(Qv)] € @, H3%(M) of
E by
A1

ch . = i el
/\n 1=0

Show that ch(E & F) = ch(E) + ch(F) for vector bundles E,F. Hint: Given
connections Vg,V on E, F, define a sum connection on E®F whose curvature

equals
Qv 0
0 Qv, /)’

The methods of the last section lead to the following result.

Theorem 4.44 index(Dy) :/ (Lr(Qg)ch(Qv))2k.
M2k

We now assume familiarity with complex geometry. Let M be a complex
Hermitian manifold of complex dimension n, and E a holomorphic Hermitian
bundle over M with a compatible connection of type (1,1). Let O(E) denote
the sheaf of holomorphic sections of E, and define the arithmetic genus to be

X(M; B) =Y _(~1)? dim HY(M, O(E)),

where the right hand side denotes the sheaf cohomology groups of E. The Dol-
beault theorem (the complex analogue of de Rham’s theorem) and the Hodge
theorem yield x(M; E) = index(0p +0};), where O is the usual holomorphic ex-
terior derivative 0 coupled to the connection on E as with the twisted signature
operator, and

éE + 52‘ . @L2A0’2k(M, E) N ®L2A0,2k+1(M’ E)
k k

acts on the L2 spaces of E valued (0,2k)-forms. Finally, define the Todd poly-
nomial by the formal power series

At 2n A
T - =T —=.
d : H 1—e
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Theorem 4.45 (Hirzebruch-Riemann-Roch theorem)

x(M; E) = /M(Td(Qg)ch(Qv))gn.

Here g is the Hermitian structure on the complexified tangent bundle of M.
Thus Td(f2,) is a polynomial in the Chern classes of (the complexified tangent
bundle of) M. It should be pointed out that the heat equation method has
only been shown for Kihler manifolds, while the theorem holds for all complex
manifolds. Again, the appearance of the Todd polynomial is motivated by the
multiplicativity of the arithmetic genus for product manifolds and the fact that
when E is trivial, 1 = x(CP"; E) = [op. Td(Qy), where g is the Fubini-Study
metric. When dimc M = 1, this theorem reduces to the classical Riemann-Roch
formula, from around 1870, and the formula for higher dimensions was more or
less conjectured by Todd in the 1930s. A very nice historical account is in [20].
Thus Hirzebruch’s theorem was a major advance for complex geometry.

The final example of an index theorem for a geometrically defined operator is
given by the Dirac operator on a spin manifold. We will not define this operator,
but just refer the reader to the thorough discussions in [5], [30], [59].

Roughly speaking, there is an index theorem for any operator which has a
good Hodge theory. More precisely, from §1.3.4, if D : [(E) — ['(F) is a differ-
ential operator between Hermitian vector bundles having Garding’s inequality
for the “Laplacians” D*D, DD*, then the spaces of L? and C'* sections of E, F
have a good decomposition with respect to D*D, DD*, respectively. The exis-
tence of such an inequality depends only on the top order part of D, as a look
at the proof of Garding’s inequality in R" reveals.

We now define the class of elliptic operators, which for our purposes are
operators with Garding’s inequality. Given a differential operator D:T'(E) —
[(F) of order m acting on sections of bundles over M, and a point z € M,
choose a neighborhood of X over which both E and F are trivial. Over this
neighborhood, D can be written as a matrix of partial differential operators:

D= ( > a{j(x)D1>

L|I<m
for multi-indices I = (i1,...,ix) in the notation of (1.16). Now form the top
order symbol matriz by replacing each D! of order m by the scalar £}* - ... &in

for £ = (&,...,&,) € R™. (It is a theorem that this matrix is independent of
trivializations chosen if £ is considered as an element of T, M.) The resulting
matrix is

o(D)(z,€) = ( Y al@ep §>

L|I|=m

Definition: D is elliptic if o(D)(z,£) is invertible for every z € M and for
every nonzero £ € T M.
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Note that the symbol is determined by its values on the unit sphere bundle
in T} M.

Exercise 22: (i) Verify that d+ 6 taking even forms to odd forms is an elliptic
operator. Hint: use Lemma 2.39 to show that

o(d+6)(x,6)(07) = ENOT 41607,

where {6} is an orthonormal frame of T:M and 1¢ denotes interior product.
Show also that the Laplacian on k-forms, A¥, is an elliptic operator, with symbol

a(A*)(z, &) (W) = g7 (2)&&jw = | w.

Note that g (z)&;&; is well defined only if £ is a cotangent vector. Hint: Use
Ezxercise 33, Chapter 1, to reduce the problem to the case k = 0. Then use
(1.14).

(i) Let E,F be trivial line bundles over a manifold of dimension two. Let
D be a positive definite second order differential operator with real coefficients.
Show that D is elliptic iff the curve o(D)(z,&) =1 is an ellipse in Ty M for all
zeM.

For the elliptic operator d + § on even forms, the symbol is a universal
polynomial in the vector £ valid on any Riemannian manifold. For general
elliptic operators, the symbol will not have such a universal nature, and so we
expect the index to depend on the unit sphere bundle XM C T*M. Thus if
the index is a topological invariant, we expect this invariant to be given by
characteristic class information on 7'M, not just on M.

The Atiyah-Singer index theorem identifies the index of an elliptic opera-
tor over M with the integral over TM of a characteristic class on T'M. This
characteristic class has two components: (i) the Chern character of the symbol
bundle ¢ = (D, E, F'), a vector bundle associated to the data (D, E, F'), and
(ii) the Todd class Td(M) of TM & C, the complexified tangent bundle (pulled
back to TM).

To define the symbol bundle, we follow [62]. Let S*,S~ denote the upper
and lower hemispheres of S™ respectively, for n = dim M. Notice that S is
the two point suspension of the equator ST NS~. Glue S~ x E, to ST x F,
along the equator by identifying (£, v) with (§,0(D)(z,&)(v)), where ST NS~ is
identified with the unit cotangent vectors X, M. This gives us a vector bundle
over S™ for each z, and as z varies we obtain a vector bundle ¥ over S™ M, the
suspension bundle associated to L. M.

We have to relate ¥ to a bundle over TM. We can take sums of vector
bundles with respect to Whitney sum, so formally we can take differences of
bundles. (More precisely, we pass from the semigroup of vector bundles over M
to the group of virtual bundles K (M), which is the free group with generators
given by isomorphism classes of vector bundles over M modulo the relation
E, ® E; — (E; ® E»).) The difference ¥ — F is trivial over ST, and so defines a
virtual bundle ¥ — F over S"M /St M. Let B™M denote the unit disk bundle in
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T*M. Then S"M /St M is diffeomorphic to B"M /XM, so we define the symbol
bundle o(D, E, F) over B"M /XM to be ¥ — F. The Chern character is linear
with respect to Whitney sum, and so extends to a homomorphism

ch: K(S"M/StM) — H*(S"M/STM;Q) = H*(B"M,XM; Q).
In particular,
ch(e(D,E,F)) € H*(B"M,EM;Q) = H(TM;Q),

where H} denotes cohomology with compact support. We can pick a compactly
supported form on T'M representing ch(o(D, E, F)) and another form repre-
senting the Todd class. We denote these forms just by the cohomology class
they represent.

Assume M is oriented. If {X7,..., X, } is a positively oriented local frame on
M, we orient TM so that {X1,X],...,Xn, X} is a positively oriented frame,
where the prime indicates belonging to the second factor in the natural decom-
position TTM = TM & T M. Note that since ch(o(D, E, F')) can be represented
by a compactly supported form, we can integrate ch(c(D, E, F)) A w over T M
for any form w on T M.

Theorem 4.46 (Atiyah-Singer Index Theorem) Let E, F be complex vec-
tor bundles over a compact manifold M, and let D : T'(E) — I'(F) be an elliptic
differential operator. Then

index(D) = (—=1)" /T _ ch(o(D, B, F))Td(M).

For geometric operators, the right hand side of the index theorem can be
rewritten as the expected integral over M. Thus we can trace a direct line from
the Gauss-Bonnet theorem in 1850 to the Atiyah-Singer theorem of 1963. In
fact, the index theorem can be reduced to the case of the twisted signature
operators by standard results in the K-theory of vector bundles [30], so in this
sense a heat equation proof of the full index theorem is known.



Chapter 5

Zeta Functions of
Laplacians

In this chapter we will encode the spectral information of a Laplacian-type
operator into a zeta function first introduced by Minakshisundaram and Pleijel
[48] and Seeley [61]. While this is theoretically equivalent to the encoding of
the spectrum given by the trace of the heat operator, the zeta function contains
spectral information hard to obtain by heat equation methods. In particular,
the important notion of the determinant of a Laplacian is given in terms of the
zeta function.

In §5.1, we introduce the zeta function and use it to produce new conformal
invariants in Riemannian geometry. In §5.2, we outline Sunada’s elegant con-
struction of isospectral, nonhomeomorphic four-manifolds. While the results in
§5.1 are conceivably obtainable directly from the heat operator, the results in
§5.2 depend on the zeta function for motivation. Finally, in §5.3 we discuss the
determinants of Laplacians on forms and define analytic torsion, which we show
is a smooth invariant subtler than the invariants produced in Chapter 4. We
conclude with an overview of recent work of Bismut and Lott connecting ana-
lytic torsion with Atiyah-Singer index theory for families of elliptic operators.
This last discussion is the most difficult part of the book and contains no proofs.

5.1 The Zeta Function of a Laplacian

By a Laplacian-type operator, we mean any symmetric second order elliptic
differential operator A : T'(E) — T'(E) acting on sections f of a Hermitian
bundle E over a compact n-manifold M satisfying (Af, f) > C(f, f) for some
C € R. The basic examples are the Laplacians on forms, where C' = 0. For the
application below, note that since the definition of ellipticity depends only on
the top order part of the operator, changing lower order terms does not affect
the ellipticity.

As mentioned in Chapter 4, these elliptic operators have smooth heat kernels

144
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with corresponding heat operators satisfying (9; + A)(e **w) = 0 for w €
I'(E). By the appropriate Garding inequality, the space L2(E) of L? sections of
E decomposes into finite dimensional eigenspaces for A with eigenvalues, say,
{Ai}. The condition (Af, f} > C(f, f) guarantees that the number of negative
eigenvalues is finite. For s € C, we now set the zeta function of A to be

((s) =D A (5.1)

Ai#0

(If some of the \; are negative, replace A;® by (sgn A;)|A;|~*.) For example, if
A = A® on S!, then it should be easy to check that

((s) = Cr(2s),

where (gr(s) is the Riemann zeta function.
We now show that the zeta function exists as a meromorphic function on C.
Let the heat kernel for A have the asymptotic expansion

o0

e(t,z,z) ~ Z (/ ug(z, ) dvol) th=(n/2),
M

k=0

(We have absorbed the factors of (47)~™/2 into the uy.) The existence of the
heat kernel and its asymptotic expansion is covered in [30]. Denote the greatest
integer function by [ - ].

Theorem 5.2 ((s) converges and is holomorphic for Re(s) > %, and ((s) has
meromorphic continuation to C with at worst simple poles, occurring only at

s=2,2-1,2-2_..,2 —[21] In particular,
¢(0) = —dim Ker A, dim M odd,
| Sy Unj2 — dimKer A, dim M even.

PROOF. Since {\;: \; < 0} is a finite set,

D (sen )il

{ii/\i <0}

exists for all s € C. Thus we are reduced to the case where the )\; are all
nonnegative. We introduce the Mellin transform of the zeta function. Since

F(s):/ t*~le~tat,
0

a change of variables gives

1 oo
NP == / t*te it
I'(s) Jo
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Thus, wherever the zeta function converges, we have

1 o
A= —/ st e”t — dimKer A | dt
P A b
1 /Oo -1 —tA
= — t*7Tr (e —P) dt
) y ( )
- b /1 "1 Tr(e™t» — P) dt + 1 /00 "1 Tr(e™t» — P) dt
L'(s) Jo L(s) Ji

= (a)+(b), (5.3)

¢(s)

say, where P is the orthogonal projection onto Ker A. As the reader should
check, (b) is of the form

1 o0 T
— t*~10(e™M) dt,
. €)

where A is the first nonzero eigenvalue of A. Since the gamma function is never
zero, (b) is a holomorphic function of s. Moreover, for fixed N > %,

1

1 N
a) = — ! /u =3 £ OVt 73) —dimKer A | dt
® =55 (I; . (V%)

N
1 1 dim Ker A
- T(s) (Zs+k—%/uk_ s +R(S)>’

k=0

where R(s) is some bounded function coming from the integration of the term
O(tN**=%). Thus (a) converges for all s € C with Re(s) > 2 and has a
meromorphic continuation to all of C with simple poles occurring only at the
points stated in the theorem. Finally, because I'(s) has a simple pole at s = 0,
the term (b) is zero at s = 0, while (a) gives [, u,/» — dim Ker A if dim M is
even and —dim Ker A if dim M is odd.

Exercise 1: Calculate the special values (((n/2) — k) (or the residues at the
poles) for k € {0,1,2,...}. Hint: the answer should be multiples of the fM U -

Remarks: (1) Note the curious result that the nonzero spectrum of the Lapla-
cian determines the multiplicity of the zero spectrum in odd dimensions.

(2) The inverse Fourier transform takes Y e~*i¢ the trace of the heat opera-
tor, to a sum of delta functions, concentrated at the values of the \;, with mass
the multiplicity of each eigenvalue. Thus the spectrum and the trace of the heat
kernel determine each other. The Mellin transform and its inverse show that in
turn the trace of the heat kernel and the zeta function determine each other.
Since the zeta function is meromorphic with simple poles, the value of the zeta
function on any open set in C thus determines the spectrum of A. Of course,
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in practice this means that we don’t stand a chance of explicitly computing the
zeta function on any open set.

(3) Let ((s) denote the zeta function for the Laplacian on k-forms. As in
Theorem 4.4, the Chern-Gauss-Bonnet theorem is equivalent to the statement

Y (DM =0

k

together with the identification of 3 (—1)*u} , with the Euler form. In fact,
a proof of the Atiyah-Singer index theorem can be framed in terms of zeta
functions, by considering the zeta functions for the Laplacians DY Dy, Dy D3,
for twisted signature operators. Of course, the crucial identification of the heat
kernel asymptotics with the appropriate characteristic form proceeds as before.

As an application, we use zeta function methods to produce conformal in-
variants of a Riemannian metric. Historically, several tensors (e.g. the Weyl and
Schouten tensors) were produced whose pointwise values were independent of
conformal change in the metric. There is still no systematic method for writing
down all such tensors, and new examples seem hard to come by. The invariants
we produce are global ones, but they have pointwise analogues, as explained at
the end of the section.

We define the conformal Laplacian O : L2(M) — L*(M) by

n—2

O=0,= —_—
T

where s is the scalar curvature. Note that in dimension two, the conformal and

ordinary Laplacians coincide. Recall that, for f € C*°(M), the change of metric

g €27 g is conformal, i.e. angles between intersecting curves are unchanged.
While the ordinary Laplacian changes rather badly under a conformal change
of metric, the conformal Laplacian has a simple transformation law.

Exercise 2: Show that
Og2rg = e " 5+1)f[]g€(%_1)f. (5.4)

Conclude that dim Ker O, = dim Ker O,2s,, and that the variation of the con-
formal Laplacian is given by

d
6fl:|g = d_p De2pfg = —2ng.

p=0
With the same notation, show that §re=*"s = —t(6;0,)e*"s. Hint: (5.4) can

be checked directly for n = 2. For n # 2, first show that the scalar curvature sy
for g1 = e*f g satisfies

An—1 A
o = (:_ . ) ~(nt)f/20_o(n-2)1/2
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(see [3, Ch. 6]). Conclude that

0,1 = e~ (D572 e(n=2)1/2,

Pick an arbitrary function h on M and set go = e*"g; = €227 g. Now express
Oy, 1 in terms of Og,0,, as above to conclude that

O, en=2h/2 = ¢=(1+2)1/20 = (n=D) /2= (n=D)h/2,

This proves the exercise for positive functions e~ ("=2h/2  and the rest of the
ezercise follows.

If the two exponents § + 1 in the last equation were both, say, § + 1, then
0,27, would be conjugate to Oy, and the two operators would be isospectral.
The next theorem shows that the special value ¢(0) is unchanged, and so pro-
vides a conformal invariant of M. Moreover, in odd dimensions, where the
conformal invariance of {(0) is trivial, ¢'(0) is a conformal invariant if Ker O,
vanishes. The significance of {'(0) will be discussed in §5.3.2.

Exercise 3: Show that {'(0) cannot be a conformal invariant if dim Ker Oy # 0
by computing the change in (' (0) under a scaling of the metric g — A\2g for some
AeR.

Theorem 5.5 (i) (0,(0) = CDezfg(O)'
(i) If dim M is odd and Ker Oy = 0, then ¢4 (0) = (o ,, (0).

ProOOF. (i) The result is trivial in odd dimensions by the last theorem and
Exercise 2. In even dimensions, fix g and f. Assume that O, is a positive
operator (as happens, e.g., if the scalar curvature is positive.) Thus the heat
operator e~ !Pexe(2p1)s has exponential decay as t — oo for all p close to zero. In
the notation of Exercise 2, we have

1 < _
67¢n, (0) = 5f@/0 1 Tr (e7*%9) at|,_,

_ ﬁ/ooo 71, Tr (e7"70) di|

- ‘%/f st~ VTr (fe %) dt|,_, - (56)
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The reader should check that the interchange of §; and the integral is valid.
There are no boundary terms in the integration by parts, as the integrand is of
exponential decay at infinity, and an examination of the asymptotic expansion
near zero shows that for Re(s) sufficiently large, the integrand also vanishes at
Z€ero.

Exercise 4: Let the heat kernel for Oy have the asymptotic expansion
e(t,z, ) Zuk tk (n/2),

Show that -
Tr fe~t%s ~ Z (/ f(@)ug(x) dvol) th=(n/2)
k=0 WM

Hint: What is the kernel of Tr fe= a2

Returning to the proof of the theorem, we have

1 [e’s}
5, (0) = —%( /0 £ 1Ty (fet%) dt + /1 £y (fe—t00) dt) B

N
Jar Fu < s —to,
(Zs+ﬂg_n/2 R(s)+/1 1T (fe )dt)

in the notation of the proof of Theorem 5.2. Now in the last expression 2s/T'(s)
has a double zero at s = 0, while the sum over k has a simple pole for k = 3
and the last integral is holomorphic in s. Thus the last expression vanishes at
s = 0, which proves the theorem for positive conformal Laplacians.

In general, the scalar curvature term (n —2)/(4(n —1)) - s is bounded below
by a constant C' = C(g). Therefore, (Qgh,h) > (Ah,h) + C{h,h) > C(h,h),
so O, can have only a finite number of negative eigenvalues. In such a case,
expressions such as

7

s=0

/ t* 1Tr(e 79) dt
0

diverge for all s. However, the finite contribution to the zeta function coming
from these nonpositive eigenvalues can be handled directly as in Theorem 5.2.
The infinite number of positive eigenvalues are then treated as above. Details
are in [54].

The proof of (ii) is similar. Near s = 0 we have

3£[L(5)¢(5)] = T(8)[67¢(0) + 537¢'(0) + O(s%)]-
Since §7¢(0) = 0 and lims_,q sT'(s) = 1, this implies

51'(0) = 67[0()C(5)] o0 = 3 /Om FT(e ) dtlomo. (5.7)
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Proceeding as in (5.6), we obtain

N o)
3;¢'(0 (ngﬂgiu:ﬂ + R(s) + /1 £ T (fe™0) dt)

~.8)
Since n is odd, the expression inside the large parentheses has no pole at s = 0,
o (5.8) vanishes at s = 0. (If Ker O, # 0, then that expression does contain a
term of the form A/s, so the argument breaks down; again details are in [54].)

Thus ((0) is a conformal invariant for the conformal Laplacian. Calculations
show that it is highly nontrivial. For example, when dim M = 6, we get

¢(0) = (SOX(M) — (47)~® /M(5406 +204B,; + 4732)) :

9.7

where g is the Fefferman-Graham conformal invariant defined by
1 .
Qs = |[VIW|*+2 (431 + By — gs|W|2 — (W, V*'V; W)
_ Y ¥ByViBYy) = IVBP) = S |VsP
g\ kDY ki 150

Here W = W 1 1s the Weyl tensor, a pointwise conformal invariant given by

. . 1 . . . .
Wiw = Rju-— m(Rﬂc‘slz — Rjdy, + g By — g Ry)

S e
+m(gjk6, g510%),

Vi =¢'V;, B = Bjj = R;j — £g;; is the traceless Ricci tensor built from the

Ricci and scalar curvatures, By = Wi AW, B AWl and By = Wijleklqup%j.
The length of all tensors is computed Wlth respect to the Riemannian metric.
As explained in §5.3, there is at present no method for computing ¢’'(0) except
in special cases.

It also turns out that in even dimensions, u(y,/2)—1 () transforms very simply

under a conformal change of the metric, for each z € M. If we define a pointwise

zeta ((s,x) by
z) = Z e

i #£0

where the ¢; are the eigenfunctions for );, then as above

ress:lé_(sa .TL') = U(n/2)—1 (.TL')

Thus the theory of spectral zeta functions produces pointwise conformal invari-
ants ress—1((s,z), global conformal invariants {(0) given by integrating local
expressions, and global nonlocal invariants ¢'(0).
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5.2 TIsospectral Manifolds

Recall that isospectral manifolds have many geometric quantites in common,
such as their volume and the integral of the scalar curvature. Around 1960, M.
Kac raised the question of whether isospectral manifolds were in fact isometric.
Many counterexamples have been given in the past 35 years. In this section,
we describe a zeta function approach to producing isospectral but nonisometric
manifolds. The key idea is that two manifolds are isospectral iff their zeta
functions are identical, by the remarks in §5.1.

It is well known that there is a strong analogy between finite Galois exten-
sions of a field and finite coverings of a manifold. In a beautiful paper [65],
Sunada extended this analogy to zeta functions. He first notes the following
result from field theory.

Proposition 5.9 Let K be a finite Galois extension of Q with Galois group
G, and let K1,Ky be subfields of K corresponding to subgroups Hy, Hs of G,
respectively. Then the following are equivalent:

(i) Each conjugacy class of G meets Hy in the same number of elements as it
meets Hs.

(i3) The Dedekind zeta functions of K1, Ka satisfy Ck,(s) = Ck,(s).

Recall that the conjugacy class of g € G is [g] = {sgs~! : s € G}. The collection
of conjugacy classes of elements of G forms a partition of G.

Sunada carries the proof of this theorem, which depends on a simple trace
formula, over to the case of manifolds.

Theorem 5.10 (Sunada’s Theorem) Let M be a finite covering of a compact
manifold My with deck transformation group G. Let My and M, be covers of
My corresponding to subgroups Hy,Hs C G. If Hy, Hy have the property (i) of
the previous proposition, then Car, (s) = (s, (8) with respect to the metrics pulled
back from any metric on My. In particular, M, is isospectral to M.

Note that if Hy, H» are nonisomorphic, then Mj, My are not even homeo-
morphic. Although examples of isospectral, nonhomeomorphic manifolds had
been given previously [35], Sunada’s theorem gives the first systematic method
of producing such examples.

For example, if Hy, Hy are any finite groups of the same order ¢, with ex-
ponent p (i.e. 2P = 1 for all x € Hy, H,) for some prime p # 2, then Hy, Hy
will have condition (i) of the proposition, when considered as subgroups of the
group G of permutations on c¢ letters by Cayley’s theorem.

To show this, let [z] denote the conjugacy class of z € G. If z = 1, condition
(i) is clear. If [z] N (Hy U H2) = 0, condition (i) again trivially holds. Since
[z] = [y] if z and y are conjugate, we are reduced to the case z € (H; UH3)\{1}.
Now z has prime order p, so as a permutation of {1,...,c}, z determines a
partition of {1,...,c} into disjoint sets A1,..., A/, of order p on each of which
x acts by cyclic permutation. Pick y € (H1 UH»)\ {1} with associated partition
By, ...,B./y- Choose a; € A;,b; € B; arbitrarily. Call g the permutation which
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sends af to b¥ for k = 1,...,p. Then it is easy to check that g~'yg = 2. Thus
all z € (Hy U Hy) \ {1} are conjugate. For such an z, [z] N H; = H;, and so
condition (i) is satisfied.

In particular, an example is furnished by H; = (Z,)® and H, the group with
generators a,b and relations a? = bW = [a,b]P = 1, a[a,b] = [a,b]a, bla,b] =
[a,b]b. Since H; is abelian and H» is not, these groups are nonisomorphic. A
concrete realization of Hj is given by the set of 3 x 3 upper triangular matrices
with coefficients in Z, and with diagonal entries one.

It is a standard result in topology that we can construct a compact four-
manifold with an arbitrary finitely presented fundamental group. Therefore, if
we construct My with fundamental group G, we have covering spaces My, M,
corresponding to Hy, Hy which are isospectral but nonhomeomorphic.

We now begin the proof of Sunada’s theorem. The discussion is based on the
fuller treatment in [13, Ch. 11]. Let a finite group G act on a finite dimensional
vector space V. Thus each g € G gives a linear transformation g : V — V,
and for v € V we will just write gv for g(v). Note that the trace of g as a
linear transformation depends only on the conjugacy class of g. For a subgroup
H C G, we set VE to be the set of H invariant vectors: V# = {v € V : hv =
v,Vh € H}. Finally, for h € H we denote the conjugacy class of h within H by
[h) = {shs™! :s € H}.

Lemma 5.11 We have
dim(VH) = z# Z#[Q]QH) tr(g).
# - #H
(] lg]
PRrROOF. The projection P:V -V given by
Z hv
heH

clearly maps V to VH and is the identity on V. Computing the trace of P on
a basis of V# extended to a basis of V yields tr(P) = dim(V#). Thus

dim(VH) = Hhethr # %#

which proves the first equation.
For h € H, we certainly have [h]' C [h]. Thus for g € G, we have either
[A]" C [g] or [h)' N [g] = 0. We have

Do#M u) =) Y #A -tr(g) =) #(gl N H) - tr(g),
0 [

lg] [n]'Clg]

as clearly 3=y o, #[R]' = #([9] N H).

As a corollary, we see that if Hy, H» satisfy condition (i) of Proposition 5.9,
then dim(VH1) = dim(V#2).
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PROOF OF THEOREM 5.10: Let E)(M;) denote the (possibly empty) space of
eigenfunctions of the Laplacian on M; with eigenvalue A. Let uq,...,ur be a
basis of E)(M;) and let vq,. .., v be their lifts to M. The set {gv; : g € G,i =
1,...,k} spans a subspace V of L?(M) which is easily seen to be G-invariant.
Since M has the pullback metric from My, we have V C Ex(M). Now there is a
one-to-one correspondence between elements of L?(M) which are H invariant
and elements of L?(Ms). In particular, there is a one-to-one correspondence
between E1? (M) and Ey(Ma). Thus there is an injection from V2 to By (Ms.).
The dimension of V#2 is at least k = dim(Ex(My)), as Y, cp, hv; are linearly
independent functions in VH#2. Thus dim(Ey(M;)) < dim(E)(Mz)). Reversing
the roles of My, My shows that dim(Ey(M;)) = dim(Ey(Mz)).

5.3 Reidemeister Torsion and Analytic Torsion

The Atiyah-Singer index theorem can be viewed as providing analytic/geometric
interpretations of certain topological information contained in the cohomology
ring. Of course, manifolds may contain more topological structure than can
be detected by cohomology. In particular, there exist lens spaces (quotients
of S3 by finite group actions) which have the same cohomology rings and ho-
motopy groups but which are nonhomeomorphic. The topological invariant
used to distinguish these two spaces is the Reidemeister torsion, introduced by
Reidemeister and Franz in the 1930s for this purpose. We call this invariant
“precohomological,” to emphasize that it is defined at the cochain level.

With the success of the index theorem in the 1960s, it was natural to look
for an analytic expression for the Reidemeister torsion. Such an expression of
course must be more refined than the index of an elliptic operator. In the early
1970s, Ray and Singer [58] defined the analytic torsion in analogy with the
Reidemeister torsion, and showed that the analytic torsion possessed many of
the key properties of Reidemeister torsion. Their definition of analytic torsion
depends crucially on the zeta function for the Laplacians on forms, in contrast
to the index theorem, for which the heat equation and zeta function methods
are equivalent. Around 1980, Cheeger[15] and Miiller [51] independently proved
the equality of analytic and Reidemeister torsion; a more natural proof is due
to Bismut and Zhang [9]. Since then, analytic torsion has figured prominently
in questions in mathematical physics.

In §5.3.1, we define the torsion of a general complex and then specialize to
the case of Reidemeister torsion. In §5.3.2, we define the analytic torsion, prove
that it is a smooth invariant, and comment on the proof of the equality of the
two torsions. In §5.3.3, we indicate a deep relationship between index theory
and analytic torsion uncovered by Bismut and Lott [8].

5.3.1 Reidemeister Torsion

The torsion of an exact complex generalizes the volume of a linear transforma-
tion. If T : C' — C? is a linear isomorphism of finite dimensional inner product
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spaces, then it makes no sense to talk about the determinant, or volume distor-
tion, of T, as there is no natural choice of bases of C',C2. As the next best
option, we define the volume of T to be v/det T*T, as this quantity measures
the volume distortion of T if C! = C?. More generally, given an exact complex
of inner product spaces

dl d2 d'n.—l
0-Ct'SC*S .- "5 C" =0,

we can form “Laplacians” A? = (d9)*d? 4+ d9='(d?~1)* : C4 — C? and define
the torsion T = T(C*,d*) by

1
+1
logT = 2 Eq (—1)9"q logdet AY. (5.12)

We won’t attempt to justify the particular linear combination chosen in (5.12),
but just refer the reader to [58, §1].

Now let M be a compact manifold equipped with a triangulation {e;} and
a unitary representation p : w1 (M) — U(IN). We lift the triangulation to one of
the universal cover M and form the finite dimensional space of twisted k-chains
Cr(M; p); this space has as a basis (&;,v), with &; a lifted k-simplex and v € C¥,
modulo the identification (€;,v) ~ (v - &, p(y~1)v), for all v € m(M). There
is a natural boundary operator 0 : Cy — Ck—_1 induced by 9(é;,v) = (dej,v),
where 0 is the boundary operator for the triangulation, and so the dual spaces
C*(M; p) of k-cochains have a natural coboundary operator 6¥. We assume that
the representation is acyclic, which means that the cochain complex (C*, 6*) is
exact. Put an inner product on the equivalence classes of twisted cochains
C*(M; p) by setting

<[éj7 U]’ [éka w]) = <p(’)’_1)(’U), w)CN

if there exists «y such that v - €; = €, and 0 otherwise. This gives all the data
needed to define the torsion of (C*(M; p), 6*). This torsion is the Reidemeister
torsion Treig of (M, p).

In fact, TReiq is independent of the triangulation, and so indeed only depends
on M and p [45]. The Reidemeister torsion can be thought of as a secondary
topological invariant; i.e. it is only defined once the primary topological informa-
tion, namely the cohomology groups of the complex (C*,§*), are trivial. Note
that, as promised, the Reidemeister torsion is defined at the cochain level. For
the case of lens spaces treated by Franz, the fundamental group is just Z, and
p is one dimensional. Thus p takes values in the pt" roots of unity, and Treid
is explicitly calculable. As for the teminology, we remark that if p is the trivial
one dimensional representation, then the Reidemeister torsion (suitably defined
for nonexact complexes) is exp }° (—1)?log|Tor(H(M; Z))|.

5.3.2 Analytic Torsion

Given the definition of the Reidemeister torsion, it is not hard (in hindsight)
to guess an analytic analogue. Let E = E, = M x, C" be the vector bundle
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over M associated to p: the total space of E, consists of pairs (Z,v) € M xCN
modulo the identification (%,v) ~ (§,w) if v-% = § and p(y })v = w for
v E m (M)

E, comes with a flat connection V (i.e. the curvature of V vanishes). To
determine V on a neighborhood U of M over which M equals disjoint copies of
U, pick a basis {v;} of C and set s;(z) to be the equivalence class of (&, v;),
where Z is a continuous lift of z € U. Set V(a's;) = da'-s;. The reader can check
that this connection is independent of the various choices and glues together to
a connection V on E,, which of course is flat.

We can couple V to the exterior derivative on M to give exterior derivatives
dy on the spaces of twisted k-forms A*(M; E,). The acyclicity of p implies that
the de Rham cohomology of the twisted k-forms is trivial. These spaces have
inner products coming from a choice of Riemannian metric g on M and the
standard metric on C¥, so one can form Laplacians A% = d¥dy + dyd%. We
now wish to define the analytic torsion or R-torsion to be

T,(M) = T,,,(M) = exp(~5 3" (~1)% logdet AY).

q

We need to make sense of the term det A?. As motivation, let T : V —
V be a nonnegative symmetric linear transformation of a finite dimensional
inner product space. There exists a basis of eigenvectors for T with eigenvalues
ALy ey Ap. Of course, det T = 0 if any A; = 0. If not, we set {(s) = (r(s) =
>:(Xi)~°. It is easy to check that

¢'(0) = —logdet T.

Now let D be a nonnegative self-adjoint elliptic differential operator acting
on sections of a Hermitian bundle E over a compact Riemannian manifold.
We have mentioned that such operators have a complete orthonormal set of
eigensections on L%(E), the space of L? sections of E, with eigenvalues {\;}.
As in (5.1), we define the zeta function of D by

()=o) = O~ = o / T 1 Te(et? _ Py

A0 (s) Jo
where P is the orthogonal projection onto Ker D. We set

e 'O, X #0, Vi,

det D = { 0, A; = 0, some 3.

This definition is meaningful, because just as in §5.1 zero is a regular value for
the zeta function. This zeta function regularization of det D is due to Ray and
Singer.

Remark: As in Exercise 3, under a scaling of the metric g» A2g, det D ~
X det D. Since the corresponding change in finite dimensions is given by
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det T — X4m Vdet T, we can view ((0) as a regularized dimension of the
space of the (infinite dimensional) domain of D. For example, for the conformal
Laplacian, Theorem 5.5 shows that this real valued dimension is independent of
the metric in a conformal class. Physicists would say that there is no conformal
dimensional anomaly for the conformal Laplacian.

The reader is invited to try to compute ¢'(0) for the Laplacian on functions
using the Mellin transform as in (5.3). One must again break the integral up
into fol + floo, plug the asymptotics for the heat kernel into the first integral,
and take (d/ds)|s=0. You will find that the first integral contains local terms
and an incalculable error term, and the second integral is an intractable non-
local expression. Thus a direct approach to calculating ¢’(0) is not feasible,
except in certain cases when the zeta function coincides with known number
theoretic zeta functions (e.g. M a symmetric space), where functional equation
and representation theoretic techniques are available. The nonlocal nature of
¢'(0) also demonstrates that analytic torsion is more subtle than the integrals
of local expressions that occur in index theory.

Nevertheless, Ray and Singer were able to show that analytic torsion has
many key properties of Reidemeister torsion. In particular, analytic torsion
depends only on the smooth structure of the manifold (and not on the metric
used in its definition), and is trivial on even dimensional manifolds.

Exercise 5: Show that T,(M) = 0 if the dimension n of M is even. Hint:
Show that in fact for all s, 3° (=1)%qy(s) = 0. For as with ordinary forms,
*A? = A" %% implies that A, A" 7 are isospectral. Thus (4(s) = (n—q(s),
which implies that

> (1% () = 5 3 (1), (5)

q q

in even dimensions. Now Lemma 4.1 extended to twisted forms implies that the
right hand side of the last equation is zero.

Following [58], we will now prove that the analytic torsion is independent
of the metric on an odd dimensional manifold. Fix the representation p and a
metric g on M, and denote T, (M) by Ty(M) or just T(M). Since the space
of metrics on M is connected by Exercise 7, Chapter 1, it suffices to show that
Ty(M) is a smooth function of g with vanishing differential. In other words,
given another metric g; and a line of metrics g, = g + (1 — 0)g1, we want to
show that

d
— T, (M) =0. Nl
&o| T () =0 (5.13)

Since the analytic torsion is defined in terms of the heat kernel trace in the
Mellin transform, we first need a result on the variation of the heat kernel trace
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as a function of . Formally, for A, = Ak the Laplacian on twisted k-forms
with respect to the metric g,, we have

d

— | Tr(e ') = —tTr(Ae™?),
do|,_,

where the dot indicates differentiation with respect to o and A = Ay.

From now on, we will denote dv,d3y, = dv just by d,d. The reader can check
that as usual we have § = &« d*. In the definition of A, only the star operator
depends on the metric. Thus

A={di+0dy=4d*xdxtdxd x+ s dxd+ =d * d.

Let a be the endomorphism of k-forms defined by a = *~1. The last term in
the previous equation equals + * d * * 1% d = dad. The second term similarly
equals dda. For the first and third terms on the right hand side of the previous
equation, we can use the relation

which follows from 0 = (d/do)(x~'*). We obtain
A = —dad + déa — add + dad.

In summary, a formal expression for the variation of the heat kernel is

d

- Tr(e t27) = —tTr((—dad + déa — add + dad)e ™).
o o=0

The following proposition justifies these formal computations.

Proposition 5.14 The heat kernel e, (t,x,y) for the metric g, is a differen-
tiable function of o, for each fized x,y € M,t > 0. We have

%Tr(e_m") = —tTr((dad — dad — add + dda)et27).

PROOF. (see [58, Prop. 6.1]) For 0,0’ € [0,1], we will denote A,, e, (t,z,¥), *o,
by A, e(t,z,y),*, respectively, and similarly we use A’ €'(t,z,y), " for these
quantities computed at o’.

By Exercise 9, Chapter 3, the pointwise trace of the heat kernel is given by
tr(xye(t, 2, y)|y=z), where tr indicates the trace in the fiber E, ® E with respect
to the inner product on F, and #, indicates the star operator applied in the y
variable. Thus we want to compute tr(xye(t,z,y) — €' (t, 7, y)), or equivalently
tr((x,) ! %y e(t,z,y) — €'(t,2,y)), as o' = 0. We will need the identities

/Mf/\*gz/MgA*fz/Mg/\*’(*’)‘l*f=/M(*’)‘l*f/\*’g,
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which follow from the symmetry of the Hodge inner product, and “Green’s

formula”
/ df/\*g:/ f N\ xdg,
M M

which just says that & is the adjoint of d. Here f,g are E valued forms, and
from this point on we are omitting the pointwise trace tr from the notation.
For %, A acting in the u variable, we have

(*:'y)_1 xge(t,z,y) —€ (t,z,y) = lim [ (¥)7'xe(s,z,u) A¥e'(t —s,u,y)
s—t M

—lim [ e(s,z,u) Axe'(t —s,u,y)
s—0

/ds—/ (s,z,u) A x€'(t — s,u,y),

since the heat kernels approach delta functions as ¢ — 0. By the heat equation,
the last expression equals

t
- / ds / (De(s,z,u) A+e'(t — 5,u,y) — e(s, 2, u) A +A'e(t — 5,u,3)).
0 M

Now write A = dd + dd and similarly for A’. Applying Green’s formula (and
the first identity above to handle the ¢'d term), we can transform the previous
expression into

/ ds/ ( de(s, z,u) A xde' (t — s,u,y) — de(s, z,u) A x0e' (t — s,u,y)
+d((+") 7! xe(s,z,u)) A ¥'de' (t — s,u,y)

+de(s, z,u) A *8'e’ (t — s, u,y))

In summary,

('y e(t,z,y) —e'(t,z,y)

/ds/ ( de(s,z,u) A (x — x')de' (t — s,u,y)

()7 H(x — «)e(s, z,u)) A *'de (t — s,u,y)

—de(s,z,u) A*(d — 8 )e'(t — s, u,y)) (5.15)

The estimates of Lemma, 4.23 extend to the derivatives de,de etc. of the heat
kernel, which also decay exponentially in the distance by the construction of the
heat kernel. These estimates show that each term on the right hand side is well
behaved near 0 and ¢, so there is no problem performing the integrations.

In local coordinates, the endomorphism * — %’ is given by a matrix with
entries depending smoothly on ¢, ¢’. In particular, there exists a bounded matrix
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A = A(o,0') such that x — ' = (0 — ') A(0,0"), and limyr,, A(o,0') = *(0)
uniformly on M. This implies that the first term of the right hand side of (5.15)
is O(o — o).

The derivatives of the matrix A in fixed local coordinates on M are also
bounded and continuous in ¢'. Estimates similar to those in Lemma 4.23 can
be applied to the terms in (5.15) involving

d((+") 7' (x = +)e) = (0 —0o")d((x)7" Ae),
(=6 = (c—0)Ax16+0()"A)e.
Thus their contribution to the right hand side of (5.15) is also O(c — o).
Applying the bounded operator x;, to both sides of (5.15), we see that xe—+'¢

is O(o—0¢’) uniformly on M. In particular, e’ = e, is continuous in o', uniformly
on M. By the uniform continuity of A and its derivatives, we get

d . _
% *’!l (U)ea(tamay) = lim (0 - UI) 1(*y6(t,$,y) - *;e'(t,x,y))

o' —ao

¢
= /ds/ xy{—de(s,z,u) A *de(t — s, u,y)
0 M

+d(x Lie(s, z,u)) A xde(t — s,u,y)

—de(s, x,u) A xkx " de(t — 5,u,y)

—be(s, z,u) A *6(x ie(t — s,u,9))}
The integrations are justified as above. We see that (d/do) x e satisfies the
same exponential decay estimate as e. This allows us to apply Green’s formula

(after replacing *de(t — s,u,y) in the first term on the right hand side with
* %1 ide(t — s,u,y)) to obtain

% xy (0)eq(t,2,y) = /Ot ds /M xy{—e(s,z,u) A %6+~ ide(t — s,u,y)
+x7 L ke(s, z,u) A %dde(t — s,u,y)
—e(s,z,u) A xdk x ' de(t — 5,u,y)
xe(s,z,u) A xd6 " ke(t — s,u,y)}.

The second term in the last expression can be transformed using

. . d d
/*_l*f/\*g = /g/\*f:—/ g/\*f:—/ fAxg
= f/\:icg:/f/\**_lakg
M M
(which says that « is self-adjoint) and %*~1 = — %1 %. The result is the remark-
able formula

¢
%*y (0)es(t,z,y) = —/ ds/ xy{e(s,z,u) A xdade(t — s,u,y)
0 M
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—e(s, z,u) A xadde(t — s,u,y)
—e(s,z,u) A xdade(t — s,u,y)
+e(s,z,u) A xddae(t — s,u,y)}

¢
= - / ds/ x,{(0ad — add — dad + déa),
0 M
xe(s,z,v) Asye(t — s,u,Y) Ho=u- (5.16)
To obtain

d d
—Tr(e A7 =/ — %y €5 =2
do (e )  do *y € (t,x,y)|y_ >

we must set y = z and integrate the right hand side of (5.16) over M with
respect to z. In doing this, we can interchange the order of integration, and
integrate with respect to x before applying d, d, a to the u variable. Each of the
integrals with respect to = reduces to

/ e(s,x,v) A xge(t — s,u,z) = e(t,u,v),
M
by the semigroup property of the heat kernel. Hence (d/do) Tr (e~*A<) is given
by the integral over M of
—t %, (dad — add — dad + add)ye(t, u,v)
taken at v = w. This finishes the proof.

We can now show that analytic torsion is independent of the metric on an
odd dimensional manifold. We use the notation of (5.13).

Theorem 5.17 (Ray-Singer) If the dimension of M is odd, then
d

— T, (M)=0.
daazog’( )=0

In particular, analytic torsion is independent of the metric on M, and so defines
a smooth invariant of the pair (M, p).

PROOF. Since p is acyclic, Ker A*¥ = 0 for all k,0. (The proof of this statement
involves a straightforward extension of the Hodge theorem for forms to forms
with values in E.) Thus the zeta function on E valued k-forms is given by

Ck(s) = % /0°° ts_lTr(e_tAk) dt.

s

As in (5.7), it suffices to show that

1 & oo
f(0,5) = 5 (-1 / - LTr(e—tA2) gy
q=0 0
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has (8/80)f(0,0) = 0. Of course, this means that f(o,s), which exists for
Re(s) sufficiently large, has a meromorphic continuation to C with the required
derivative vanishing at 0.

The Rayleigh-Ritz characterization of the first eigenvalue of a positive oper-
ator A on a Hilbert space H,

Mo ing BLD

ren (£, 1)
shows that A; for A, is a continuous function of ¢. Thus for any fixed ¢y > 0,
there exist C, € > 0 independent of o € [0,1] such that Tr(e™**+) < Ce™¢ for
all t > tg. The previous proposition then implies that there exist different C, e
such that

i’I‘r(e*mt’;) < Ce e
0o
independently of o. Thus we may differentiate under the integral to get
9 (0,8) = 1 EN (-1)4q /00 tTr((AL) e7t2%)dt (5.18)
? o .
0o 2 = 0

for Re(s) large.

We now compute Tr(A%t24). If A is of trace class (i.e. the sum of its
eigenvalues is finite) and B is a bounded operator, it is well known that AB, BA
are of trace class and Tr(AB) =Tr(BA). Now the operators add, etc. in A? are
not bounded, but adde~*2?, etc. are bounded operators on L2. We can use the
semigroup property of the heat operator to write

Tr(&ade_tAq) = Tr(dade_%Aqe_%Aq) = Tr(e_%Aq(Sade_%Aq)
= Tr(ade 22"e752%5) = Tr(ade™*'6)
Tr(adée*mﬁl),
where we have used A5 = AT in the last step. Similarly, we get
Tr(dade™tA") = (ad&e_mq ), Tr(ddae™ ") = Tr(adde A",
using A%d = dAY71. As a result,
Tr(A%AY) = —Tr(addet™) + Tr(ad(SetAqH)
—Tr(aédemq_l) + Tr(addet™").

Thus we get a telescoping sum
N

3 (~1)%Tr(A% A =

q=0

(=1)9(Tr(adde ") + Tr(addet2"))

Mz

_
Il
<

(=1)9Tr(aAe tA%)

I
Mz

<

I
S

N
Z 1)ITr(ae tA7).

q=0
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Plugging this back into (5.18) gives

2f(a s) = li(—l)q /00 tsiTr(ae_tAg) dt
60' ’ h 2(1:0 0 dt
1 & o0
_ —532(4)4/0 F1Tr(ae%) gt (5.19)
q=0

by integration by parts. The boundary terms in the integration by parts vanish
as in the proof of Theorem 5.5. As in Exercise 4,

Tr(ae t27) ~ (Z/ tr(au%)) th=(n/2)
k=0"M

As in Theorem 5.2, this shows that
° q
s/ t* 1 Tr(e™t25) dt
0

has a meromorphic continuation to C whose value at zero is

S tr(auy, o), dim M even,
0, dim M odd

(since s and 1/T'(s) both have a simple zero at s = 0). Note that this uses
the acyclicity of p. By (5.19), the meromophic continuation of (8/d0)f(o,s)
vanishes at s = 0 if dim M is odd.

The fact that analytic torsion is a smooth invariant of a manifold, as well
at its other properties, led Ray and Singer to conjecture the equality of Rei-
demeister and analytic torsion. The various proofs known of this equality are
too difficult to include here, so we just mention the basic techniques used. In
Cheeger’s proof, the behavior of analytic torsion under surgery is compared to
the known behavior of Reidemeister torsion under surgery. After a sequence of
surgeries, the equality of the two torsions is reduced to their known equality on
the sphere. In Miiller’s proof, the convergence of the eigenvalues of the combi-
natorial Laplacians to the eigenvalues of the smooth Laplacians as the triangu-
lation gets finer and finer is shown, which, combined with surgery techniques,
provides the necessary link between the combinatorial Reidemeister torsion and
the analytic torsion of the smooth structure. In a recent proof of Vishik [66],
the surgery argument is combined with a “gluing formula” for the two torsions
motivated by topological field theory. Finally, in the Bismut-Zhang proof, both
torsions are related to the torsion of the Morse-Smale complex associated to a
Morse function on the manifold. The localization of the infinite dimensional
analytic information onto the finite dimensional Morse-Smale complex gener-
alizes Witten’s analytic proof of the Morse inequalities ([69], [18], [59]). This
proof has the advantage of taking place on one fixed manifold, although with
the additional data of a Morse function; it is also the most technically difficult
proof.
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5.3.3 The Families Index Theorem and Analytic Torsion

So far in this section, we have had several indications that torsion is a “sec-
ondary” invariant, one that can only (easily) be defined once the relevant “pri-
mary” cohomological invariants vanish. This vanishing is clearly necessary in
our definition of Reidemeister torsion, and is necessary in order for the analytic
torsion to be independent of the Riemannian metric. Moreover, as we showed in
§5.1, ¢'(0) for the conformal Laplacian is a nontrivial conformal invariant only
when ((0) vanishes, and ¢(0) is a combination of a locally computable, index
theoretic term and a cohomology-like term. Thus we expect the two torsions to
have significance precisely where index theory fails to give information; indeed,
torsion is nontrivial only on odd dimensional manifolds, where index theory is
trivial.

In summary, there should be some relationship between torsion and index
theory, some mathematical object which is the torsion when the appropriate
cohomology vanishes. Such a relationship does exist by recent work of Bismut
and Lott [8].

To put their work in a historical context, we first discuss the index theorem
for families of elliptic operators. Roughly speaking, this theorem measures the
change of the kernel and cokernel of a family of elliptic operators, parametrized
by a smooth manifold B, acting on fixed bundles over a fixed manifold Z. As in
Chapter 4, we will restrict attention to families of twisted signature operators.

We consider a fibration Z — M 5 B, with Z and B (and hence M) smooth
manifolds, together with a bundle E over M and a family of twisted signature
operators {Dy : b € B} acting on A*T*(Z,) ® E|z,, where Z, = n=1(b) is the
fiber over b. Of course, to define these operators we need to have smoothly vary-
ing Riemannian metrics on each Z;, and we assume that Z, M, B are compatibly
oriented. Associated to each fiber we have two finite dimensional subspaces of
A*T*Zy ® E|z,, namely Ker Dy, and Ker Dj. Assuming these spaces have di-
mension independent of b € B, we obtain two bundles, denoted KEr D and
KER D*, over B. (Even if the dimensions of the kernel and cokernel jump, the
virtual bundle IND D whose fiber is the formal difference Ker Dy —Ker D; is well
defined, see [2]. IND D is called the index bundle of the family D.) It is known
that complex vector bundles F' are topologically classified up to torsion by their
Chern character ch(F); more precisely, the map ch : K(B)®@ Q — H*(B; Q) is
an isomorphism from the torsion free part of the ring K(B) of virtual bundles
over B to the even dimensional rational cohomology of B. Granted this, we see
that the twisting of the kernel and cokernel of Dy is captured by ch(KER D) —
ch(KER D*), or more simply by ch(IND D), if we extend ch to a ring homomor-
phism of K(B). To bring things down to earth, the reader should check that
if B = {b} is a point, then ch(KER D) — ch(KER D*) is just the index of the
single operator Dy.

The Atiyah-Singer families index theorem [2] identifies the element ch(IND
D) in H*V(B; Q). In keeping with the heat equation approach of the last chapter,
we will state a more refined result in terms of differential forms; the first heat
equation proof was given by Bismut in [6].
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To set the notation, define the tangent bundle along the fibers to be T'Z def

Ker 7,. This is a bundle over M, which comes with a metric ¢7# built from
the family of metrics on Z. Choose a horizontal distribution THM c TM;
i.e. a smooth distribution in TM with TZ @ THM = TM. A choice of metric
g2 on B gives rise to a metric ¢™ = ¢7% @ 7*¢® on M, under the convention
that TH M is orthogonal to TZ. The Levi-Civita connection VM for g™ induces
a connection VT4 on TZ by V1% = PT2yM where PT? : TM — TZ is
orthogonal projection. (In fact, V7Z is independent of the choice of metric
g®.) Denote the curvature of V77 by Q7Z. Choose a connection V¥ on E
with curvature QF. Assume the dimension of M is 2k, and let L; be the k"
Hirzebruch polynomial. Finally, we must define [, : A*T*M — A*2kT*B,
the operation of integration along the fibers, which takes a g-form w on M to
a (¢ — 2k)-form [, w on B. Writing w locally as w(b, 2) = ar;(b, 2)db’ A dz”’,
where b, z are local coordinates for B, Z respectively, we set

(/Mw> @)= 3 (/zb aIJ(b,Z)dzJ> db,

J,|J|=2k

where the right hand side integral is ordinary integration of forms.

Note that the space of sections T'(A*T*Z, ® E|z,) has an L? inner product
induced by the metric on the fibers and the metric on E. Considering these
spaces as forming an infinite dimensional Hermitian bundle E over B, Bismut
constructs a unitary (super)connection VE on E. The finite dimensional sub-
bundles KER D, KER D* inherit connections V* = PEV®  where P* denotes
orthogonal projection from I'(A*T*Z, ® E|z,) to Ker Dy, Ker Dy, respectively.
These connections have curvature Q% so the Chern character ch(IND D) of the
index bundle is represented in de Rham cohomology by the even dimensional
form ch(Q%) — ch(Q7).

With all this notation, we can finally state the index theorem for families.

Theorem 5.20 (The Families Index Theorem) The de Rham cohomology
class of ch(IND D) in H®V(B; Q) is given by

[ch(QT) — ch(Q7)] =] /M Li(QTZ)ch(QF)]. (5.21)

Notice that the right hand side is a sum of even dimensional forms on B
which are locally computable from curvature information on M and E. The
reader can check that these forms are closed, and so give real (in fact rational)
cohomology classes on B. In fact, Bismut constructs an odd dimensional form
a such that

ch(QF) — ch(Q) = / Lo(QT7)ch(QF) + da. (5.22)

M
Thus (5.21) can be refined to an equality of differential forms, and so gives a
local geometric version of the original cohomological formulation of the families
index theorem due to Atiyah-Singer. Bismut’s proof follows the arguments of
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Chapter 4; he constructs a heat-type operator whose (super)trace approaches
the left hand side of (5.22) as ¢ — 0 and the right hand side as t — oo. A survey
of recent applications of the families index theorem is in [60].

We now assume that E is flat; i.e. E has a metric h = h¥ and an h-unitary
connection VF whose curvature satisfies QF = 0. Locally there exists a basis
{ei} of the fibers of E with V¥e; = 0. With respect to this basis, h is a function
on M with values in Hermitian matrices. Define an End(E) valued one-form on
M by w(E,h) = h~1dh. For odd positive integers k, set

cr(E,h) = (2mi)~E=D/22-k Tr(wk (B, b)),

where w* is w wedged with itself k& times. The k-form ci(F,h) is closed and
its cohomology class cx(E) € H*(M;R) is independent of h. Let e(TZ) be
the Euler class of the bundle T'Z; for our purposes, this can be constructed by
taking a unitary connection V74 on T'Z, and then forming the cohomology class
e(TZ) of the Pfaffian Pf(QT%) of the curvature QTZ. Let H?(Z; E|z) denote
the flat vector bundle over B whose fiber at b € B is the cohomology group
HP(Zy; E|z,). Finally, we remark that integration along the fiber takes closed
forms on M to closed forms on B, and exact forms to exact forms, and hence
induces a map [, : H*(M;R) — H*~9™ Z(B; R) (see [11]). Then we have the
following cohomological result due to Bismut and Lott.

Theorem 5.23 For any odd integer k,

dim Z

/Ze(TZ)ck(E) = Z (=D)Pc(HP(Z;E|z)) (5.24)

p=0
as classes in H*(B;R).

We remark that Theorem 5.23 is a C'™ analogue of a local version of the
Grothendieck-Riemann-Roch theorem for holomorphic submersions due to Bis-
mut, Gillet and Soulé [7], and as such is a families-type index theorem. Our
interest is more in the restatement of Theorem 5.23 at the level of differential
forms. As in the families index theorem, the fibers H?(Z; E|z, ) inherit an inner
product A#” from the L? inner product on T'(T'Z,® E|z,) (since by Hodge theory
H?(Zy; E|z,) is isomorphic to a space of harmonic forms in L2(TZ, ® E|z,))-
Recall that the metric on M depended on a choice of the horizontal distribution
THM.

Theorem 5.25 (Bismut-Lott) There exist (k — 1)-forms
Ti-1 = Tt (T M, g77, h7)

on B such that
(i) for any odd integer k,

dim Z
AT 1 = /Z PEQT L)k (B, hE) = S (—1)Peu(HP(Z; Elz),h™")  (5.26)

p=0
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as differential k-forms;

(i) if the cohomology groups HP(Zy; E|z,) vanish for all p and all b € B,
and if Z is odd dimensional, then the forms Ty_1 are closed, and the class
[Te—1] € H*1(B;R) is independent of the choices of THM,gT% hE. In par-
ticular, [To] is (represented by) the locally constant function which is half the
analytic/Reidemeister torsion of the pair (Zy, E|z,).

This result has several striking features. First, it realizes the analytic/Reid-
emeister torsion as one element of a sophisticated local familes-type index the-
orem. Second, note that the first statement in (ii) follows immediately from
(i), since dim Z odd implies [, Pf(Q7%)c(E,h”) is an even form and so has
no component in degree k. Thus, as expected, the higher torsion forms Ti_1
have cohomological significance only when the cohomological information in the
index-type Theorem 5.23 is trivial. Third, if dim Z is odd and k¥ = 1, then (5.26)
precisely measures the dependence of the analytic torsion of (Zp, E|z,) on the
metrics parametrized by B. This dependence is nontrivial if the cohomology
groups H?(Zy; E|z,) are nontrivial.

Thus the higher torsion forms are the appropriate mathematical objects,
mentioned in the beginning of this subsection, which provide geometric infor-
mation in general and topological information when index theory is trivial. The
existence of the higher torsion classes [Tr—1] under the hypotheses in (ii) was
conjectured by Wagoner [67], who was motivated by considerations in algebraic
K-theory. It is striking that these classes were first uncovered by analytic meth-
ods. A proposed topological definition of the higher torsion classes is in [34],
[39], but it is unknown at present if the topological and analytic definitions
coincide. Together with other work relating index theory to algebraic K-theory
[12], [36], [42], the Bismut-Lott result points towards a deep, as yet uncharted,
relationship between the two fields.
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acyclic representation, 154
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asymptotic expansion, 101
Atiyah-Singer index theorem, 143

basic elliptic estimate, 36
Berezin integral, 127
Betti number, 42

Bianchi identity, 60, 129
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Bochner’s formula, 76
Bochner’s theorem, 76

Cartan-Hadamard theorem, 62
characteristic class, 131
characteristic form, 131
Chern character, 140
Chern classes, 134
Chern-Gauss-Bonnet theorem, 114
Chern-Weil theory, 128
Christoffel symbols, 55
compactness theorem, 25
complete polarization, 129
conformal metric, 16
connected sum, 137
connection

flat, 155

Levi-Civita, 64, 65

on a vector bundle, 133

one-forms, 128
contraction of a tensor, 61
convolution of functions, 23
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covariant derivative, 64
critical path, 80
curl, 22
curvature
endomorphism, 70
Gaussian
for arbitrary surfaces, 55
for surfaces in R3, 53
of a general connection, 133
Ricci, 61, 76
Riemann tensor, see Riemann
curvature tensor
scalar, 61
sectional, 62
two-forms, 128

de Rham cohomology groups, 40, 42
de Rham’s theorem, 45

divergence, 18

Donaldson theory, 135

double form, 34

Duhamel’s formula, 97

Einstein summation convention, 14
elliptic operator, 141
determinant of, 155
symbol matrix of, 141
Euclidean space, 11
Euler characteristic, 49
Euler class, 133
Euler form, 114
exponential map, 82

families index theorem, 164
Fefferman-Graham invariant, 150
fermion calculus, 68
Feynman-Kac formula, 127
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Fourier transform, 22

Garding’s inequality, 36, 77
Gauss map, 53
Gauss’ lemma, 84
Gauss-Bonnet theorem, 56, 113
geodesic, 81

minimal, 82
global inner product, 16
gradient, 17
Green’s formula, 158

harmonic forms, 46
heat equation, 5, 27
heat kernel

approximate

on forms, 116
on functions, 116

asymptotic expansion, 101

dependence on metric, 157

for forms, 101

for functions, 100

on a manifold, 27

on Euclidean space, 6

on forms, 34

on the circle, 7

on the real line, 6

pointwise convergence, 91

positivity, 108

symmetry, 8
heat operator, 27

semigroup property, 28
higher torsion classes, 166
higher torsion forms, 166
Hirzebruch L-polynomial, 137
Hirzebruch proportionality, 115
Hirzebruch signature theorem, 138
Hirzebruch-Riemann-Roch theorem,

141

Hodge decomposition theorem, 38
Hodge inner product, 21
Hodge star operator, 19
Hodge theorem, 46

for forms, 34, 37

for functions, 32
holonomy group, 67
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homotopy equivalence, 42
Hopf conjectures, 62, 115
Hopf-Rinow theorem, 82
horizontal distribution, 164

index bundle, 163

index of an operator, 135
integrability condition, 40, 54, 57
integration along the fibers, 164
interior product, 68

intersection pairing, 134
invariant polynomial, 129
isospectral manifolds, 102

Jacobi equation, 87
Jacobi fields, 87
Jacobi’s formula, 9
join, 51

Kronecker delta, 15

Laplacian
Bochner, 73, 127
conformal, 147
in polar coordinates, 88
of an exact complex, 154
on forms, 33
on functions, 18, 19, 21
on twisted forms, 155
Laplacian-type operator, 144
Levi-Civita connection, see connec-
tion, Levi-Civita
Lie bracket, 128
local frame, 128
Lohkamp’s theorem, 61

McKean-Singer lemma, 112
Mellin transform, 145
Myers’ theorem, 61, 77

operator
compact, 2
elliptic, 141
Laplacian-type, 144
orthonormal frame, 70

parallel translation, 66, 67
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parametrix, 95
Pfaffian, 131, 132
Pontrjagin classes, 131

R-torsion, see analytic torsion
Rayleigh-Ritz formula, 161
Reidemeister torsion, 154
Riemann curvature tensor, 57, 67
Riemann’s theorem, 57
Riemannian distance, 13
Riemannian manifold, 11

isometry of, 11
Riemannian metric, 11

flat, 57

induced, 12
Riemannian normal coordinates, 84
Riemannian polar coordinates, 84

Schrédinger operator, 127
signature, 135
signature operator, 135
twisted, 140, 163
Sobolev embedding theorem, 24
Sobolev spaces
for forms, 33
for functions on Euclidean space,
22
for functions on manifolds, 26
spectral theorem, 2
spectrum, 2, 4
Sunada’s theorem, 151
supertrace, 69
symbol bundle, 143
symbol matrix, 141
synchronous frame, 73
Synge’s theorem, 62

tangent bundle along the fibers, 164
Theorema Egregium, 55

Todd polynomial, 140

torsion of an exact complex, 154
traceless Ricci tensor, 150
transport equations, 94

universal polynomials, 85

variation vector field, 80
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virtual bundle, 142, 163
volume, 15
volume form, 15

Weierstrass approximation theorem,
7

Weitzenbock formula, 73

Weyl tensor, 150

Wiener measure, 127

zeta function, 145, 155
meromorphic continuation, 145



