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Abstract

The far point set of a self-map of a closed Riemannian manifold is defined to be
the set of points mapped into their cut locus. We prove a “far point formula”
analogous to the Lefschetz fixed point formula, with the contribution from each
far point a real number in [-1,1]. Using the far point formula, we show that for
most metrics, a diffeomorphism with Lefschetz number different from the Euler
characteristic must have infinite far point set. The main technique is the use of
Mathai-Quillen forms. These forms also provide a new integral formula for the
Lefschetz number, which reduces to the Chern-Gauss-Bonnet formula when the
function is the identity.
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1 Introduction

The Lefschetz fixed point formula for a smooth function f on a closed manifold
M expresses the Lefschetz number L(f) as a sum over the fixed point set
of f: L(f) = X ,erix(s)sgndet(ld — df,). This gives the important estimate
|L(f)| < |Fix(f)| which guarantees the existence of fixed points if L(f) # 0.

In this paper, we show that the set of points mapped far from themselves has
a similar topological content. More precisely, if M has a Riemannian metric
and C, denotes the cut locus of z € M, we set the far point set of f to be
Far(f) ={z: f(z) € C;}. The main result is a “far point formula”

L) =—xM)= Y o (1)

pEFar(f)

for suitably transverse f (Theorem 2.7), where a, € [—1, 1] measures the signed
ratio |e)<;p;1 fml/I exp;1 C:|. This yields a sharp estimate |L(f) — x(M)| <
|Far(f)| which holds for all diffeomorphisms. (For example, if Far(f) = 0,
there is a unique minimal geodesic joining z to f(z), and so L(f) = x(M).)
Unlike the fixed point case, the transversality condition is far from generic. In
particular, for diffeomorphisms of non-positively curved manifolds with L(f) #
X(M), the far point set is infinite (Theorem 2.9).

The main technical tool used to study the far point set is Mathai-Quillen forms
[12], which are geometric representatives for the Thom class of a vector bundle
over M. Using a one-parameter family of pullbacks of this form on the tangent
bundle, Mathai and Quillen gave a new proof of both the Hopf index formula
and the Chern-Gauss-Bonnet formula for the Euler characteristic. Adapting
their methods, we easily derive in §2.1 a new integral expression for the Lef-
schetz number (Theorem 2.3). A deformation of the function f along geodesics
joining z to f(z) yields a one parameter family of pullbacks of the Lefschetz
integrand in §2.2. As the parameter ¢t goes to zero, the integrand becomes
singular on Far(f), and an examination of the singularity leads to (1). In §2.3
the transversality assumption is dropped. The difference L(f) — x(M) is real-
ized the singular part of a current supported on Far(f), just as L(f) can be
considered as a current supported on Fix(f). In contrast, the Mathai-Quillen
deformation of the Thom form has no singular behavior at zero. In §3, a new
topological proof of the Lefschetz fixed point/submanifold formula is derived
by letting ¢ — oo. The proof has the flavor of the heat equation proof of the
Lefschetz formula in [8], but uses less machinery.

In summary, on a Riemannian manifold the fixed point set and the far point
set appear in the same setting, the first as ¢ — oo and the second as ¢t — 0



(see Figure 2). In [12], only the ¢ = 0 and ¢ — oo behavior of pullbacks
of Mathai-Quillen forms is of interest. In our case, the ¢ = 1 pullback is
the basic integral formula for the Lefschetz number. The Lefschetz integrand
is nontrivial even for flat manifolds, and reduces to the Chern-Gauss-Bonnet
theorem when f = Id. In §4.1 the integrand is explicitly calculated for flat
manifolds, and in §4.2 the integrand for arbitrary metrics is examined. Here
the integrand depends on solutions of Jacobi equations on M, and so is less
explicit. However, the integrand is computable for constant curvature metrics.
Finally, in the Appendix we give a Hodge theory estimate for the Lefschetz
number in terms of the norm of df and the geometry of M.

2 Geometric deformations of the Lefschetz integral

Let f: M — M be a smooth map of a closed oriented Riemannian manifold
M. The Lefschetz number of f is

L(f) =) (=) tr 7,

q

where f? denotes the induced map on the real cohomology group H?(M). In
this section we give an integral formula (Theorem 2.3) for the Lefschetz number
of f,introduce a one parameter family f; of deformations of f, and study the
t — 0 behavior of f;. Using the fact that that f; is singular precisely on Far(f),
we derive the main theorem (1) under a transversality condition, and study the
role of the far point set for general maps.

2.1 Mathai-Quillen forms and the Lefschetz integral

The Lefschetz number has a well known Poincaré duality formulation. Recall
that the Poincaré dual ny of an oriented k-submanifold N of a closed ori-
ented manifold X is the real cohomology class defined by (or characterized by,

depending on one’s definition)
Joo=[wnm, 2)
N X

for all closed k-forms w on X [1, (5.13)]. The following results are in [1, Ch. 5,
viz. Ex 11.26].



Theorem 2.1 (i) Let N, N’ be closed oriented submanifolds of X with trans-
verse intersection. Then

NINAN' = N A N7

(i) A closed form U € HF(E), the compactly supported cohomology of an
oriented rank k bundle E over X, represents the Thom class of FE iff the
integral of U over each fiber of F is one.

(iii) Identify the total space of 1/])\%, the normal bundle of N in X, with a tubular
neighborhood of N in X, so that the Thom class of the normal bundle can be
considered as a cohomology class on X . Then the Poincaré dual of N is the
Thom class of 1/])\%.

(iv) Let f: M — M be a smooth map of a closed oriented manifold. Then

1= [

where nr is the Poincaré dual of the graph 1" of f in M x M and A is the
diagonal in M x M .

It is pointed out in [12] that the cohomology with compact support in (i) may
be replaced with the cohomology of forms with exponential decay in the fibers.

Remark: We will need to make the identification in (iii) more explicit. To
consider a closed form U on y])\g as a closed form on X, we first use a fiberwise
diffeomorphism a : B.(0) — v on the e-ball of the zero section of v. For €
small enough, the exponential map exp : B.(0) — X is a diffeomorphism onto
a tubular neighborhood of N, and it is really (exp~!)*a*U which is a form

supported on the tubular neighborhood.

If T' is transversal to A in M x M, we obtain a quick proof of the Lefschetz
fixed point formula:

L(f)= ) sgn det(ld — df,).

p.f(p)=p

Since I'N A is a finite set of points, Theorem 2.1 and Poincaré duality give

L(f) = /UFI/ 77F/\77A:/ nroa
A MxM MxM
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= /FM1: Z +1.

p.f(p)=p

Thus L(f) is the sum of the orientations +1 of the fixed points p of f. By [9,
p. 121], the orientation equals sgn det(Id — df,) in our sign convention. Note
also that L(f) = [p,. 1 implies that L(f) = I(A,T), the intersection number
of A and I', so we have the three classical expressions for the Lefschetz number.

In [12], Mathai and Quillen obtain a geometric expression for the Thom class
of an oriented even dimensional vector bundle (see [10] for other geometric
representatives). Let E be a rank n = 2m vector bundle over a manifold
M, where F has an inner product and a compatible connection 6. Then a
geometric representative M(Q of the Thom class of F is given by

MQ = ek ST (1, I’)Pf(%QI) (dz + 0z), (3)

1,|I| even

where: z is an orthornormal fiber coordinate; €2 is curvature of the connection
#; Q7 is the submatrix of € with respect to the multi-index I with entries in
{1,2,...,n}; Pf(%QI) is the Pfaffian of %Q[; I’ denotes the complement of [
in {1,2,...,n}; ¢(I,I') is the sign of I,I' as a permutation (i.e. da! A da’ =
e(I,Idz" A ... Adz™); and

(dz + 02)"" = (da' + 07 27) A (da™ + 02 272) A A (da's + 077 297),

with I’ = {41, 42,...,74}. In the expression #z, § denotes the connection one-
forms of the connection for the frame {z'}. The ordering of the elements of I’
in dz!’ is unimportant due to the (I, I') factor. For computations at a point
x € M, we will often assume that {z'} is a synchronous frame centered at z,
in which case the connection one-forms € vanish at z

Unlike the Euler characteristic, the Lefschetz number can be nonzero for odd
dimensional manifolds, so we need to check that this formalism extends to

bundles of odd rank.

Lemma 2.2 (cf. [10, Ch. 4,§2]) Let E be an oriented odd rank n vector bundle
with inner product over a manifold M , and let V be a compatible connection
on E with curvature €. Then

n 1 ,
Uy =n 5e ol I |I|Z e(1, 1’)Pf(§sz[) (dz + 0z)"

is a representative of the Thom class of F.



PrOOF: Denote F by Fjs, and let Fq1 be the trivial bundle with the trivial
connection over S'. Equip Ejr x Egq1 over M x S* with the product connection.
The Mathai-Quillen representative MQusy 1 € H"™H (M x S') of the Thom
class of I/ = Fjr X Fg1 is given by

MQupst = 702l 3 e([,]’)Pf(%QI)(d:c—i—Hx)I',

1,|I| even

where 6 is the connection one-form with respect to a product orthonormal frame
{z'} of F,and Q = Qp;,s is the curvature of this connection. The curvature

matrix for M x S is
Qv 0
o= (7 1)

where Qs is the curvature matrix of Fjy.

Recall that for an even-dimensional kxk skew-symmetric matrix w, the Pfaffian
is a homogeneous polynomial of degree k/2 in the entries of w characterized

up to sign by Pf*(w) = det(w). If Q; is a submatrix of Q, then Pf(%QI> =0,
unless €27 is a submatrix of s itself. Thus in the definition of MQy; g1 We

may assume that n+1 ¢ I, where n+ 1 corresponds to the dt variable on S!.
Moreover, we have

(do+02)7 = (da® + 009 A (do't + 6507) A A (dE 4 07+ 20)
= (dz 4 62)"™ Adt,

where I = I3y U{n + 1} = {i},...,i;_4,n + 1} with [}, the complement of
I'—{n+1}in {1,2,...,n}. Hence MQj;, 51 decomposes as follows:

1 /
MQargst = x 2l Z G(IM,IM)Pf(iﬂjM)(d$+0$)IM

Ing,|Ipg| even

Am) e dt

— []]\J/\Uvsl7

where

. 1 ,
Uy = 7 ze Z e(IM,I]'VI)Pf(§Q[M)(d:U—I—H:U)IM,

Ing | Ipg| even

Usi = 72 gy,



By Theorem 2.1 (iii), Us: represents the Thom class of Fgi. Since dUgi = 0, we
have 0 = d(MQpsy51) = dUp A Ugr. Ust is non-zero, so dUpr = 0. Moreover,
in each fiber [ Usi=1,s0in each fiber

S

1:/ UM/\USII/ Upp.
EMXESI EM

By Theorem 2.1 (ii), Uas represents the Thom class of Fjs. O

The following elementary result is the basic integral formula for the Lefschetz
number.

Theorem 2.3 Let f: M — M be a smooth map of a closed, oriented, Rie-
mannian manifold. Let A, be a tubular neighborhood of the diagonal in M x M
of width ¢, and let MQ,_ be the Mathai-Quillen form of the normal bundle
to the diagonal, considered as a form supported in A.. Then the Lefschetz
number is given by

L) = (0t [ 1d, Q. (1
M
where (Id, f) : M — ' C M x M is the graph map.

Proor: By Theorem 2.1(iv) and Poincaré duality, we have

L(f) = /Anrz/Manr/\nA
1

— (_ )dim M/ A = (_1)dim M MQAC
r (1d, f) (M)

= (pydmm /Mad,f)*MQAe,

since (Id, f) is an orientation preserving diffeomorphism and hence of degree 1.
O

This formula generalizes the Chern-Gauss-Bonnet theorem. The Euler charac-
teristic of an even dimensional Riemannian manifold M is given by

xon =) = [

(Id, Id)*MQA€ = / O*MQTM7
M M

7



since a neighborhood of the zero section in T'M is isomorphic to a tubular
neighborhood of A under an isomorphism taking the zero section 0 to the
graph map (Id,Id) of the identity. For the Levi-Civita connection 6, we have

0*MQras = ﬁ_”/QPf(%Q)

since # = 0 on M implies 0%(dz 4 0z)!" = 0 if I’ # §. Thus we obtain the
Chern-Gauss-Bonnet theorem

1
xX(M) = W/M PE().

Similarly, we find x(M) =0 if dim M is odd.

Note that the support of the integrand in (4) is {z € M : (z, f(z)) € A.}.

2.2 The far point set

In [12], the formula x(M) = [, s*MQry;, where s is a section of TM, is
modified by replacing s with ts for t > 0. As t — oo, the Hopf formula is
recovered. At t = 0 the integrand becomes the Pfaffian of the curvature as
above, yielding the Chern-Gauss-Bonnet formula. In this section, we deform
[ to a function f; in the basic formula L(f) = [,,(Id, f)*MQ,. In §3, the
Lefschetz fixed point formula is recovered as ¢ — oo, as expected, since the
Hopf formula can be derived from the fixed point formula. In contrast, the
function f; becomes discontinuous at ¢ = 0 at those z € M for which (z, f(z))
is in the boundary of the tubular neighborhood of the diagonal. Thus this case
is more complicated.

The maximum amount of information is obtained when the tube is as large as
possible. As explained below, this occurs when the boundary of the vertical
fiber of the tube at (z,z) is C;, the cut locus of z.

Recall that on a closed manifold, a geodesic v(¢) is the minimal length curve
joining z = v(0) to y(t) for ¢t € [0,7] up to some maximal time 7". The point
y = v(T') is by definition in C,. In particular, if the graph of a smooth function
f M — M has the property that f(z) is never on C,, then there is a unique
minimal geodesic joining z to f(z). Shrinking this geodesic gives a homotopy
from f to the identity, and so the Lefschetz number satisfies L(f) = x(M).



This indicates that the difference L(f) — x(M) is controlled by the far point
set of f

Far(f) ={z: f(z) € C..}. (5)

However, this set is quite complicated in general.

In this subsection, we assume that Far(f) is finite. By studying the ¢t — 0
limit of the integral formula for L(f), we prove the far point formula (1) and
conclude that |L(f) — x(M)| < |Far(f)| (Theorem 2.7), under a transversality
assumption on f that holds for diffeomorphisms. In fact, for all but very

special metrics, the transversality condition implies that Far(f) is infinite for
diffeomorphisms with L(f) # x(M).

Recall that the set of vectors v € T, M such that the geodesic through z with
tangent vector v is minimal up to time one form a topological ball B, , whose
boundary is called the cut locus of z in T, M. The exponential map satisfies
exp,(0B;) = C;, and we always consider the exponential map exp, : B, — M
to have domain B,.

We first construct the largest (topological) tubular neighborhood of the diag-
onal A in M x M. A tubular neighborhood is given by points of the form
(expz v,expz(—v)), for v € TzM,z € M, and |v| is small. For z,y € M,
y is said to be inside C, if there is a unique minimal geodesic from z to
y. Let Nz = {exp;v : exp;v isinside Ceyp (—oy}. Define T C M x M by
T = {(expzv,expz(—v)) : expzv € Nz, z € M}. We call T the cut locus
tubular neighborhood.

Lemma 2.4 (i) T is a topological tubular neighborhood of the diagonal.
(ii) (z,y) € T iff y is inside C,.
(iii) The vertical fiber T'N ({z} X M) of T at (z,z) equals {z} x (M \C,).

Proor: We prove (ii) first. The forward implication is from the definition of 7.
Conversely, if y is inside C,., then there is a unique minimal geodesic from z to
y. Then (z,y) = (expzv,expz(—v)), where Z is the midpoint of the geodesic.
Thus z,y € Nz, so (z,y) € T.

For (i), the standard argument that the interior of the cut locus is a topological
sphere immediately extends to show that exp;'(N,) C T,,M is the interior of
a topological sphere. This argument in turn extends to show that the radius of



this sphere is a continuous function on the unit tangent sphere, which implies
that exp™!(T) is a topological disk bundle.

To finish the proof, we must show that exp on M x M is injective on {(v, —v)} C
11, (exp; ' (N;) x exp;'(N;)). If not, there exists z,y,v, w with a = exp; v =
exp; w and 3 = exp;(—v) = expy(—w). By the definition of Nz, Ny, this gives
two minimal geodesics from « to 3, a contradiction.

For (iii), (expzv,expz(—v)) is in the vertical fiber over (exp; v, exp;v), and at
0T, expz(—v) € Cexp, v- O

We now define f; for ¢ > 0 by pushing f(z) out the minimal geodesic joining
z and f(z) towards 071 as t — oo and pushing f(z) towards z as t — 0, if
(z, f(z)) € T, and fixing f(z) otherwise. More precisely, we want

(1) f

(2 () fz) if (z, f(2)) ¢ T orif f(z) =2
(
(

4

)
3) limiseo fi(z) € OT if (z, f(z)) € T but f(z) # =z,
) limyno fi(z) =z if (=, f(z)) € T.

fm (n Cx

Figure 1: Deforming f along the minimal geodesic from z to f(z) for the cut locus
tubular neighborhood.

For motivation, think of T as diffeomorphic to the tangent bundle of M, and
f as a vector field which blows up on {z : (z, f(z)) € T'}. Then the family f;
is analagous to the family of sections ts, except that we freeze f “at infinity.”

To construct f;, fix a diffeomorphism g : [0,1) — [0, 00) with p(0) =0, u(1) =1
and such that the derivative of u~! grows at most polynomially. For the mo-
ment, let T denote any smooth tubular neighborhood of A given by geodesics
of the form (z,y) = (v(¢),v(~t)). For such (z,y), set

dyy = min{t : (v(t),v(—t)) € dT}.
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(b) (®)

Figure 2: (a) The graph T of f inside the cut locus tubular neighborhood of the
diagonal A for M = S'. The top and bottom lines are the boundary of the cut locus
tubular neighborhood. Fix(f) = {y} and Far(f) = {z,z}. (b) The graph T; of f; for
t large. The support of the Lefschetz integrand (1d, f:)*MQ, approaches Fix(f) x M.
(c) The graph T of fi for ¢ = 0. The support of (Id, f;)*MQ, approaches a subset of
Fix(f) x M.

For z € M and t € [0,00), define ¢, : M — M by

eXpr[:u_l(:u(d‘;,l |v|)t)d1¥y|z_|]7 ($7 y) € T7 Y=¢€xXpgv, Y 7& Ly
tﬂ?(y) = Y, (567 y) g T7
x, Yy =1

Thus for z,y close but unequal, ¢, pushes y towards 0T as t — oo along
their minimal geodesic, but fixes y if it is far from 2, as measured by T'. The
complicated expression for ¢,(y) in the first case ensures that 1,(y) = v.

For f: M — M, define f;: M — M by

fi(@) = tz(f ().

The maps f; are smooth for ¢ > 0. Note that fi(z) = exp,v = f(z) if
(z, f(z)) € T and fi(z) = f(z) otherwise, so fi = f. Similarly, we have

11



folz) =2 if (z, f(z)) € T, and fo(z) = f(z) otherwise. Thus f; is discontin-
uous on {z : (z, f(z)) € 9T'}.

We now examine the t — 0 limit of pullbacks of Mathai-Quillen forms. Fix e,
and let MQA = MQ,_ be the Mathai-Quillen form on the e-neighborhood of
the diagonal. Then

L) = /A (14, £)"MQ,

= lim [ (Id, f)"MQa

t—0 A
= lim (Id, f£)™™MQ4x
20 J{(@0):(=,f(2))€T}
+ lim (Id, f1)*MQA, .-

20 J{(z,2):(2,f(2)) €T}

Here we do not distinguish between (Id, f;) as a map on M or on M x M. Now
(Id7 fl‘)*(MQA)(z,z) = (MQA)($,f($)) o (Id7f7f)* =0if (£C7f($)) g T, so

L) = lim (1d, £1)"MQa.
20 J{(w2):(e.f («))ET}
An open exhaustion As as § — 1 of {(z,z) : (2, f(2)
follows. Note that d(z,y)/ds, < 2|v|/|v| = 2 for (z,
Fix § < 1, set

) € T'} is constructed as
y) = (expz v, expz(—v)).

As=1{o: (o, f(o)) e 7, 20T CED oy
A £ ()

and set Bs = {z : (z, f(z)) € T} \ As.
Lemma 2.5

lim(1d, £;)"MQ = PF(©)
uniformly on As.

ProoFr: On Aj;, fi(y) — y uniformly as ¢ — 0. Thus if y(s) is a short curve
with v(0) = y,9(0) = w, then f;(v(s)) = 7(s) uniformly as ¢ — 0, and

fe(v(s)) — fe(y)

P ()=

. t
= lim lim
5—01t—0

= fim 22— 400) = w.

s—0 S
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This shows that

[(Id7 ft)*MQA]y(Ul, ce 7'Un) =
(MQa) (5. 1) (v1, (f1)sv1), -+ (Uny (fe)svn)

converges uniformly in y to

(MQA)(%y)((vl, V1), e ey (Vs 0)) = PE(Q)y(v1, ..., 0p)

as t — 0. O
By the lemma,
L) = [ Pr@)+lim [ (14, 5)MQ,
A(5 t—=0 B5
Since Pf(€2) is smooth on M, we get

L(f) = / PE(Q) + lim lim [ (Id, £)*MQa. (6)
{:(2,/ (2)) €T}

§—1t—=0 B;

We now check that this construction extends to the cut locus tubular neigh-
borhood T of Lemma 2.4. Fix € > 0 and pick a smooth disk bundle D C va
such that T°¢ = exp D¢ is inside T and is within € of filling T — i.e. for all
(v,—v) € D%, dyxar((expu,exp(—v)), (exp(tv),exp(—tv))) < €, where ¢ is
the smallest positive number such that (exptv,exp(—tv)) € dT. To define the
Mathai-Quillen form on T¢, we choose a diffeomorphism af : vo — D and
pull back the Mathai-Quillen form MQ, from va. As ¢ — 0, D° fills out a
continuous disk bundle in va, and we demand that for all R > 0, there exists
€0 = €o(R) such that a“(Bgr(va)) is constant for all € < ¢y, where Br(va) is
the R-ball around the zero section in va. For this choice of af, it is immediate
that

MQA (v1, -+ ., v,) = li_r%[((aﬁ)_l)*MQy(vl, ey U]

exists pointwise and is smooth, In fact, since MQ, decays exponentially at
infinity in va, the convergence is uniform. This yields

e—0

L(f) =t [ (1d,7)MQs = [ (14, £)"MOR.
M M

Definition: f is transverse to the cut locus if (i) Far(f) consists of a finite
set of points, and (ii) the graph I' of f is transverse to M x {f(z)} for all
z € Far(f).

13



In Figure 2, I' is transverse to M x {f(y)} but not to M x {f(z)}.

Condition (ii) is equivalent to df, being invertible, as (v, dfzv) € T(M x{f(z)})
implies dfyv = 0. In particular, a diffeomorphism of M satisfies (ii).

Let f be transverse to the cut locus, and assume for simplicity that Far(f) =
{z}. Then Bj is an e-ball B.(z) around z, and for MQ, = MQQ, we get as
in (6)

L(f) = limlim / (Id, f1)*MQu + lim lim (Id, f)™MQ4
M\B(z)

e—0t—0 e=0t=0 /B (z)

= lim PF(Q) + lim lim (1d, £,)"MQ, (7)

e—0 M\Be(z) e—+0t—=0 Be(fl/‘)

= x(M)+ lim lim (Id, f1)*"MQa,

e—0t—0 Be($)

by Lemma 2.5.

Since f is transverse to the cut locus, df, is inverible, so we may assume that
|, (s is a graph over a neighborhood U. C {z} x M containing (z, f(z)). For
fixed ¢ < e, there exists § = §(¢’) such that any § perturbation of T' in the C!
topology is still a graph over a similar Uy C {z} x M. Also, for any sequence
€, — 0, there exists a sequence ¢, — 0 such that the graph I';, of f;, is a
8, = 8(e,) perturbation of I'. Thus there is a set U, C fi, (B, (z)) such that
I;, is a graph over U,. Set W,, = (f;,)"'(Un) N Be,,(z). Then

lim lim/ (Id, f1)*MQs = lim lim [/ (Id, f1)"MQx

e—0t—0 n—00 t—0

+ /Wnad,ft) MQA]

= lim Pf(Q) (8)
"% J B, (2)\Wa

-l—nh_{féO}I_% Wn(1d7ft) MQa

= lim lim/ (Id, f1)*MQA, .
Wy

n—o0 t—0

In summary, L(f) — x(M) equals th|W MQ, in the limit as n — oco,t — 0.
(See Figure 3.)

The next technical lemma replaces f; by a family of maps ¢; deforming f(y)
towards = rather than towards y, for z,y close.

14



Lemma 2.6 For p > 0, there exists a neighborhood U = U, of z such that
for all yo € U, there exists a unique minimal geodesic Y¢(y,) [rom f(yo) to
z which is u close in the C' topology to the unique minimal geodesic Y#(v0)svo

from f(yo) to yo.

ProoFr: The lemma is obvious unless f(yo) € C,. In general, fix yo close to
xz and let y denote a point on the minimal geodesic from gy to z. Since
f(yo) € Cyy, we have yo ¢ Cf(yo)» and in particular yo is not in the conjugate
locus of f(yo). Thus the exponential map €XPy(yo) ¢ Lp(yo)M — M surjects
onto some neighborhood of yg. For y close to yg, there is a unique minimal
geodesic Yf(yq),y from f(vo) to y, and the family of such geodesics is C! close.
Now take a curve 7. which is a smoothed approximation to vy, followed by
the minimal geodesic from y to z such that the length of 7. satisfies £(v.) <
d(f(yo),y) + d(y,z) + e. Parametrizing all curves by arclength, we see that for
yo close enough to z, the new family of curves is still C'! close. By the Ascoli
theorem, a subsequence of this family converges in C° as y — z and as ¢ — 0 to
a curve Ys(yo),e from f(yo) to z of length d(f(yo), z)—i-e. Yf(yy), is @ minimal
geodesic from f(yo) to z. Since Yf(yo),z 18 sSmooth and since the tangent vectors

exp;(lyo) y lie on the unit sphere in T ()M, it follows easily that a subsequence

vo),e- BY the smooth
dependence of geodesics on initial conditions, the minimal geodesic vf(yy) |
C! close to the minimal geodesic from f(yo) to y, and hence C' close to

Y f(vo) o

of exp;(lyo) y converges to a vector v with expf(yo)(sv) =75
is

This shows that along any radial geodesic r centered at z, there exists a dis-
tance § = §(r) such that if y is a point on r with d(z,y) < &, then there is a
minimal geodesic from f(y) to z which is u close to the minimal geodesic from
f(y) to y in the C! topolgy. A similar argument shows that we may take ¢ to
be a continuous function of the radial direction. O

Fix p close to zero, and pick n large enough so that the lemma applies to
all y € W,. Define a family of maps ¢, : W,, - M, t € (0,1], which are
approximations to f; as follows. For = € Far(f), set g¢(z) = fi(z) = f(z). For
y ¢ Far(f) and v, = exp;(ly) y, define oy by fi(y) = expf(y)(oztvy). Now set
9:(y) = expy(y)(svz), where expy,)(sv;) is the minimal geodesic from f(y)
to z just constructed. By the smooth dependence of geodesics on parameters,
we see that u — 0, f; is arbitrarily C! close to g; for all y € W,, and for all
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€ (0,1]. This implies by (7), (8)

L(f)—x(M) = lim lim /W (Id, fi)*™MQa

n—o0 t—0

= 7}1_{20}1_1}(1) Wn(ldﬂt) MQa

4+ lim lim [(Id, fo)* — (Id, g¢) " IMQA

n—o00 t—0 Wn

n—o00 t—0
n

= lim lim (Id, g:)*"MQx (9)
w,

+oim [ lim((1d, fi)* - (1d, g) ]MQy

n—oo W, t—0

= [lim lim Wn(lchgt) MQ,.

Let TM™ denote {0} xTM C T(M x M)|a, and let MQg s+ denote the Mathai-
Quillen form of TMT, considered as a form supported on the cut locus tubular
neighborhood. Thus MQgpp+ = (exp™!)*3*MQ, where MQ is the Mathai-

Quillen form on TMT, exp is the exponential map from TMT to M x M,
and 3 is a homeomorphism from the neighborhood of zero in TMT with fiber
exp, '(M \ C;) to TM; this uses Lemma 2.4 (iii). As before, 3 is a limit
of diffeomorphisms, and because of the decay of MQ, # may be treated as a
diffeomorphism.

Note that psMQzarr = MQa, since (i) p3MQrast is closed and (ii) for a fiber
F = {(exp,(—v),exp,v) : v € N;} of the cut locus tubular neighborhood,

/pEMQTMT = / MQTMT:/ MQTMT
F ng M\Cm

- / MQ = MQ = 1. (10)
Bexpy ' (M\Cq) T, M1t

Since Iy, |w, is a graph over U,, the projection py : M x M — M onto the
second factor restricts to a diffecomorphism py : Ty |w, — U, with sign sgn
pa = £1, which equals the sign of py : ' = M at z. Thus

/.
n

| tdgrvay = cnp) [ (b7)"MQs
Wy p2(Id,g: )W
= (sgnpz)/ MQ (11)
Bexp ! gi(Wy)
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where exp. denotes the exponential map from TMT|w, to M x M. By (9),
(11),

L(f) = x(M) = (sgn p2) lim_lim MQ=a,,  (12)

n0t=0 B expy ! gu(Wa)
since equ_1 is C! close to exp;! for ¢ close to z.

|| can be computed as follows. As t — 0, Bexp, ' g;(W,) approaches a cone
in T, M with cross section exp; ! (f(W,)NC;), since go(y) = = unless f(y) € Cy.
(See Figure 4.) Thus in the n — oo limit, |a,| is given by integrating M(Q over
a cone with cross section Bexp,'(f(z)). Radially project this cross section to
a region Z, on the unit sphere S, C T, M. Since the Mathai-Quillen form is
radially symmetric in the fiber T, M, we have

|7z ]
|| = ) (13)
|5z ]
where |- | is the (n — 1)-dimensional measure on S,. Z, is also the radial

projection of exp, ! f(z) onto S,.

Theorem 2.7 (The far point formula) Assume that f is transverse to the cut
locus. For z; € Far(f), let Z; be the projection of exp;!(f(z;)) onto the unit
sphere S; C T, M. Let py : I' = M x M be the projection from the graph of f
onto the second factor with sign p; at x;. Then

L) = x(0) = o 2

In particular,

|L(f) = x(M)] < [Far(f)| (14)

for f transverse to the cut locus and for diffeomorphisms.

Proor: For f transverse to the cut locus, (14) follows from |Z;|/]S;| < 1. A
diffeomorphism satisfies condition (ii) for being transverse to the cut locus, so
either condition (i) holds or |Far(f)| = co. O

Remark: (14) is trivially sharp for f = Id. For any map on S™ with the
standard metric, exp;'(f(z;)) is a sphere in T,,S™, so Z; = S;. Thus L(f) —
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X(S™) =3, pi. The maps f:z+— 2™ on S! give examples where (14) is sharp
for arbitrary L(f). The two point suspension of f to S? is transverse to the
cut locus and gives equality in (14), and iterating this procedure gives sharp
maps in all dimensions.

In fact, nontrivial sharp maps exist only on spheres. Recall that exp; ' g;(y)
lies on the radial line joining exp; !y to 0 in T, M. By its definition, |a,| = 1 iff
exp, '(Id, f)B.(z) contains an interior collar of the cut locus in T,M, as only
in this case will lim,_q lim;_o Bexp;'(Id, g))W, = T,M". Letting ¢ shrink,
we see that this collar condition occurs only if the cut locus of z in M is
contained in an arbitrary neighborhood of f(z)-i.e. the cut locus of z in M is
precisely f(z). Thus M is homeomorphic to the one point compactification of

exp; {(M\{f(z)}),so M ~ S™.

Corollary 2.8 (i) Let f : M — M be a smooth map which is transverse
to the cut locus. If Far(f) # 0 and |L(f) — x(M)| = |Far(f)|, then M is

homeomorphic to S".

(ii) Let f : M — M be a smooth map which is Lefschetz (i.e. I is transverse
to A) and transverse to the cut locus. Let Fix(f) be the fixed point set of f.
Then

IX(M)] < [Fix(f)] + [Far(f)],
with strict inequality if M is not homeomorphic to S™ and Far(f) # 0.

(i) follows from |x(M)| < |L(f) —x(M)|+|L(f)| and the Lefschetz fixed point
theorem. As an application of (i), let f be transverse to the cut locus and have
L(f) # x(M). Then if M % S™, either Far(f) = 0 or |Far(f)| > 2. This fails

on S” for the suspension of z — 22.

In general, we expect exp,;!(f(z)) to be a small subset of exp;!(C,), forcing
|Z,| to be zero.

Definition: For z,y € M, let Z, be the radial projection of exp;!(y) N
exp, ! (C;) onto the unit sphere in T, M. The metric on M is somewhere (resp.
nowhere) spherelike if |Z,| # 0 for some z,y (resp. |Z,| =0 for all z,y).

A typical metric is nowhere spherelike, but it is easy to construct a somewhere
sphere-like metric on any M, by considering M as the connect sum M#S™.
Thus for any f: M — M and fixed x € M, there is a metric on M such that
z € Far(f) and |Z;|/|Sz| € [0,1) is arbitrary.
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Theorem 2.9 (i) A metric of non-positive curvature on a manifold of dimen-
sion greater than one is nowhere spherelike.

(ii) Let f: M — M be a diffeomorphism with L(f) # x(M). If M is nowhere

spherelike (viz. if M has non-positive curvature), then |Far(f)| = oc.

Proor: (i) The map exp,, is a covering map for metrics of non-positive curva-
ture, so the inverse image of any y € M is discrete in T, M.

(i) If f is not transverse to the cut locus, then 0 # L(f) = x(M) = > g5 0-
Since condition (ii) is satisfied, (i) must fail. Thus |Far(f)| = co. O

Examples: (i) This result applies to local diffeomorphisms. For example,
on the flat torus 7% with coordinates (#,), the maps f(#,v) = (nf, mv),
(n,m) € Z?, is a local diffeomorphism with L(f) = (1 — n)(1 — m), so for
n,m # 1, |Far(f)| = oco. In fact, it is easy to check that Far(f) is a union of
lines.

(i) Let X9 be a genus g > 1 surface arranged symmetrically about a plane
passing through the g holes. The diffeomorphism f : 39 — 3¢ given by reflec-
tion through this plane has L(f) = 0. For example, 39 can be the hyperelliptic
curve y? = Hfi‘lH(:U — a;) with a@; real and distinct, with f the involution
(z,y) — (z,—y). For any metric on X9, either (i) f is not transverse to the
cut locus and so |Far(f)| = oo, or (ii) the metric is somewhere sphere-like and
|Far(f)| > 2¢g — 2. Thus for any metric, |Far(f)| > 2¢ — 2, and for most metrics

(e.g. metrics of constant negative curvature) Far(f) is infinite.

(iii) Let f:.S2? — S? be a holomorphic map of degree n. Then f is a branched
covering and so [' is transverse to M x {f(z)} except at the branch points B.
As above, for any metric on S? with f~1(B) N Far(f) =0, we have |Far(f)| >

[L(f) = x(8%)] =n—1.

If Far(f) ={z1,...,z,} is finite, there is an alternative way to express L(f) —
X(M) in terms of Far(f). Since the cut locus tubular neighborhood T is
homeomorphic to TM, and diffeomorphic away from 9T, we can consider
f as a smooth vector field V; on M with singularities at the z; by setting
Vily) = exp;1 f(y). At each fixed point z of f, the local Lefschetz number
L;(f) equals the Hopf index ind,(Vy) of V¢ [9, p. 135]. We modify V; by mul-
tiplying the vectors in a neighborhood of each z; by a smooth function which
is one on the boundary of the neighborhood and which vanishes to sufficiently
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high order at z;. The modified vector field V]f extends to a smooth vector field,
also denoted Vf’, on all of M with zeros at the fixed points of f and at the z;.
By the Hopf index formula,

x(M)= >, inde (V)= Y Le()+ ) inde (V]),
{z:V;(z):O} {z:f(z)=z} 7

and so

L(f) = x(M) = =Y ind,,, (V}). (15)

k3

By Theorem 2.7 and (15), a function transverse to the cut locus satisfies the
curious equation

S p ||§j|| == ind., (V).

Since [Z;|/|S;] € [0,1) if M is not homeomorphic to S™ and ind,, (V) € Z,

this equation cannot hold if

Pi
sgn indg, (V})

B

=41 (16)

is independent of 7. In particular, a local diffeomorphism satisfying (16) must

have |Far(f)| = oo.

The following result gives a condition which guarantees (16). For a fixed z € M,
C; is a closed subset of M of Hausdorff dimension at most n — 1, since it is the
pushforward of a set of Hausdorff dimension at most n — 1 and since it is the
complement of the image of an open set under exp,. . Thus a small perturbation
fi = fie of f will have fi(y) ¢ C, for all y close to z, and for these y the
map f; can be lifted to a map f’ on a neighborhood V of 0 € T, M:

[V = ToM,  f'(v) = exp; ' (fi(exp, v)).

Moreover, we may assume that df; is invertible at # and hence df’ is invertible
at 0.

Lemma 2.10 If the perturbation f;, can be chosen so that sgndet(ld —
(df§)™") is constant for all x € M, then (16) holds.
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Corollary 2.11 (i) If M is not homeomorphic to S™ and if for a fixed metric
g and diffeomorphism f, sgndet(Id — (df})™") has constant sign for all x € M,
then either [Far(f)| = 0 or |Far(f)| = oo for all metrics sufficiently close to g
and functions f sufficiently close to f.

(ii) An expanding map on a flat manifold with L(f) # x(M) has sgndet(ld —
(df{)™1) of constant sign for all = € M. In particular, transversality to the cut
locus is not a generic condition.

For (ii), because the definition of f’ depends continuously on g, the lemma and
hence the corollary apply to metrics close to g and functions close to f.

PrROOF OF THE LEMMA: We use a prime to indicate lifts of objects to T, M:
e.g. v =exp, 'y, el = d(exp,;')ye; for e; € T, M. For simplicity of notation, we
just denote f; by f. The index of VJ{ at z can be computed in the coordinate
patch exp; ' (M \ C;), so ind.(V}) equals degree of the map

a:S"CTuM — TT,M ~T,M,

y'=expyly e d(expr)y (expy (1)),

for S’ a small sphere around 0 € T,M. We use the fact that the degree of
f:R"\ {0} — R"\ {0} equals the degree of f/|f].

The degree of « is computed by the signed sum of the preimages {y}} = o~ !(z)

for a generic z € Im(a), with the sign at y’ =y the sign of the determinant

!/

of day . Taking an orthonormal frame ef,... e/ _; of S’ at y', we need to

compute the determinant of the vectors

d
da(e!

_ -1
Z)_dt

exp,

!/

(e S (€xp (Y + te)) — tef,

d(exp; ! ) exp, (y'+tel) €xp
t=0

where —te! is included to shift all vectors back to T,yT, M. Thus

d _ _
da(e'/i) = % d(expz 1)expm (yv'+1el) expexlp,x(yl+t6:) €XPy f/(y/ + te;) - te;"

t=0

Since d(exp, ') exp, — Id as y' — 0, da(e}) is closely

-1
expg (y'+te]) eXpepr (y'+tel)
approximated by

d

Gl P ) el = (A~ 1) (e,

t=0
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Thus the sign of the determinant of da,s is the sign of the determinant of

df' —Id on S’

To compute p;, we extend the frame on S’ to €},... e, on T, T, M with €],
the unit outward pointing vector. Then p; is the sign of the determinant of
df'(e}), ..., df'(e],) with respect to an oriented frame {h!} at f’(y’) which has
hy,... hl_, tangent to f'(S’) and with h!, outward pointing. df’ takes the

form
( df’ée;-) <df’(eZ),h;> )

where the upper left block has dimensions (n—1) X (n—1). Since €/, is pointing
in a direction of increasing distance from 0 € T, M, df'(el) is pointing away
from the cut locus in the tangent space, and so the lower right entry is negative.
Thus p; = —sgn det(df’(€;)) (n—1)x (n—1)-

Since det(df’ — Id) = det(df’) det(Id — (df')~"), we have p; = —sgn det(df’) =
sgndet(df’ — Id) = sgndetda iff sgndet(ld — (df')™1)|s» = —1 and p; =
—sgn det dev iff sgndet(Id — (df')™")|s» = 1. Under the hypothesis that sgndet
(Id — (df§)~") is constant in z, sgn det(Id — (df’)~1)|s: is also constant for small
S O

2.3 A current on the far point set

We remarked at the beginning of the last subsection that L(f) — x(M) is con-
trolled by the far point set and made this statement more precise for functions
transverse for the cut locus. In this subsection, we will treat general functions
and find a singular current supported on Far(f) whose singular part evaluated
at the function 1 gives L(f) — x(M).

As in (6),

L= [ pr@)+limtim [ (14, £)MOR, (17)
M\Far(f)

§—1t—=0 B;

where we have replaced 7" in (6) with the cut locus tubular neighborhood and
MQ, with the corresponding MQQ. Since Far(f) is closed, the first integral
exists. By the Chern-Gauss-Bonnet theorem, we get

L(f) = x(M) - /F P im0, 5)MGR (9

§—1t=0 Jar
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We now define zero currents L/t, ', on M via their action on g € C®(M):

M

E(g) = /g-Pf(Q)-

M

We also set

cf(g):_/F (f)g-Pf(Q)—i—limlim 9+ Xz,  (1d, f)"MQa,

§—1t=0 Jas

whenever the right hand side exists. We define the limit of currents by pointwise
convergence: limy_o L/t = LY if lim;_o L' (g) = L°(g) for all smooth g.

Lemma 2.12 As a current, (limy_o L) — C/ exists and equals E. In partic-
ular, lims_o L (g) exists whenever supp g N Far(f) = 0.

Proor: We have

Ve = [ g-d.fyMQh = [

As

B;

and so

t—0 §—1t—=0 B;

lim Lt (g) — lim lim [ ¢-(Id, f;)*MQ% = / g - Pf(Q)
M\Far(f)
= E(g)—/ g PI(Q),
Far(f)

as in (17). This gives the first statement. For the second statement, if supp gN
Far(f) = 0, then g - xp, = 0 for § ~ 1, and so C/(g) = 0 for such g. O

In view of this lemma, we think of L° as a singular current, with C/ the singular
part of L° and E the finite part. Note that L/t(1) = L(f) for all t. This gives:

Proposition 2.13 For a smooth function f : M — M on a closed, ori-

ented, Riemannian manifold, there exists a canonical singular part Cf to L° =
lim;_yo L', with supp C/ C Far(f). Moreover, we have

L(f) = x(M) =’ (1).
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Remarks:

(1) This discussion can be carried over to the degree of f, defined by deg(f) =
fM ffw/ fM w for any top degree form w. By its homotpy invariance, the degree
of f is one if the graph of f never intersects C,., so we expect that a singular
0-current, with singular part supported on Far(f), computes deg(f)—1. Taking
w to be the volume form dvol of the Riemannian metric on M, we get

t—=0

vol(M) -deg(f) = Ilim /M(ft)*dvol

§—1t—=0

= / dvol 4+ lim lim [ x, (f;)"dvol.
MA\Far(f) M
Setting

Dl (g) = _/F . g -dvol + (lsim lim [ g-x, -(fi)"dvol,

—1t=0 fps

whenever the right hand side exists, we see that the support of D/ is contained
in Far(f), and that

DI(1)
vol(M)’

deg(f) 1 =

(2) In (1) and in the previous section, f is compared to (the homotopy class of)
the identity map. We can also compare f to a constant map ¢(z) = zg. In this
case the Lefschetz number (resp. degree) of f is 1 (resp. 0) if the graph of f
misses C,,. Again there are singular 0-currents, with singular part supported
on C,,, which measure L(f) — 1 and deg(f).

(3) Finally, f can also be compared to a fixed map fy. We obtain
L(f) = L(fo) = €77 (1),

where the singular current £//0 has singular part supported on {z : fo(z) €
Cf(x)}. There is a similar result for degrees. As a well known example, if M = S™
and f, fo have different Lefschetz numbers (equiv. different degrees), then there
exists € S™ such that f(z), fo(z) are antipodal.

(4) As in the introduction to §2, for a vector field s we have x(M)
= [ (ts)*MQrys for all t. Let B, be the c-neighborhood of the zero set of s.
Then by the uniform decay of (£s)*MQqz,s off B,

x(M) = lim lim (ts)"MQqras-

e—0t—=00 B,
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Define a family of Euler currents by
Eig) = [ 9-09MQra.
M
Then EI(1) = x(M) and

lim E} = lim lim ts)*M

t—oo e—0t—o00 Be( ) QTM
as zero currents. Thus the singular current lim;_,., F? is supported on the zero
set of s. If the zero set consists of nondegenerate points z1, ..., z,, the singular
part vanishes, and

. t
tlggo Es= Zicsz”

as in [12, §8]. The sign is determined by the Hopf index at z;, which recovers
the Hopf index formula at ¢ = 1.

3 Topological deformations of the Lefschetz integral

In §2 the £ — 0 limit of the geometric formula for the Lefschetz number was
studied. In this section, we show by topological arguments that the t — oo
behavior gives a new proof of the Lefschetz fixed point/submanifold formula.
(We use the geometry of geodesics only to define tubular neighborhoods, but
this can be replaced by a jet bundle argument.)

In this section, 1/}2 denotes the normal bundle of X in Y.

To state the fixed submanifold theorem, let f : M — M be a smooth map
of a closed oriented m-manifold M, and assume that the fixed point set of f
consists of the disjoint union of smooth submanifolds /V; of dimension n;. Let
N be one such component, and let v be the quotient bundle v = T'M /TN over
N . Since df preserves the subbundle TV, it induces a map df, on v.

We assume the non-degeneracy condition det(ld —df, ) # 0 (also known as clean
intersection), i.e. f leaves infinitesimally fixed only directions tangent to N.

If we put df,,, n € N, in Jordan canonical form, TN will be the span of eigen-
vectors with eigenvalues 1, and v is isomorphic to the span of the generalized
eigenvectors for the remaining eigenvalues. This induces a natural splitting of
TM‘N ~ TN @ v. A choice of Riemannian metric on M gives an identification

of v with 1/]]\\747 and df, with a map on v .
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Theorem 3.1 Let f: M — M be a smooth non-degenerate map of a closed
oriented m-manifold M , whose fixed point set consists of the disjoint union of
submanifolds Ny, Ny, ..., N.. Then

r

L(f) = 3 sgn(det(id - df,))x(N;).

i=1

For simplicity, we assume that the fixed point set of f consists of a single
submanifold N of dimension n. Let Aj, be an e¢-neighborhood of the diagonal
Ay M x M. Choose ¢ > 0 small enough so there exists a unique minimal
geodesic from z to y, for all (z,y) € Aj,.

For technical reasons, rather than using the family f; of functions of §2.2, we
construct a family of diffeomorphisms F; : M x M — M x M, for t > 0, with
Fy = Id, which pushes out fibers of I/%N);M, while fixing Apr and M x M — A5,
Let (z,y) € Ay, and consider the geodesic v in M x M from (z,z) € Ay to
(z,y), where z is the midpoint of the geodesic o between z and y in M.
Setting &(z) = v = v(z,y) € TzM, we have ¥(z,z) = (—v,v). For v # 0,
define a diffeomorphism A,(t) : [0,00) — [0,|z—|) with A, (1) = 1, which is
smooth in v, and set Ag(t) = 0. Define Fy : M x M — M x M by:

(éf,y ) ('r7y)¢A§w7
F = -
t(x7 y) { eXp(E,E)(AU(Ly) (t) . eXp(i'l,i') ($7 y))? (:Ca y) € A;W

As in §2.1, we have
L) = (1 g

where U%AZM is the Poincaré dual of Ay; in M x M. Since F; is homotopic to

the identity,

(_1)dim ML(f) — /,OMXM = lim /F*’I]MXM = lim F*,,,IMXM
T AM t—o00 T ¢ AM t—o0 (Id,f)(AM) i AM
= lim Ft*n%\;M = lim U%A;M, (19)

oo Jad r)ag) 1700 JFio(1d,£)(A%)
where A}S\, is a d-neighborhood of Ay in Aps, for § small enough. This uses

lim FrnxM =0,

=e0 J(1d, f)(Am\AY)
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as Ft*n%;M decays uniformly as ¢t — oo on Ap \ A%, since d(z, f(z)) and

hence |v| has positive minimum on M minus a §-neighborhood of N.

Let 7 : A?V — Ay be the projection given by the identification of A?V with a
d-neighborhood of the zero section of yﬁj‘v”.

The next lemma uses the non-degeneracy hypothesis.
Lemma 3.2 If df, — Id is invertible at n € N, then

T [Ft o (Id, f) (7~ (n, n))] N Ty A = {0}

Proor: If T, [Ft o (Id,f)(ﬁ_l(n,n))} N Tn)An # 0, there exists 0 #

(¢,9) € Tnmym " (n,n) with ¢ L N such that dFy(q, df,q) = dFyo(1d, df)(q, q) €
T(n,n)AN .

We split (g, df,q) € T(nnyM x M into its components in T'Aps and in I/%]\;M.

Since dF; leaves vectors in T'Ajs unchanged and stretches vectors in the normal
bundle by a A factor, we get

_ q+df,q q+df.q q—df,q —q+df,q

(q+dfuq q+dfuq>+/\(t)(q—dfuq —q+dfuq)

9

) 1—1—2/\(t)7 oA . 1o 10
:( 50t df,q, 5T dqu)v

for A(t) = Ay (t) with w = (¢ — df,q)/2. Note that by hypothesis, w # 0 and
so A(t) # 0.

We have dI o (Id, df)(q, q) = (v,v) for some v € T,,N, so

(1 +2/\(t)q+ 1 —2/\(t) dfyq) B <1 —2/\(t)q_|_ 1—1-2/\(t)

dfl,q):v—v:().

This implies A(t)(Id — df,)g = 0. Since ¢ # 0, A(t) # 0, this contradicts that
Id — df, is invertible. O

Define E,; C T(, (M x M) by
Ent = Tnpn | Fro(Id, " (n,n)|,
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and note the decomposition

MxM MxM
T(MXM)‘AM:TAM@VAN); ~ TyAM,
Let

71 T(M x M)‘A s M
M

X

be the projection to I/%MM. By Lemma 3.1, 7 has no kernel on F,, ; and hence

is an isomorphism of F, ; to a vector subspace H,; C pyMXM et
p , p ; A

ﬁn,t : En,t — FL‘ © (Idvf)(ﬂ-_l(nv TL))

be the diffeomorphism given by the exponential map. Actually, 8, is a dif-
feomorphism on a neighborhood of 0 in £, ;, whose radius goes to infinity as
t — oo.

Thus, 7o ﬁ;% : Fyo(Id, f)(r~Y(n,n)) — Hy,4 C Hyy is a diffeomorphism onto

its image f{nm where f{mt is an arbitrarily large ball in H,, , for large ¢. Then

dm Mo = iy MM
(=1 (/) 1250 Jmoqua,pyat) M
L U IR
= tliglo[deg(ﬂ 037 )7]
/ (70 By Al M
(708 Fro(1d.£)(A%) "
- . ~ ~ —1\—1\x _MxM

where §; 1 UpE,; = Fi o (Id,f)(A?V) is given by f,; on each E, . This
uses deg(7 o ;71)7! = (deg #)~' = deg #, as f3; is an orientation preserving
diffeomorhism and 7 is an isomorphism.

Let H;y = U,H,; be the subbundle of I/%JM over Ay with fiber H,; over
(n,n). We obtain

t—00

(1) ML(f) = lim deg(7) /H ((F o Br1) 1y M,

Since the F,; are getting more “vertical” as t — oo, 7o ﬁt_l — +Id and

H,;— H, ., where H, ., is the vector subspace of (I/%;M)(nm) spanned by

the projection of vectorsin H, ¢ into V%;M, forany t. Set Ho, = U, Hy o With
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projection map p: Hyo — An. Then H, is also a subbundle of I/%N);M — Ay,

and

()M VLG) = i deg(®) [ (a5

- ®ﬁﬁlgnﬁf4 (20)

By Theorem 2.1, n%]\;M and (I)(I/%N);M), the Thom class of I/%]‘;M considered
as a class on M x M, can be represented by the same form. Since we do not
distinguish between the integral of a cohomology class and the integral of a
representative form, we have

MxM MxM MxM *
/H May = / D(va,r ):/ D(vp,, ) A P71
= [ petXai= [ peed,
AN AN

where the push forward formula for integration over the fiber [1, Prop. 6.15] is
used between the third and fourth terms.

Let HL be the orthogonal (or any) complement of H,, in VAMJ\;M. By [1,

Prop. 6.19], we have @(V%];M) = ®(Hy,) A®(HL). 1t is easy to check that
PPN M) = pu(@(Hoo) A O(H)) = pu(@(Heo)) A O(H),

since ®(HL) vanishes in H,, directions. Thus (21) becomes

[ pewden = [ petaynewd) = [ eud), @)
as p«®(Hs) = 1 since ®(H,,) integrates to one in each fiber.
We claim that

MxM ~ 1 AVXN A
VA, N VA fas I/A]]‘f.
Indeed, the metric on M is chosen so that
TM|, =TN a&vy. (23)

I/g;;N is isomorphic to TN by the map (v,—v) — v. Similarly, I/%N);M ~
TAp ~TM. Finally, we trivially have yﬁj‘vff ~ 1/]]\\]4. Plugging these terms into
(23) gives the claim.
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Thus we have the bundle isomorphisms I/ﬁi\f ~ Ky ~ Hy ~ H,, and by the
claim we have HL ~ ng\);N. By (21), (22), we have

Mx M L NxN NxN
/Hoo T /AN (Heo) Ay N Ay Tax
= I(An,An) = x(N), (24)

where the self-intersection number of Ay appears as in §2.1. Combining (20),
(24) gives the Lefschetz formula up to sign:

L(f) = (=1)"™ Mdeg (7) x (V). (25)

To compute the degree of 7 : F), ; — H,, ; ~ yﬁy, we pick # and «, positively

oriented bases for F,; C T(, ' and Hy; ~ (Vﬁy)(nm) respectively, and
compute the sign of the determinant of the matrix of # with respect to 6, «.

There exists a positively oriented basis for T, M, (v1, ..., U, Wpt1, ..., Wp,) , With
v; L w;, such that vy, ...,v, € T,N, df,v =v and wy, ..., wp_, € 1/]]\\,4, df,w =
df,,,w. A positively oriented basis for T{, ,)I" is then

{(v1,01) ery (Vny V), (w1, dfyw1), vy ooy (W, df W)
and a positively oriented basis for F, ; is
0 = {(wy,dfywr), .. ooy (Wi, dfy W) }
since [, ; ~ (Vﬁj\\]/[)(nm). A positively oriented basis for H,, ; ~ (Vﬁj\‘]”)(nm) is
a={(—w1,w1), .., (—Wm—n, Wrn—n)}

As in Lemma 3.1, the vectors in # decompose into

w; + df,w; w; + dfywi) N (wZ —df,w; —w; +dfy'wi)‘

(i, dfy ;) = (Z 5, = T

Hence

i — dfywi —wi + dfyw;
deg ™ = sgn det{(—wi,wi)H(w wa, w—|—2fw)}

= sgn det {(—wi, w;) — (df, — 1d) (—w;, wi)}
= sgn det(df, — 1d).

30



Since the right hand side of (25) vanishes if dim N is odd, we assume dim N
is even. (25) becomes

L(f) = (=1)%™ Msgn(det(df, — Id))x (V)
= (=1)fm M (_p)dim M=dim Nogn (det(Id - df,))x(N)
= sgn(det(Id — df,))x(N),

which concludes the proof of Theorem 3.1.

If the graph of f is transversal to the diagonal, the fixed point set reduces to a
finite number of isolated fixed points ny, no, ..., n,, and the Lefschetz fixed point
formula is easily recovered. For let m be one such isolated fixed point. Then
Ho, reduces to Hy o, the fiber over (n,n) in Ay and [ @(V%];M) = 1.
df, is just df, and deg(7) = sgn det(df, — 1d). So (20), (21) give the fixed

point formula

r

L(f) = (—1)dim MZdeg(fri)/ SAM) =3 sgn det(Id — df,).

n;,00 =1

4 Local expressions for the Lefschetz integral

In this section we calculate the integrand in the Lefschetz integral formula
Theorem 2.3 in local coordinates. In §4.1 the integrand is computed explicitly
for flat metrics and checked on a simple example. In §4.2, the case of general
metrics is discussed, and the integrand is given explicitly for constant curvature
metrics. At the end, a geometric proof of the Lefschetz submanifold formula is

sketched.

4.1 Local expressions for flat manifolds

On a flat manifold, there exists a local orthornomal frame {z°} for which the
connection and the curvature forms vanish. The Mathai-Quillen form for the
normal bundle to the diagonal is given by

MQ,, =72l dal AL A da”, (26)

where z is the fiber coordinate.

We need an explicit diffeomorphism a : A, — va between an e-neighborhood
of the diagonal and the normal bundle to compute MQ,, = a*MQ,, . Even
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though the exponential map is trivial near the diagonal, its use avoids confusion
between normal vectors and points of M x M.

Fix (z,y) € A.. Since the normal bundle consists of vectors of the form (—wv, v),
there exists (z,2) € A such that (z,y) = exp(z 7 (—v,v) = (expz(—v), expz v).
Thus z is the midpoint of the geodesic expg(tv), t € [-1,1] from z to y.
This gives a diffeomorphism 7 : U — A, for U the ¢-neighborhood of the zero
section in va:

(v, =v)(zz) = (expz(v), expz(—v)).
Let p : [0,€) — [0,00) be a fixed diffeomorphism with p(0) = 0, p’(0) = 0.

Extend p to take on values oo outside of [0, ¢).

In the product metric, d((z,y), (z,2)) = d(z,y)/v2,50 A, = {(z,y) € M x M :
d(z,y) < v/2¢.}. Thus 8 :U — va given by

d(z,y) v d(z,y) v
ﬁ(v’_v)(i’,f) - (p( V2 )|U|7 ’0( V2 )|v|)7 ’U#O,

(fvi% U:07

is a diffefomorphism and o = Bon~!: A, = va is our desired map:

az,y) = ((w’w)’(p(%)l%l’_ (d(z—ﬁ))ﬁ)) T #Y,

((‘rv*r)?())? =1,

where (z,y) = (exp;(v), exp;(—v)), |v| = d(z,y)/v2. (Strictly speaking, a is
only a homeomorphism at the diagonal.)

In the flat case,  can be treated as identity map, a reduces to § : R* — R”,

v (o), v#0
_ PUV Ts ¥ )
ﬁ(v)—{m v vo0,

MQ,Ae = a*MQUA = ﬁ*MQlIA'

and

By (26), computing this last term reduces to calculating #*dvol, which is easiest
in polar coordinates. A short calculation gives (.,(d,) = p'(|v])0r, Bun(0gi) =
Oy, and so (8%0,), = p'(Jv|)dr. Similarly, 3*df' = d#'. Thus

MQa, = AMQ,,
B (x 2 Ve A dBY A A dOPTY)
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A o P (U CaY) PR vl
V2 d(z,y)
V2

The last step is to calculate

d(%f(f))) n—1
* _ * —n/2 —PQ(d\gZ—y) / d(‘r’y) p< \/5
(Idvf) MQa. = (Id,f) [ﬂ- € p \/5 d(z, f(x))
V2
-dvola(ny)

W—n/ze—pr"(ﬂi\/;n)p/(d(xv f(ﬁ)))

V2
d(IJ(I)))

S s AN 1d, f)*(dvol
\“amrey ) () (dvolagey)).
V2

Here dvol,, ) is the volume element on the normal bundle, considered as a
form near the diagonal.

Since (Id, f)*MQ,, vanishes if (z, f(x)) is not in the tubular neighborhood,
we may assume there is a unique minimal geodesic from z to y. Let (z°) be
flat coordinates near z, and let (yl) be flat coordinates at y given by parallel
translating the 0, along the geodesic. Then

N[ —dzt + dyi
dvol,(z,y) = /\ (7\/5 >7

=1

since the normal fiber v(; ;) at (z,%) consists of vectors of the form (—v,v).
In the (2'), (y') coordinates, we may write f = (f1,..., f*). Then

n

(Id7 f)*dVOIOz(Ly) — (Id7 f)* /\ (W) = 2—n/2 /\(—d.ﬂl + dfl)
] ) =1

1
= 97 1/2 /\ (— dxi+ Z;dxj)

1=
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The transformation df o|| — Id, where || denotes parallel translation from f(z)
to z along their geodesic, has entries

i = { QD1 =)

afz/ar]7 i # j7
SO
(Id, f)*dvoly(ey)y = 9-n/2 /\Zazjdﬁj
=1 j7=1
= 272 det(df o || — Id)dvolyy,
and so

(Id, /)" MQx, = (Id,/)"a"MQ,,
= <2ﬂ>—n/2e—p2<%ﬂ>p’<w) (27)

d(z,f (=)

n—1
) det (df o|| — Id)dvola;.
V2

Since (—1)"det(df o|| — Id) = det(ld — df o ||), Theorem 2.3 and (27) yield:

Theorem 4.1 Let f: M — M be a smooth map of a closed, oriented, flat
n-manifold M. Pick ¢ > 0 sufficiently small, and let p : [0,¢) — [0,00) be
an orientation preserving diffecomorphism. Set p(t) = co for t > ¢. Then the
Lefschetz number of f is given by

Ly = /Me—*(%m)p,(d@,f(x)))(pﬁT))n—l

(2m) /2

~det (Id — df o ||)dvolyy.

For f theidentity map, det(ld —dfo||) vanishes and the theorem gives x(M) =
L(Id) = 0 as expected. Of course, the /2 factor in the integrand can be
incorporated into the diffeomorphism p.

Example: Let f:S' — S be given by f(z) =2",s80 L(f)=1-n.
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For e = 7/2v/2, let a: A, — z/il;fsl be the diffeomorphism

= (838,

where (1, 62) are the coordinates on S'x S and p : (— ﬁ, QWW) — (—00,0)

is an orientation preserving diffeomorphism given by a fixed odd function p.

We set p(z) = 00, —o0 if z > 72v/2, z < _;W’ respectively.

“ . 1 o0 _12 _ . .
The condition NG f_oo e * dzxr = 1 implies

%/2\/5 p’(H)e_p2(€)d0 =1, /Qﬁ p’(0)6_92(€)d0 = ﬁ
T

0 2

The graph of f, drawn on [0,27] x [0, 27], consists of n line segments 6, =
nby —2(k—1)r, k=1,2,...,n. Since the upper and lower limits of the tubular
neighborhoods are given by #; = 6, & 7, it is easy to check that I' is in the
tubular neighborhood iff

(4k — 5)m <6 < (4k—3)71'7
2(n—1) 2(n—1)
for k=2,...,n—1,0r
s (4n — 5)m
<6 < <6, <2
0S50 oy ==

for the first and last segment, respectively. Thus the integrand in Theorem 4.1
becomes

(n—1)€_p2(£n_—1w>pl(("—1)9— (k — 1)2”)d0, (28)

V2
Ver V2

since df is multiplication by n. This gives

1 [ p(leshey (0 - 1)8
L(f) = N € e P 0

_n—l |:L 2(n—1) (n——l)e_f(i"—aém—(k—l)vrﬁ)
V2

p,((n - 1)6 \_@(k - 1)2ﬂ)d0]
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1 2
- ﬁ /4n—5)7r
2(n—1)

Under the change of variables A = [(n — 1)8/v/2] — (k — )72, k=1,...,n,
the first and last integrals become 1/2, and the integrals under the sum become
1. Thus

1 41
k=2

Theorem 4.1 can also be used to estimate L(f) for flat manifolds.

Proposition 4.2 Let f: M — M be a smooth map of a closed, oriented, flat
n-manifold M. Then

IL(H)] < (lldfll+ 1"

C
(27)n/?
for some constant C' independent of n.

PROOF: We may choose p so that lim,_,. e=?"(*)p/(2)(p(z)/2)""' = 0. Hence
there exists C’ > 0 such that 0 < e=**(9)p/(2)(p(2)/z)"~1 < C’. Note also that
for v € Ty M,

|(Id = df o [[)(v)] < ([[df] + D)]v],
since parallel translation in an isometry. Thus |det(Id — df o ||)| < (||df|| + 1)".
By Theorem 2.2, we have

A I @)Y | et
| sty od(z, f(@)y (P
2
‘ det(1d — df o H)‘dvol
C/

C' -vol(M) is bounded above under a scaling g — Ag of the metric, as p(z) —
p(A"1/22), so e‘p2(z)p(z)”_1 stays bounded, p’ scales by A=1/2,

27 = (d(z, f(z))/V2)' =" scales by A'=")/2 and dvol scales by A*/2. Thus
C'-vol(M) is bounded above by a constant independent of dim (M). O

The appendix contains a similar result for arbitrary manifolds via Hodge theory.
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4.2 Local expressions for arbitrary metrics

In this subsection we calculate the local expression for the integrand in Theorem
2.3 for an arbitrary Riemanninan metric. Unlike the flat case, the exponential
map is nontrivial, and the Jacobi fields which measure the deviation of the
exponential map from the identity enter the computations.

A tubular neighborhood A, of the diagonal A in M x M is diffeomorphic to a
neighborhood of the zero section in va = I/%XM7 which in turn is diffeomorphic
to a neighborhood of zero in T'M . The Levi-Civita connection on M determines
the space Hjps of horizontal vectors on T'T'M, while the space Vs of vertical
vectors is independent of the connection. The Mathai-Quillan form MQqzp, is
written in terms of horizontal and vertical vectors, so we have to identify the
corresponding horizontal and vertical vectors in the tube in order to compute
MQA., -

Let « be the isomorphism from the neighborhood in va to the tube: for vo =
{(v,—v) : v € TM}, we have a(v,—v) = (expz(v), expz(—v)) at (z,z) € A.
As before, the radius of the tube is chosen small enough so that there exists a
unique minimal geodesic between z and y whenever (z,y) is in the tube. For
(z, f(z)) € A., recall from §4.1 that z is the midpoint of the unique minimal
geodesic v from z to f(z) and |v| =d(z, f(z))/2 in M’s metric.

Pick an orthonormal frame {Y;} at z. Let § : TM — var be the bundle
isomorphism ((v;) = (vs, —vz). The horizontal space H in the tube is by
definition be d(af)(Hpr), and the vertical space V' in the tube is d(af) (V).
Define vectors Xi,)?i at = by

)fi = d(exp;).(Y:),
d(exp. [|v)z(Yi), (29)

X;
where in the first line Y; is trivially translated to a vector in T,7;M, and in

the second line ||v denotes the parallel translation of v along a curve in M
with tangent vector Y;. Similarly define vectors ZZ',Z' at f(z) by replacing
v in (29) with —v. If we parametrize v from Z to z as (), then X; is the
endpoint of a Jacobi field J with J(0) =Y; —i.e. J is the variation vector field
of the family of geodesics v;(t) = exp,,)(f||lv), where 7(0) = Y; and ¢ € [0, 1].
Similarly, X; is the endpoint of a Jacobi field J, the variation vector field of
the family of geodesics v,(t) = expz(t(v + sY;)), which has (V.J)(0) = Y; (cf.
[7, Cor. 3.46]). Similar remarks apply to Z;, Z;.

Lemma 4.3 The vertical space V at (z, f(z)) is spanned by {(—X;, Z;)} and
the horizontal space H is spanned by {(X;, Zi)}.
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PrRoOF: Set § = af3. A vertical vector at v € Tz M is a tangent vector Y to a
curve 7(t) C T,M with n(0) = v,7(0) =Y. Then

dé,(Y) = %t_o(eXan(t% expz(—n(t)))
= (] _exwent G| exvat-n0))

= (d(expi)vyv d(expi)v(_y))'
Thus the vertical space at (z, f(z)) = (exp; v, expz(—v)) is spanned by

{(d(expgz)o(Ya), d(exps) o (Y2)) -

Let |Jv = ||yv denote the parallel translation of v along radial geodesics centered
at z. Then ||v is parallel at z, and the horizontal vectors at v are spanned by

4
dt

llexp, (1v;) -
t=0

Thus the horizontal vectors at (z, f(z)) are spanned by

d
E tZO(S(Hexpi(tYi)v)
d
= dt (expexpi(th) ”expj(th)Uv €XPexp, (1V;) ”eXpi(tYi)(_v))
" 1t=0
= ()?27 Zz)

Remarks: 1) The lemma shows that at (z, f(z)),

V = (_d(expf)vvd(expf)—v)VMv
H = (d(expl|v)z, d(exp—||v)z)Hn.

2) Xi,)?i, Zi, Z: are just parallel translations of Y; if M is flat.

3) Vertical vectors at (z, f(z)) are those pairs of vectors in TuM X Ty )M
which are endpoints of a Jacobi field along v which vanishes at z. Horizontal
vectors are pairs of vectors which are endpoints of a Jacobi field along v whose
covariant derivative vanishes at z.
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Lemma 4.4 Let (X,7) € T(y p(o))(M x M). Let Y be the unique Jacobi field
along v with Y (z) = X, Y(f(z)) = Z. Let X1, resp. Z; be the values at z,
resp. f(z) of the Jacobi field Yy along v given by Y;(z) = 0, 241 (z) = 2L (7).
Let )?1, resp. 71 be the values at z, resp. f(z) of the Jacobi field Y, along v
given by Yo(z) = Y (2), 22(z) = 0. Then (X, Z) = (X1, 71) + (X1, Z1) is the
decomposition of (X, Z) into vertical and horizontal vectors.

Proor: By Remark 3, (X4, 71), ()?1,21) are vertical and horizontal vectors
respectively. Since the Jacobi equation is linear, the endpoints of the Jacobi

field Y; + Y, are Xy + X4, 21 + Z1. Since Y7 + Y5 h@vs the same position and
velocity vectors as Y as z, we must have X = X1 + Xy, 2 =7, + 7. a0

Let p : [0,¢) — [0,00) be a diffeomorphism with p(0) = p’(0) = 0, and and
extend p to a smooth radial surjection p : B.(0) — R" on the ¢-ball around
0 € R”. Let MQ,, be the Mathai-Quillen form of the normal bundle v = va
and let MQ,, = (exp~1)*p*MQ,, be the corresponding Mathai-Quillen form on

M x M. Here we abbreviate (exp~™! exp™') to just exp~!.

In (3), the vertical coordinates are denoted by z' and the horizontal coordi-
nates are hidden in €. For the calculations on T M, we need to make the
horizontal coordinates y‘explicit and take care not to confuse them with the
vertical coordinates. So let {2’} be a synchronous orthonormal frame centered
at . In each fiber of v, we take the orthonormal polar coordinate frame
{(=2*,2%)}, with {2'} = {2' = 0,,r7'0y}, away from the origin. These
frames do not agree at the origin in each fiber, but the formulas below will
be smooth at the origin. p’(0) = 0 implies (p*dz*),—o = 0, and for v # 0,
p*dz} = p*dr, = p'(|v|)dr,, p*df} = d6. Thus for v # 0,

| o ((exp™ o) (exp™ ) dai (), i = 1,
[(exp™!)*p*dz']y(a) = '
e(Jvl) (exp™1)*dz* (), if i # 1.

v]

If {y'} is another synchronous frame centered at z (possibly equal to {z'}),
then the horizontal lifts of y* into Tv are orthonormal in the metric on Tv
induced by the metric on M. (Since p.(y*) =y, we have

[(exp™)*p*dy)(a) = (X;, Z)# (a),

where (X, Z;)# is the cotangent vector dual to (X, Z;).) If (Id, 1) MQA) (@)
= D dvol(, ;), then

(' y') (y”,y”)) ‘

T
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Thus

_ 2(d(z7f(x)))
€ ! V2 4 —1y\* %
D = S ST, I)(exp; ") o1 (PHQ)

CORC

/\diCII)((yly f*yl), sy (yn7 f*yn))

Write
(v, fy') = Py + Py (30)
for the decomposition of (y', f.y') into vertical and horizontal vectors as in the
lemma. Let ¥, be the permutation group on {1,...,n}. Then
2(Hegi
p = ¢ I Z Z (expz ' )*Pf(Q) (P Pﬂl]l)
T |ff|' : i P
~ d(%f(x)) ~I' { pHir+1 tin
where
(et @)y [ s @] e
’ (d(wyf(w))) Pl (el e,
pr | —=—) =
2 /
\/_ [P(d(z,f(z))/\/i)} 1l if 4, € I
d(z,f(2))/V2 ' ’
Here dz!' = (exp;!)*dz’, and we have used p* Pf(Q) = Pf(Qy), since this
Pfaffian is a horizontal form. Note that p(0) = 1 since p(z) = o(z?).
Define n x n matrices A = A,, B= B, by
(expgl)*P}I = A;‘yj7 (expgl)*PXi/ = B;'xj7 (31)

where strictly speaking the last term is (—B;ﬂ, B§$j).

Examples: At a fixed point z = f(z), the decomposition of (g, f.q) into
vertical and horizontal components is given by

(¢, feq) = (q _Qf*q’ —4q *2- f*q) N (q +2f*q’ q +2f*q) 7

since (exp™!). = Id at a fixed point. Since vertical (resp. horizontal) vectors on
the diagonal are of the form (—v,v) (resp. (v,v)), A is the matrix of %(df +1d)
and B is the matrix of §(df — Id).
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It follows easily from Remark 2 that on a flat manifold, A = }(||odf+1d), B =
(| o df — 1d) for arbitrary z.

Thus
2 Ef x
- i - u(11)
b= (2m)n/2 Z|]|l|]/|| Z sgn p) A -...-Aju|
PEQ) (Y - - ,yﬂm)
e (d(‘r’i\/f;))) B;:l(lllﬂ) Bgl(p)d r (k1. .. 7$k|1,|).(32)

(We use summation convention for the j and k indices.) The right hand side
of (32) vanishes unless I' = {ky,...,kjp} = K, and

Z B LB g (ML R = det (BT,

ki)
K, K=
for ¢,s =1,...,|I'|. Here I' = {4},..., |I'|} with #f < ... < 2'1[,. We denote
this determinant by det(B},). For I = {iy,... iz}, with iy < ... < iy, we
have

Pf(Qy) = aqr| Z (sgn o) (sgn T)Ria(l)ia(z)’ir(1)ir(2) Tl
o TEY 1|

B rimniaqay irgn-yizgny
with ¢)7 = (=D)I2121 (11 /2)71 [12, (1.3)]. (The (=1)M172 reflects our sign
convention on curvature.) As above, the right hand side of (32) vanishes unless
I'={j1,...,Jj5} = J. Summing over such .J produces the term det(Afk(t)) =
det(A}), for t,k=1,...,|I].

dy AL A dym,

Thus
—P ( (I\;ﬁ ))) (I I/)
€
D = —— I (sgn p) det(AY) det(BY)
(27)7/2 IZI:/#%E: |||]|||]/|| I
~ (d(%f(w)))
P\ 5
V2
Z (sgn @) (580 7) Ry 1yiniayinaying " Biaqnonioqmyisqnion irgry-
U,TEE|I|

Since [y, dy' AL Ady" = 2-"/2 Sadyt y' ) A Ad(y™, y™), we have
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Theorem 4.5 Let f: M — M and fix ¢ > 0 such that (z,y) € A, implies
the existence of a unique minimal geodesic between x and y. For x € M, define
matrices A, B by (30), (31), provided (z, f(z)) is in the ¢-neighborhood of the
diagonal; otherwise set A = B = 0. Then

I f B (_1)dim M () I I/ d A
0 = G TR '”|I|'|1f|' 2 (sen ) det(a))
- [d(z, f(z
det(B)7): (%)
Z Rigyioyinying " Risqrioyyiaqnyisgri- ingry VOl
U,TEE|I|

This formula can be checked in some cases. At a fixed point, p*dz’ = 0, so the
only contribution to the integrand comes from I = {1,...,n}, I’ = (. Thus
the integrand is

det(%(df + Id))Pf(Q).

In particular, for f = Id and n = dim M is odd, the integrand vanishes and
X(M) = L(ld) = 0. If n is even, the theorem reduces to

0 = e e
A R I, Y
the Chern-Gauss-Bonnet theorem.

The other extremal case occurs when M is flat. Because Rz = 0, the
only contribution to the integrand occurs when I = (). Then ¢y = 1 and
(sgn ) det(BYy,) = det(|| o df —1d), so the integrand is

d(z,f(x n—
1 / e_pz(ﬂiﬁrll)p, (d(fC,f(fU))> (,0(( \/(5)) )) ldet(ld — H odf)
72 d(z,f(z !
(27) V2 )

which agrees with the flat case formula, since parallel translation is an isometry.

Example: We determine the integrand in the Lefschetz formula for M an
oriented surface of constant Gaussian curvature —1. At the end we indicate
the changes for constant curvature manifolds in general.
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We first determine the horizontal and vertical components of a vector (g, f.q) €
T(x,f(x))(M x M). Assume there exists a unique minimal geodesic v joining z
to f(z) with midpoint z. Let || = 1, and let a be the unit normal to v
determined by the orientation. Set d = d(z, f(z)).

Let J be a Jacobi field along . Plugging J(¢) = a(t)¥ + b(t)a into the Jacobi
equation D2J/dt* + R(¥,J)¥ = 0 and using (R(%,J)%,%) = 0, (R(¥, @)%, a) =
—1 yields @ =0, b—b=0. Thus J(t) = (co+c1t)5 + (dysinh(t) 4 dy cosh(t))a.
Imposing the boundary conditions J(0) = ¢, J(d) = f.q gives

0= (252):) 0 [(252559) s ]

where ¢ = 17 + 2, fuq = w1y + woar. In particular
d g1 +w )\ . wg — qa cosh(d)\ . d
Jl=)] = ([ZH—= hiZ
1(5) - ()i [ o
d
¢4 cosh (—)] o
2
_ (Q1+‘w1)7_|_ wy + G2 o
2 2cosh(%) | 7
E(ﬂ) _ (‘w1—Q1);Y_|_ w2~ g |
dt \ 2 d QSinh(%) '

The Jacobi fields .Jy,.J; determined by Jy(d/2) =0, (DJy/dt)(d/2)
= (DJ/dt)(d/2) and Jy(d/2) = J(d/2), (DJy/dt)(d/2) = 0 are given by

Ji(s) = C“;m)w+(i%ﬁ$%)mm@m
Io(s) = (m;w0?+(iﬁﬁ§5)mﬁ@m

where s = 0 corresponds to z. Evaluating Jy,.J; at s = +d/2 gives the
decomposition of (g, f.q) into vertical and horizontal components:

(qaf*Q)vert - ((%—I—%) "5/— (y) a,
wy —q1 . wo — ¢2
ot = (25254 (252w,
(@%;ﬂ)&+(92;@)a).
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Let (z, f(z)) = (expzv,expz(—v)), so v = —(d/2)¥ at . We now determine
(expgl)g): T, @)y M x M) — T )Tz z(M x M), where (expgl)g) is
shorthand for (—(exp;')., (exp;')«). For a vertical vector 8 = (1% + faa €
T, Tz M, with 4, « trivially parallel translated to v,

expg (v + s0),

s=0

(exXPs)e(9) = -

which is the value at z of the Jacobi field J along v with J(z) =0,
(DJ/dt)(z) = 2p/d, since |v| = d/2. Solving for J as above, we get

d
(exb2)-ul9) = B+ Spasinh (5 ) o
Thus
(expgl)g)(% f*q)vert =

<(_w12+ n)i- S () dﬁlﬁ{é?)a) |

Similarly, for a horizontal vector § = &9 + d2cv, where ¥, now denote the
horizontal lifts of %, a to T, TzM , we have

(expz)«v(8) = 617 + d2 cosh (g) a,
S0

(exp; ) (g, fut)hor =

(Q1+w1);y_|_ wy + G2 o (91+w1)7+ Wy + 2 o

2 2cosh(%) | 7 2 2 cosh(%) '
To determine the matrix B, we have to express (expgl)(f)(q, fe,q),for g =7, a,
in polar coordinates at (v, —v) in v(zz). The radial vector at (v, —v) is

and the unit angular vector “r~'9;” is (—a/v/2,/v/2). Note that (¥, —7) =
—+/2r. For [y = w1y + wise, fuo = wory + wagar, we get

—ﬁ(_wll _I_ 1) M

) 2 4 sinh(d/2)
)= /3 /3
2d(waa—1
Fwa o
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Thus

d
det B = ——((wy1 — 1)(wgg — 1) — wqo
€ 4sinh(%)((wu )(w22 ) w12w21)
d 1
= det | = df —1d) ).
sinh () © (2(”0 / )>
Similarly,
vl
i 2 cos
(A]) = —w1 _\/5(71)22+1)
V2 2cosh(§)
and
1
det A = det | = df +1d) ).
r= e (uew+1a)

We now plug this information into the Lefschetz formula. Note that [ = {1,2}
or I =0 and that R;3212 = 1 in our convention. We obtain

L(f) = % Me‘”Q(%) KCOSE(%)>( DALY (%(Hodfﬂd))

4.2!
A\ pld/NV2) [ d 1 1
+p (ﬁ) d/\/§ (sinh(%)) -adet (5(”Odf—ld))

In the first line, there are factors of cgy 9y = —1/4, |I|! =2, and

¥

dA.

2077622 Rs(1)o(2)r(1)r(2) = 4. In the second line, ¢y = 1 and [I'|! = 2. Thus we
obtain

Proposition 4.6 Let M be an oriented surface of constant curvature —1.
Then

L) - 1 [ e, — det(3(|| o df + 1d))
Cosh(id(r’g(r)))

21 S
[ d(z, f(z)) p(d(z, f(2))/V2) 1
+p ( V2 ) (ﬂsinh(M)) det (5(”Odfgg—ld))

dA.
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It is straightforward to extend this result to higher dimensional constant cur-
vature spaces. The integrand in Proposition 4.6 now involves a sum over I, I’.
The general term inside the brackets is ¢|je(Z, I') /[[T|![I']!] times

3 (sen ) 211/2 et (L(]| o df, + 1d)) det(L(|| o df, — 1d)) pp(d(z, F(z))/v2)
fcosh(d(e, 7(2))/271-1 - [Sinh (d(e, (&) /D71

,MEETL

for negative curvature —1. For constant curvature 1, cosh, sinh are replaced
by cos, sin, and there is an extra factor of (—1)|I| due to R;j;; = —1.

Remark: We sketch a geometric proof of the Lefschetz fixed submanifold for-
mula based on Theorem 4.5. Assume that the metric on M is a product near a
fixed point submanifold N. If the submanifold is given by {z**+! =,
0} in local coordinates, then as ¢ — oo, the integrand for L(f) concentrates
on a tubular neighborhood of the fixed point, and the only contribution to the
integrand comes from [ = {1,...,k}, since the curvature term vanishes oth-
erwise due to the product metric. Converting back to rectangular coordinates
in the normal fiber as in the topological proof eliminates the gy factor and in-
troduces a factor of sgn det(df, — Id). Since f = Id in submanifold directions,
det($(d(f;)+1d)}) = 1. Thus the integral splits into the curvature integral over
N, yielding x(N), and a normal integral, which gives sgn det(d(f;), — Id). In
the t — oo limit, d(f;), —Id in the normal fiber goes to the identity map, so its
determinant becomes one. Plugging these terms into the integrand in Theorem
4.5 gives the Lefschetz fixed submanfiold formula.

L=z =
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A Hodge theoretic techniques

As mentioned in §4.1, the upper bound for the Lefschetz number of a flat man-
ifold can be extended to arbitrary metrics. Using sectional curvature bounds
to control the Jacobi fields and the curvature tensor, one can extract an upper
bound from the integral formula Theorem 4.5 in terms of the sectional curva-
ture. In contrast, there is a Hodge theory argument which constructs a better
upper bound in terms of Ricci curvature.

Let N = N(n,C, D,V) be the class of Riemannian n-manifolds (M, g) with
Ricci curvature Ric > €', diam (M) < D and vol (M) > V.

Proposition A.1 There exist constants C'(k,n) and D = D(N) such that for

n n ‘ k
Ll <1+ 030l () ) sup lafl,

k=1

where (B, is the k' Betti number of M .

Before the proof, we compare two norms for differential forms. For o € AT M ,
we have the L? (Hodge) norm |a|3 = #(a A *a) and the L* norm

lo|oo = sup lo(v)
ve(TMyeR\ (o} ]

3

47



where v = vy ® ... ® v; has norm |v| = []|v;|. Here we consider a as a
linear functional on (7,M)%k. Of course, there exists C' = C/(g) such that
C™als < lalz € Clals, but we want this constant to depend only on &, n.

Lemma A.2 There exists a constant C'(k,n) such that

o\ —1/2
() lals < lale < Clh

ProOF: Let {#'} be an orthonormal basis of TM with dual basis {X;} of
T.M. For a = 0410[, we have

|(04101) (/Yil ®...® /Yik)l

>
|/YZ'1 ® «. .®/Y2k|

lo|oo >

= |a10|7

where Iy = (i1,...,%). Thus

o\ 172 1/2 o\ 172
2 _
ol 2 supls] > () (;w ) =(;) ek

For the other estimate,

Sl (v @ ... @ )l

2
o[l < sup
v=v1 ®...Qur #£0 |U1 @...0 Uk|2
For fixed Iy = (i1,...,ix) and vy = a7' X;,, ..., vp = a}" X, , we have

ol ®...ou)l< > e ad

Il Jk

{j17“~7jk}:IO
Thus
. . Jk (2 A
|04|2 < st E[o |Oé[0| E{]h '7]k} Iol 1 ak | k
oo = U;éO |’U1 .® Uk|2
— su E[o |a10| E{]h Jgry=Io |al aik|2k'

”750 Hq 1(Elq(aq) )
- SUPZ|&IO|2 ik E{]l’ IR )= IO| R

n

v#0 g () ITho (2, (a)?)

Cl?ck |2
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For fixed Iy, the term inside the square brackets is a scale invariant function on
R*™ ={(al):i=1,...,k, j=1,...,n} and so is bounded above by C’(k,n)
independent of Iy. Thus

a2, < %o’mn) S a2 = (C(k, m) 202

I

PROOF OF THE PROPOSITION: Let {w.} be an L?-orthonormal basis of har-
monic k-forms. The trace of f* : H¥(M;R) — H¥(M;R) is > .(f*wi,wi),
S0

IL(f)]

IN

f wk7wk>

ZHf*wiH

- U |(f*w gdvol(x)] 1/2, (33)

by Cauchy-Schwarz. Here HozH2 = [y @ A *a is the global L? norm. When
k=0, we have || f*wd| = [|wall = 1.

By (33) and the lemma, we have

Ni< 1+ZZ( )VO”” )Slelj\%l(f*wi)xloo- (34)

k=1 =
Now

1(f*w)e :Supl(f*w)z(m@”'@wc”:su |wf(z)(f*vl®---®f*vk)|
o v#0 |1 ® ... ® v v#£0 |1 ® ... ® vg|

where f, = df. Since the last term vanishes if f,v; = 0 for some ¢, we assume

fxvi 0. Then

|(f*w) | — sup |wf(a:)(f*vl @ ®f*vk)| ) |f*U1 & ®f*’l)k|
o v#£0 |f*vz®®f*vk| |’U1®...®’Uk|

< |w sup

fostoles 0 TP

< w sup —————
| = |oo v#£0 Hz|v2|

< |wf |00|de|00
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By (34) and the lemma, we get

1+Z()voll/2 M) S sup a5 1) o

; €M

1+ Z ( )V011/2 )Z SU]Pw|dfa:|§o - C(k, ")|(“§c)f(f)|2'
re

7

IL(f)]

IN

I

By [2], [11], there is an explicit constant D;(IN) such that for all z € M,
|(@i)zl2 < Di(N)|lwill = Di(N).

Thus

N1+ knz:; (Z)ﬁk . VO]I/Z(M) - Dy(N)C(k,n) sup |dfg,_=|]§O

reM

Finally, vol (M) is bounded above on N by standard comparison theorems.
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(xf, ()

— |

- expy ()

T expl (W)

-1

— expy Cx

ey f (W)

(xft (X))

M x M {x}xT, M

expy f,(%)

/

Figure 3: On the left, the graph T'; of f; inside M x M and its restriction to W,, near
z € Far(f). B is the boundary of the cut locus tubular neighborhood. According to

(8), L(f) — x(M) equals fF:Iw MQA in the limit as n — oo, — 0.

via the exponential map, L(f) — x(M) becomes an integral over the
the vertical tangent space {2z} x T; M on the right.
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After a pullback

shaded region in



{x x TyM

Figure 4: The deformation of exp;!f(z) via g:. On the bottom is one component of
exp; ! f(z) and its neighborhood inside the cut locus in the tangent space as in Figure
3. On the top is another component as well as its deformation via g; and its pullback
via 8 to all of {z} x Tz M. Z, is the intersection of this region (and the corresponding
region from the bottom) with a small sphere S, and the far point invariant a, is the

solid angle ratio |Z;|/|Sz]|.
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