
The work of Kolyvagin on the arithmetic of elliptic curves

The main reference is the paper “The work of Kolyvagin on the arithmetic of elliptic
curves”(1989) by Karl Rubin.

Let E be an elliptic curve defined over Q with conductor N , and fix a modular
parametrization

π : X0(N)→ E,

which we may assume sends the cusp ∞ to 0.

Remark. Here X0(N) is the usual modular curve over Q which over C is obtained by
compactifying the quotient H/Γ0(N) of the complex upper half-plane H by the group

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : N |c

}
.

The points of X0(N) correspond to pairs (A,C) where A is a (generalized) elliptic curve
and Z/NZ ∼= C ⊂ A.

Consider

• an imaginary quadratic field K in which all primes dividing N split,

• an ideal a of K such that OK/a ∼= Z/NZ,

• H the Hilbert class field of K,

• xH ∈ X0(N)(C) corresponding to the pair (C/OK , a−1/OK),

• an embedding of Q into C.

Remark.
a−1/OK ∼= OK/a ∼= Z/NZ,

which follows from the following

Proposition. Let R be a Dedekind domain. Let a, b, c be non-zero fractional ideals of
R with a ⊃ b. Then there is an isomorphism of R-modules

ac

bc
∼=

a

b
.

Using the theory of complex multiplication one can show that

xH ∈ X0(N)(H).

Define

• yH = π(xH) ∈ E(H),

• yK = trH/K(yH) ∈ E(K),

• y = yK − yτK ∈ E(K),

where τ denotes complex conjugation on K.



Conjecture. XE/Q is a finite square integer.

Theorem. (Kolyvagin) Suppose E and y are as above. If y has infinite order in E(K),
then E(Q) and XE/Q are finite.

Remark. Other versions of this theorem also state that E(K) has rank 1, i.e. the
Heegner point y ∈ E(K) generates a finite-index subgroup in E(K).

Example. Take E = X0(11) and K = Q(
√
−7), so N = 11, D = −7.

E = EllipticCurve("11.a2")
K.<a> = QuadraticField(-7)
EK = E.change_ring(K)
E.heegner_point(-7)._trace_numerical_conductor_1()
algdep(E.heegner_point(-7)._trace_numerical_conductor_1()[0],2)
tx = _.roots(K)[0][0]
#tx.parent()
#tx
yk = EK.lift_x(tx);yk;
y=Pk - EK(Pk[0].conjugate(), Pk[1].conjugate()); y;
y.order();

We can also use K = Q(
√
−35).

Theorem. (Gross and Zagier) With E and y as above, y has infinite order in E(K)
if and only if L(E, 1) 6= 0 and L′(E,χK , 1) 6= 0, where χK is the quadratic character
attached to K.

Remark.
L(E, s) =

∑
n≥1

ann
−s, L(E, s, χ) =

∑
n≥1

χ(n)ann
−s.

Definition. (Kronecker symbol) For every quadratic discriminant D one can define the
Kronecker symbol, denoted by χD(n) or

(
D
n

)
. One can define it by requiring:

1. χD is completely multiplicative;

2. χD(0) = 0 and χD(1) = 1;

3. For every odd prime p, χD(p) is equal to the Legendre symbol at p;

4.

χD(2) =


0 if D ≡ 0 (mod 2)

1 if D ≡ 1 (mod 8)

−1 if D ≡ 5 (mod 8)

5.

χD(−1) =

{
1 if D > 0

−1 if D < 0

Definition. Let K be a quadratic number field of discriminant D. Then we can define
χD, the quadratic character attached to K, using the Kronecker symbol:

χK = χD : (Z/D)× → {±1}.



Conjecture. (Analytic Conjecture) If E is an elliptic curve and the sign in the functional
equation of L(E, s) is +1, then there exists at least one imaginary quadratic field K, in
which all primes dividing N split, such that L′(E,χK , 1) 6= 0.

This analytic conjecture, together with the theorems of Kolyvagin and Gross-Zagier,
would imply:
For any elliptic curve E, if L(E, 1) 6= 0 then E(Q) and XE/Q are finite. (This is known
for elliptic curves with CM.)

Notation. For any abelian group A, An will denote the n-torsion in A and

An∞ =
⋃
i

Ani .

We are going to use Galois cohomology. If A is a module for the appropriate Galois
group, we will write

• H i(L/F,A) for H i(Gal(L/F ), A),

• H i(F,A) for H i(Gal(F/F ), A),

• H i(F,E) for H i(F,E(F )).

Tools of proof

Fix a prime p and a positive integer n. For any completion Qv of Q we have the diagram

0 E(Q)/pnE(Q) H1(Q, Epn) H1(Q, E)pn 0

0 E(Qv)/p
nE(Qv) H1(Qv, Epn) H1(Qv, E)pn 0

resv resv

and we define the Selmer group S(pn) as

S(pn) =
⋂
v

res−1v (image E(Ev)),

while the pn-torsion in the Tate-Shafarevich group, Xpn , fits into the short exact
sequence

0→ E(Q)/pnE(Q) ↪→ S(pn) � Xpn .

To prove that XE/Q is finite, we need to show that

Xp = 0, for almost all primes p,

while for the other primes p we have that

Xp ⊆Xp2 ⊆Xp3 ⊆ · · ·

stabilizes.
It suffices to prove that



S(p) = 0, for almost all primes p,

while for the other primes p we have that

S(p) ⊆ S(p2) ⊆ S(p2) ⊆ · · ·

stabilizes. We show that in this case the group S(pn) is annihilated by a power of p,
which is independent of n.

For s ∈ S(pn) write sv for the inverse image of resv(s) in E(Qv)/p
nE(Qv).

Note that

s ∈ S(pn) ⊂ H1(Q, Epn), resv(s) ∈ H1(Qv, Epn), sv ∈ E(Qv)/p
nE(Qv).

Our main ingredient in bounding #S(pn) is the following proposition, which is proved
using Galois cohomology.

Proposition 1 Suppose ` is a prime such that E(Q`)pn = Z/pnZ, k ∈ Z≥0, and
c` ∈ H1(Q, E)pn satisfies

• resv(c`) = 0, ∀v 6= `

• res`(c`) has order pn−k.

Then
pks` = 0, ∀s ∈ S(pn).

We have to construct this cohomology class c` for sufficiently many `, with k bounded
and usually equal to 0. Kolyvagin constructs such a c` using Heegner points.

Notation. Write

• τ for the complex conjugation on Q induced by our embedding of Q into C

• [τ ] for its conjugacy class in Gal(Q/Q).

If A is a Gal(Q/Q)-module with A2 = A/2A = 0 (i.e. with trivial 2-torsion and
where every element is 2-divisible), the action of τ gives a decomposition

A = A+
⊕

A−.

Assume p 6= 2, 3 and let DK be the discriminant of K.

Lemma 2 Suppose the prime ` does not divide pDKN , and r ∈ Z≥0, and Frob`(K(Epr)/Q) =
[τ ] (i.e. Frobenius lifts to conjugation). Let Ẽ be the reduction of E modulo ` and
a` = `+ 1−#Ẽ(F`). Then

(i) pr|a` and pr|`+ 1,

(ii) ` is inert in K,

(iii)
E(Q`)pr ∼= Ẽ(F`)pr ∼= Z/prZ, (E(K`)pr)− ∼= (Ẽ(F`2)pr)− ∼= Z/prZ



Proof. The characteristic polynomial of Frobenius acting on Epr is T 2 − a`T + `, and
the characteristic polynomial of τ acting on Epr = E(C)pr is T 2 − 1. Comparing these
polynomials modulo p proves (i). The second assertion holds because Frob`(K/Q) 6= 1,
and the third because

E(Ql)pr ∼= (Epr)+ ∼= E(R)pr , and E(K`)pr ∼= (Epr)+ ⊕ (Epr)−.

We need to following setup for John’s part of the talk:
Suppose ` is a rational prime which remains prime in K and ` 6 |N . Let O` the the order
of conductor ` in OK , and x` ∈ X0(N)(C) corresponding to the pair

(C/O`, (a ∩ O`)−1/O`).

The theory of complex multiplication shows that

x` ∈ X0(N)(K[`]),

where K[`] denotes the ring class field of K modulo `, the abelian extension of K
corresponding to the subgroup K×C×

∏
q(O`⊗Zq)× of the ideles of K. It follows easily

that

• K[`] is a cyclic extension of H of degree (`+ 1)/uK , where uK = #(O×K)/2,

• K[`]/H is totally ramified at ` and unramified everywhere else,

• τ acts on Gal(K[`]/K) by −1.

Proposition 3 states what we need to know about Heegner points.


