The work of Kolyvagin on the arithmetic of elliptic curves

The main reference is the paper “The work of Kolyvagin on the arithmetic of elliptic
curves” (1989) by Karl Rubin.
Let E be an elliptic curve defined over Q with conductor N, and fix a modular

parametrization
m: Xo(N)— E,

which we may assume sends the cusp oo to 0.

Remark. Here X((N) is the usual modular curve over Q which over C is obtained by
compactifying the quotient H/T'g(IN) of the complex upper half-plane H by the group

To(N) = {(‘C” Z) € SLy(Z) : N|c}.

The points of Xo(N) correspond to pairs (A, C') where A is a (generalized) elliptic curve
and Z/NZ = C C A.

Consider

e an imaginary quadratic field K in which all primes dividing N split,

an ideal a of K such that Ok /a = Z/NZ,

H the Hilbert class field of K,

ry € Xo(N)(C) corresponding to the pair (C/Ok,a"'/Ok),

an embedding of Q into C.

Remark.
a 'O =2 Ok /a=7/NZ,

which follows from the following

Proposition. Let R be a Dedekind domain. Let a, b, ¢ be non-zero fractional ideals of
R with a D b. Then there is an isomorphism of R-modules

ac __a

be b’
Using the theory of complex multiplication one can show that
xpg € Xo(N)(H).
Define
o ygy=mn(ry) € E(H),
* yix = try (yn) € E(K),
* y=yk —yi € E(K),

where 7 denotes complex conjugation on K.



Conjecture. g q is a finite square integer.

Theorem. (Kolyvagin) Suppose E and y are as above. If y has infinite order in E(K),
then E(Q) and Ulgq are finite.

Remark. Other versions of this theorem also state that E(K) has rank 1, i.e. the
Heegner point y € F(K) generates a finite-index subgroup in E(K).

Example. Take £ = X((11) and K = Q(/—7),s0 N =11, D = —T.

E = EllipticCurve("11l.a2")
K.<a> = QuadraticField(-7)
EK = E.change_ring (K)

E.heegner_point (-7) ._trace_numerical_conductor_1 ()

algdep (E.heegner_point (=7) ._trace_numerical_conductor_1() [0],2)
tx = _.roots(K)[0][O0]

#tx.parent ()

#tx

vk = EK.lift_x(tx);vk;
y=Pk - EK(Pk[O].conjugate (), Pk[l].conjugate()); vy;
y.order () ;

We can also use K = Q(1/—35).

Theorem. (Gross and Zagier) With E and y as above, y has infinite order in E(K)
if and only if L(E,1) # 0 and L'(E, xk,1) # 0, where xx is the quadratic character
attached to K.

Remark.

L(E,s) = Zann_s, L(E, s, x) = Z x(n)a,n*.

n>1 n>1

Definition. (Kronecker symbol) For every quadratic discriminant D one can define the
Kronecker symbol, denoted by xp(n) or (%) One can define it by requiring:

1. xp is completely multiplicative;
2. xp(0) =0and xp(1) =1,

3. For every odd prime p, xp(p) is equal to the Legendre symbol at p;

4.
0 if D=0 (mod 2)
xp(2) =11 if D=1 (mod 8)
-1 if D=5 (mod 8)

5.

(—1) = 1 ifD>0
ADVU T 1 # D<o

Definition. Let K be a quadratic number field of discriminant D. Then we can define
XD, the quadratic character attached to K, using the Kronecker symbol:

XK = Xp : (Z/D)* — {£1}.



Conjecture. (Analytic Conjecture) If E is an elliptic curve and the sign in the functional
equation of L(FE, s) is +1, then there exists at least one imaginary quadratic field K, in
which all primes dividing N split, such that L'(F, xx, 1) # 0.

This analytic conjecture, together with the theorems of Kolyvagin and Gross-Zagier,
would imply:
For any elliptic curve F, if L(E,1) # 0 then F(Q) and g/ are finite. (This is known
for elliptic curves with CM.)

Notation. For any abelian group A, A, will denote the n-torsion in A and
Apoe = J A,
i

We are going to use Galois cohomology. If A is a module for the appropriate Galois
group, we will write

e HY(L/F,A) for H(Gal(L/F), A),
e H(F,A) for H(Gal(F/F), A),
e H{(F,E) for H(F, E(F)).

Tools of proof

Fix a prime p and a positive integer n. For any completion Q, of Q we have the diagram

0 —— E(Q)/p"E(Q) — HYQ, Epn) — HYQ,E)pn —— 0

0 —— E(Q,)/p"E(Qy) — HYQy, Epn) — HYQy, E)pr — 0

and we define the Selmer group S®") as

S(Pn) — ﬂresgl(image E(EU))>

v

while the p"-torsion in the Tate-Shafarevich group, I, fits into the short exact
sequence

0— E(Q)/p"E(Q) < S¥") — ML,
To prove that Illg/q is finite, we need to show that

I, =0, for almost all primes p,

while for the other primes p we have that

I, C II,> C Ml C ---

stabilizes.
It suffices to prove that



S =0, for almost all primes p,

while for the other primes p we have that

s c g c ") ...

stabilizes. We show that in this case the group S®") is annihilated by a power of p,
which is independent of n.

For s € S®") write s, for the inverse image of res,(s) in E(Q,)/p"E(Qy).

Note that

se s ¢ Hl(QvEp")a resv(s) € Hl(@vaEp")v Sy € E(Qv)/an(Q”)

Our main ingredient in bounding #S®") is the following proposition, which is proved
using Galois cohomology.

Proposition 1 Suppose ¢ is a prime such that E(Q),» = Z/p"Z, k € Z>p, and
cr € HY(Q, E),n satisfies

o res,(cg) =0, Yv#/

e resy(cy) has order p"F.

Then
pisi =0, Vse S,

We have to construct this cohomology class ¢, for sufficiently many ¢, with £ bounded
and usually equal to 0. Kolyvagin constructs such a ¢, using Heegner points.

Notation. Write
e 7 for the complex conjugation on Q induced by our embedding of Q into C
e [7] for its conjugacy class in Gal(Q/Q).

If Aisa Gal(Q/Q)-module with Ay = A/2A = 0 (i.e. with trivial 2-torsion and
where every element is 2-divisible), the action of 7 gives a decomposition

A:A+@A—.

Assume p # 2,3 and let Dg be the discriminant of K.

Lemma 2 Suppose the prime ¢ does not divide pDrN,and r € Z>o, and Frob,(K (Ep-)/Q) =
[7] (i.e. Frobenius lifts to conjugation). Let E be the reduction of £ modulo ¢ and
ag =0+ 1—#FE(Fy). Then

(i) p'lag and p"l€ + 1,

(ii) ¢ is inert in K,

(iii) ) )

EQo)pr = E(Fe)pr = Z/p"2,  (E(Kp)pr)” = (E(Fe)pr)” = Z/p"Z



Proof. The characteristic polynomial of Frobenius acting on Epr is T? — a)T + ¢, and
the characteristic polynomial of 7 acting on E,r = E(C),r is T? — 1. Comparing these
polynomials modulo p proves (i). The second assertion holds because Frob,(K/Q) # 1,
and the third because

E(Q)p & (Ep)t 2 ER)yr, and E(Kp)yr = (Epyr)T @ (Epr)”.
O

We need to following setup for John’s part of the talk:
Suppose / is a rational prime which remains prime in K and ¢ fN. Let Oy the the order
of conductor ¢ in Ok, and xy € Xo(N)(C) corresponding to the pair

(C/Op, (aN Op) ™/ Oy).

The theory of complex multiplication shows that

ry € Xo(N)(K[]),

where K[¢] denotes the ring class field of K modulo ¢, the abelian extension of K
corresponding to the subgroup K*C* [[ (Op ® Zg)* of the ideles of K. It follows easily
that

e K[/] is a cyclic extension of H of degree (¢ + 1)/ug, where uxg = #(0x)/2,
e K|[{]/H is totally ramified at ¢ and unramified everywhere else,

e 7 acts on Gal(K[(]/K) by —1.

Proposition 3 states what we need to know about Heegner points.



