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Kolyvagin - BUNTES
Throughout this semester, we learned about the Gross and Zagier's theorem. Kolyvagin proved a theo-
rem, which in conjunction with Gross and Zagier's theorem and an additional conjecture implies the for
any modular elliptic curve E, if L(E, 1) 6= 0, then E(Q) and XE/Q are �nite. We know this for elliptic
curves with complex multiplication, as proven by Coates and Wiles for E(Q) and Rubin for XE/Q.

1 Set up and Notation

Let E be an elliptic curve de�ned over Q, and assume that E is modular, i.e. for some integer N , there
is a nonconstant map π : X0(N)→ E de�ned over Q.

We choose an embedding of Q in C which we �x.

We will following the notation below:

• K: �xed imaginary quadratic �eld in which all primes dividing N splits

• τ : complex conjugation of K

• [τ ]: conjugacy class of τ in Gal(Q/Q)

• a: ideal of K such that OK/a ≡ Z/NZ

• H: Hilbert class �eld of K

• xH : point in X0(N)(C) corresponding to the pair (C/OK , a−1/OK)

• yH : denotes π(xH) ∈ E(H)

• yK : denotes TrH/K(yH) ∈ E(K)

• y: denotes yK − yτK
• XE/Q: Tate-Shafarevich group of E over Q

• An: denotes the n-torsion points of an abelian group A

• An∞ : denotes the union
⋃
iAni

• Hi(L/F,A): denotes Hi(Gal(L/F ), A)

• Hi(F,A): Hi(F/F,A)

• Hi(F,E): Hi(F,E(F ))

Remark 1.1. CM theory tells us that xH ∈ X0(N)(H), so we are justi�ed in de�ning yH .

2 Main theorems

Theorem 2.1 (Gross-Zagier). y has in�nite order in E(K) if and only if L(E, 1) 6= 0 and L′(E,χK , 1) 6=
0, where χK is the quadratic character attached to K.

Theorem 2.2 (Kolyvagin). If y has in�nite order in E(K) then E(Q) and XE/Q are �nite.

Conjecture 2.3 (Analytic Conjecture). If E is a modular elliptic curve and sign in the funbctional
equation of L(E, s) is +1, then there exists at least one imaginary quadratic �eld K, in which all primes
dividing N split, such that L′(E,χK , 1) 6= 0.
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Consequence 2.4. For any modular elliptic curve E, if L(E, 1) 6= 0, then E(Q) and XE/Q are �nite.

Remark 2.5. The consequence 2.4 is true for elliptic curves with CM. Coates and Wiles proved the
�niteness of E(Q) and Rubin proved the �niteness of XE/Q for this case.

3 Preliminary Stu�

For a prime number p and a positive integer n, we can take any completion Qv of Q to get the following
diagram.

0 E(Q)/pnE(Q) H1(Q, Epn) H1(Q, E)pn 0

0 E(Qv)/pnE(Qv) H1(Qv, Epn) H1(Qv, E)pn 0

resv resv

The Selmer group S(pn) and the pn-torsion of the Tate-Shafarevich group, Xpn are de�ned as

S(pn) =
⋂
v

res−1v (image E(Qv))

0→ E(Q)/pnE(Q)→ S(pn) →Xpn → 0.

We will show that S(p) = 0 for almost all p. The remaining p will have S(pn) of order annihilated by a
power of p which will be independent of n.

Proposition 3.1. Suppose ` is a prime such that E(Q`)pn ≡ Z/pnZ, k ≥ 0 is an integer, and c` ∈
H1(Q, E)pn satis�es

(a) for all v 6= `, resv(c`) = 0

(b) res`(c`) has order pn−k

Then for every s ∈ S(pn), pk res`(s) = 0.

The existence of c` for su�ciently man ` with bounded k which is almost always 0 is given by Proposi-
tion 3.5.

We construct the element c` using Heegner points. Let ` be a rational prime that is inert in K and ` - N .
Let O` be the order of the conductor ` in OK and x` be the point in X0(N)(C) corresponding to the
pair (C/O`, (a ∩ O`)−1/O`). CM implies x` ∈ X0(N)(K[`]) where K[`] is the class �eld corresponding
to the subgroup K×C×

∏
q(O` ⊗ Zq)× of the ideles of K.

Notice that K[`] is a cyclic extension of H of degree (` + 1)/uK where uK = #(O×K)/2. K[`] is also
totally rami�ed at ` and only rami�ed there. τ acts on Gal(K[`]/K) by −1. Let y` = π(x` ∈ E(K[`]).
The following proposition contains the facts we need about Heegner points.

Proposition 3.2. (a) uK TrK[`]/H(y`) = a`yH

(b) For any prime λ of K[`] above `, ỹ` = ỹFrobH ∈ Ẽ(F`2) where ∼ denotes reduction modulo `.

Proof. Let A be an elliptic curve de�ned over H with CM by OK so that (A,Aa) represents xH . WLOG,
let A have good reduction at all primes above `. Let C be the collection of `+ 1 subgroups of order ` of
A. Notice that x` can be represented by (A′, A′a) where A

′ = A/C` where C` is a subgroup of order `.
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Gal(K[`]/H) acts transitively on C/Aut(E) which has order (` + 1)/uK = [K[`] : H]. Thus, the Hecke
correspondence on X0(N) can be written as

T`(xH) =
∑
C∈C

(A/C, (A/C)a) = uK
∑

σ∈Gal(K[`]/H)

(x`)
σ.

Composing the above with π gives the �rst part of the proposition.

Now, consider the isogeny φ : (A,Aa)→ (A′, A′a). Since ` is inert, A and A′ have supersingular reduction

at λ. Thus, the reduced isogeny φ̃ : (Ã, Ãa) → (Ã′, Ã′a) must be Frobenius up to automorphism. Thus,

x̃p = x̃FrobH in X̃0(N)(F`2). By the universal property of the Neron model, π reduces to a morphism

π̃ : X̃0(N)→ Ẽ. Applying this π̃ gives the second part of the proof.

Lemma 3.3. Suppose ` is a prime not dividing pDKN , r > 0, and Frob`(K(Epr )/Q) = [τ ]. Then if Ẽ

is the reduction of E modulo ` and a` = `+ 1−#(Ẽ(F`)), we get

(a) pr | a` and pr | `+ 1

(b) ` remains prime in K

(c) E(Q`)pr ≡ Ẽ(F`)pr ≡ Z/prZ

(d) (E(K`)pr )
− ≡ (Ẽ(F`2)pr )− ≡ Z/prZ.

If ` is a prime not dividing pDKN , r > 0 and Frob`(K(Epr )/Q) = [τ ], then by Lemma 3.3, pr | a` and
pr | uK [K[`] : H], so by cyclicity, there is a unique subextension H ′ of K[`] of degree pr. Let φ be a
choice of lift of Frob`(H/Q) to Gal(H ′/Q) and de�ne z1 ∈ E(H ′) as the point

z1 = uK TrK[`]/H′(y` + yφ` )− (a`/p
r)(yH + yφH).

Then we get the following immediate corollary of Proposition 3.2.

Corollary 3.4. Suppose ` - pDKN and Frob`(K(Epr )/Q) = [τ ]. Then, we have

(a) TrH′/H(z1) = 0

(b) For any σ ∈ Gal(H/K), let σ denote any lift of σ to Gal(H ′/K). Then, modulo any prime λ above
`, we have ∑

σ∈Gal(H/K)

z̃σ1 = −((`+ 1 + a`)/p
r)ỹ.

For each place v of Q, de�ne
mv = #(H1(Qunr

v /Qv, E(Qunr

v )))

which is �nite (ref: Milne, Arithmetic duality theorems I.3.8). Furthermore, it is nontrivial at a �nite
number of places, so we can de�ne

m(p) = sup{ordp(mv)}v.

This number is then 0 for all but a �nite number of primes p.

We now have the tools necessary to construct c`.

Proposition 3.5. Suppose ` - pDKN and Frob`(K(Epr )/Q) = [τ ], where r = n + m(p). Then there
exists c` ∈ H1(Q, E)pn such that

(a) resv(c`) = 0 for all v 6= `

(b) the order of res`(c`) in H1(Q`, E)pn is equal to the order of y in E(K`)/p
nE(K`).
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Proof. First, assume p - [H : K]. Then there is a unique extension K ′ of K of degree pr in K[`]. Let

z = TrH′/K′(z1) ∈ E(K ′).

By Corollary 3.4, TrK′/K(z) = 0. Let σ be a �xed generator of Gal(K ′/K). This gives rise to a group
isomorphism

Ker(TrK′/K : E(K ′)→ E(K))/(σ − 1)E(K ′) ≡ H1(K ′/K,E(K ′)).

Let c′` ∈ H1(K ′/K,E(K ′)) ⊂ H1(K ′/K,E(K ′)) be the image of z under this isomorphism.

The isomorphism is not τ -equivariant. However, τ does commute with TrK[`]/K′ , so we can conclude
that zτ = −z. τ also acts by −1 on Gal(K ′/K), so we can conclude that (c′`)

τ = c′`, which means
c′` ∈ (H1(K,E)pr )

+.

Recall that for p > 2, the restriction map gives an isomorphism H1(Q, E)pr ≡ (H1(K,E)pr )
+. Thus, we

can �nally de�ne
c` = pm(p)c′` ∈ H1(Q, E)pn .

(If p | [H : K], we do not necessarily have the �eld K ′, but we can use z1 to de�ne c
′
1,` ∈ H1(H,E)pr . c

′
`

is de�ned to be the corestriction of c′1,` to H
1(K,E). We can proceed with this construction, but with

adjustments.)

If v 6= `, K ′/K is unrami�ed at v, so we have

resv(c`) = pm(p) resv(c
′
`) ∈ pm(p)H1(Qunr

v /Qv, E(Qunr

v ))pr = 0.

This is true by our de�nition of m(p).

To determine the order of res`(c`) in H1(Q`, E)pn , let I` be the inertia subgroup of Gal(Q`,Q`), and
consider the maps (which do not form an exact sequence)

H1(Q− `, E)pn ↪→ H1(I`, E(Q`))pn
∼−→ H1(I`, Ẽ(F`))pn

∼−→ Hom(Gal(K ′/K), Ẽpn).

The �rst map is injective since E has good reduction at ` which makes H1(Qunr

` /Q`, E(Qunr

` ))pn zero.

The second map is an isomorphism since the kernel of good reduction modulo ` is a pro-` group.

The third map is an isomorphism since I` acts trivially on Ẽ(F`) and K ′Qunr

` is the unique abelian
extension of Qunr

` of exponent pr.

The composition of these maps sends c` to the homomorphism which sends our generator σ of Gal(K ′/K)

to pm(p)z̃. Thus, the order of res`(c`) in H
1(Q`, E)pn is the same order of pm(p)z̃ in Ẽ(F`2).

Corollary 3.4 shows pm(p)z̃ = −((`+ 1 + a`)/p
n)ỹ. Up to a factor of 2, we have

#(Ẽ(F`2)−) = #(Ẽ(F`2))/#(Ẽ(F`)) = `+ 1 + a`.

Since (Ẽ(F`2)p∞)− is cyclic by Lemma 3.3, we get that (`+ 1+ a`)/p
n de�nes an isomorphism between

Ẽ(F`2)−/pnẼ(F`2)− and (Ẽ(F`2)pn)−. Thus, the order of pm(p)z̃ in Ẽ(F`2) is the same as the order of y

in E(K`)/p
nE(K`) ≡ Ẽ(F`2)/pnẼ(F`2).

Combining Proposition 3.1 and Proposition 3.5 gives the following corollary.

Corollary 3.6. Suppose ` - pDKN and Frob`(K(Epn+m(p))/Q) = [τ ]. If k ≥ 0 and pn−k−1y /∈ pnE(K`),

then for all s ∈ S(pn), pks` = 0.

Let t ∈ H1(K,Epn) and write t̂ for the image of t under the restriction map

H1(K,Epn)→ Hom(Gal(K/K(Epn+m(p))), Epn)
Gal(D(E

pn+m(p) )/K)
.
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Lemma 3.7. Suppose t ∈ H1(K,Epn)
± and the image of t̂ is cyclic. Then the order of t is at most

pa+b, where pa is theorder of the largest Q-rational cyclic subgroup of Ep∞ and pb is the exponent of
H1(K(Epn+m(p))/K,Epn).

Proof. Since t̂ is Gal(K(Epn+m(p)),K) equivariant, its image is Gal(K/K)-invariant. Since τ acts on t̂

by ±1, the image is in fact rational over Q. Thus if the image is cyclic, the order of t̂ is at most pa. The
kernel of the restriction map above is H1(K(Epn+m(p))/K,Epn), so t has order at most pa+b.

4 Proof of Kolyvagin

Fix a prime p not dividing #(O×K) and suppose y has in�nite order in E(K). Let k = k(p) be the largest
integer such that y ∈ pkE(K) + E(K)tors. Fix some n ≥ k + 1.

First, assume the following:

(a) E has no p-isogeny de�ned over Q

(b) H1(K(Epn+m(p))/K,Epn) = 0.

Both of these assumptions hold for all but a �nite number of p by Serre's theorem (alternatively via the
theory of CM).

Proposition 4.1. Given assumptions (a) and (b), pkS(pn) = 0.

Let r = n + m(p) and �x s ∈ S(pn). Let ŝ be the restriction of s to Gal(Q/K(Epr )) and ŷ be the
restriction of the image of y under the injection

E(K)−/pnE(K)− → H1(K,Epn).

Let F be a �xed �nite extension of K(Epr ) which is Galois over Q such that both ŝ and ŷ factor through
G = Gal(F/K(Epr ).

Choose any γ ∈ G and a prime ` not dividing pDKN such that Frob`(F/Q) = [γτ ]. It follows that
Frob`(K(Epr )/Q) = [τ ], and Frob`(F/K(Epr )) ∈ [(γτ)2] so that

pks` = 0⇔ pkŝ((γτ)2)

pn−k−1y ∈ pnE(K`)⇔ pn−k−1ŷ((γτ)2) = 0

Since ŝτ = ŝ, and ŷτ = −ŷ,

ŝ((γτ)2) = ŝ(γ) + ŝ(τγτ)

= (1 + τ)ŝ(γ)

ŷ((γτ)2) = ŷ(γ) + ŷ(τγτ)

= (1− τ)ŷ(γ).

By Corollary 6, we conclude that for every γ ∈ G, either pkŝ(γ) ∈ (Epn)
− or pn−k−1ŷ(γ) ∈ (Epn)

+.
Thus, we have

G = (pkŝ)−1((E−pn)) ∪ (pn−k−1ŷ−1)((Epn)
+).

If A and B are subgroups, then A ∪ B = A or A ∪ B = B. Thus, we have pkŝ(G) ⊂ (Epn)
− or

pn−k−1ŷ(G) ⊂ (Epn)
+.

By assumptions (1) and (2) in conjunction with Lemma 3.7, either pks = 0 ∈ S(pn) or pn−k−1y = 0 ∈
E(K)/pnE(K). By our de�nition of k, the latter is not possible, so pkS(pn) = 0.
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Since k 6= 0 for almost all p, this proves Kolyvagin's theorem (Theorem 2.2) except for the �nite number
of p-parts which have been ruled out.

Without the assumptions (1) and (2), Lemma 3.7 would give a weaker annihilator of S(pn), but one that
is still independent of n. This is done by using the theorem of Serre or the theory of CM to show that
the exponent of H1(K(Epn+m(p))/K,Epn) is bound independent of n.

�With a little more care� (what a �ex), one obtains a suitable annihilator when p | #(O×K), thereby
completing the proof.
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