Kolyvagin - BUNTES

Throughout this semester, we learned about the Gross and Zagier's theorem. Kolyvagin proved a theorem, which in conjunction with Gross and Zagier's theorem and an additional conjecture implies the for any modular elliptic curve E, if $L(E, 1) \neq 0$, then $E(\mathbb{Q})$ and $\operatorname{III}_{E/\mathbb{Q}}$ are finite. We know this for elliptic curves with complex multiplication, as proven by Coates and Wiles for $E(\mathbb{Q})$ and Rubin for $\operatorname{III}_{E/\mathbb{Q}}$.

1 Set up and Notation

Let E be an elliptic curve defined over \mathbb{Q} , and assume that E is modular, i.e. for some integer N, there is a nonconstant map $\pi : X_0(N) \to E$ defined over \mathbb{Q} .

We choose an embedding of $\overline{\mathbb{Q}}$ in \mathbb{C} which we fix.

We will following the notation below:

- K: fixed imaginary quadratic field in which all primes dividing N splits
- τ : complex conjugation of K
- $[\tau]$: conjugacy class of τ in $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$
- \mathfrak{a} : ideal of K such that $\mathcal{O}_K/\mathfrak{a} \equiv \mathbb{Z}/N\mathbb{Z}$
- H: Hilbert class field of K
- x_H : point in $X_0(N)(\mathbb{C})$ corresponding to the pair $(\mathbb{C}/\mathcal{O}_K, \mathfrak{a}^{-1}/\mathcal{O}_K)$
- y_H : denotes $\pi(x_H) \in E(H)$
- y_K : denotes $\operatorname{Tr}_{H/K}(y_H) \in E(K)$
- y: denotes $y_K y_K^{\tau}$
- $\coprod_{E/\mathbb{Q}}$: Tate-Shafarevich group of E over \mathbb{Q}
- A_n : denotes the *n*-torsion points of an abelian group A
- $A_{n^{\infty}}$: denotes the union $\bigcup_i A_{n^i}$
- $H^i(L/F, A)$: denotes $H^i(\text{Gal}(L/F), A)$
- $H^i(F,A)$: $H^i(\overline{F}/F,A)$
- $H^i(F, E)$: $H^i(F, E(\overline{F}))$

Remark 1.1. CM theory tells us that $x_H \in X_0(N)(H)$, so we are justified in defining y_H .

2 Main theorems

Theorem 2.1 (Gross-Zagier). y has infinite order in E(K) if and only if $L(E, 1) \neq 0$ and $L'(E, \chi_K, 1) \neq 0$, where χ_K is the quadratic character attached to K.

Theorem 2.2 (Kolyvagin). If y has infinite order in E(K) then $E(\mathbb{Q})$ and $II_{E/\mathbb{Q}}$ are finite.

Conjecture 2.3 (Analytic Conjecture). If E is a modular elliptic curve and sign in the functional equation of L(E, s) is +1, then there exists at least one imaginary quadratic field K, in which all primes dividing N split, such that $L'(E, \chi_K, 1) \neq 0$.

Consequence 2.4. For any modular elliptic curve E, if $L(E, 1) \neq 0$, then $E(\mathbb{Q})$ and $\coprod_{E/\mathbb{Q}}$ are finite. Remark 2.5. The consequence 2.4 is true for elliptic curves with CM. Coates and Wiles proved the finiteness of $E(\mathbb{Q})$ and Rubin proved the finiteness of $\coprod_{E/\mathbb{Q}}$ for this case.

3 Preliminary Stuff

For a prime number p and a positive integer n, we can take any completion \mathbb{Q}_v of \mathbb{Q} to get the following diagram.

The Selmer group $S^{(p^n)}$ and the p^n -torsion of the Tate-Shafarevich group, \coprod_{p^n} are defined as

$$S^{(p^n)} = \bigcap_{v} \operatorname{res}_{v}^{-1}(\operatorname{image} E(\mathbb{Q}_{v}))$$
$$0 \to E(\mathbb{Q})/p^{n}E(\mathbb{Q}) \to S^{(p^n)} \to \operatorname{III}_{p^n} \to 0.$$

We will show that $S^{(p)} = 0$ for almost all p. The remaining p will have $S^{(p^n)}$ of order annihilated by a power of p which will be independent of n.

Proposition 3.1. Suppose ℓ is a prime such that $E(\mathbb{Q}_{\ell})_{p^n} \equiv \mathbb{Z}/p^n\mathbb{Z}$, $k \geq 0$ is an integer, and $c_{\ell} \in H^1(\mathbb{Q}, E)_{p^n}$ satisfies

- (a) for all $v \neq \ell$, $\operatorname{res}_v(c_\ell) = 0$
- (b) $\operatorname{res}_{\ell}(c_{\ell})$ has order p^{n-k}

Then for every $s \in S^{(p^n)}$, $p^k \operatorname{res}_{\ell}(s) = 0$.

The existence of c_{ℓ} for sufficiently man ℓ with bounded k which is almost always 0 is given by Proposition 3.5.

We construct the element c_{ℓ} using Heegner points. Let ℓ be a rational prime that is inert in K and $\ell \nmid N$. Let \mathcal{O}_{ℓ} be the order of the conductor ℓ in \mathcal{O}_K and x_{ℓ} be the point in $X_0(N)(\mathbb{C})$ corresponding to the pair $(\mathbb{C}/\mathcal{O}_{\ell}, (\mathfrak{a} \cap \mathcal{O}_{\ell})^{-1}/\mathcal{O}_{\ell})$. CM implies $x_{\ell} \in X_0(N)(K[\ell])$ where $K[\ell]$ is the class field corresponding to the subgroup $K^{\times}\mathbb{C}^{\times}\prod_{q}(\mathcal{O}_{\ell}\otimes\mathbb{Z}_q)^{\times}$ of the ideles of K.

Notice that $K[\ell]$ is a cyclic extension of H of degree $(\ell + 1)/u_K$ where $u_K = \#(\mathcal{O}_K^{\times})/2$. $K[\ell]$ is also totally ramified at ℓ and only ramified there. τ acts on $\operatorname{Gal}(K[\ell]/K)$ by -1. Let $y_{\ell} = \pi(x_{\ell} \in E(K[\ell]))$. The following proposition contains the facts we need about Heegner points.

Proposition 3.2. (a) $u_K \operatorname{Tr}_{K[\ell]/H}(y_\ell) = a_\ell y_H$

(b) For any prime λ of $K[\ell]$ above ℓ , $\widetilde{y}_{\ell} = \widetilde{y}_{H}^{\text{Frob}} \in \widetilde{E}(\mathbb{F}_{\ell^2})$ where \sim denotes reduction modulo ℓ .

Proof. Let A be an elliptic curve defined over H with CM by \mathcal{O}_K so that $(A, A_\mathfrak{a})$ represents x_H . WLOG, let A have good reduction at all primes above ℓ . Let C be the collection of $\ell + 1$ subgroups of order ℓ of A. Notice that x_ℓ can be represented by $(A', A'_\mathfrak{a})$ where $A' = A/C_\ell$ where C_ℓ is a subgroup of order ℓ .

 $\operatorname{Gal}(K[\ell]/H)$ acts transitively on $\mathcal{C}/\operatorname{Aut}(E)$ which has order $(\ell+1)/u_K = [K[\ell]:H]$. Thus, the Hecke correspondence on $X_0(N)$ can be written as

$$T_{\ell}(x_H) = \sum_{C \in \mathcal{C}} (A/C, (A/C)_{\mathfrak{a}}) = u_K \sum_{\sigma \in \operatorname{Gal}(K[\ell]/H)} (x_{\ell})^{\sigma}.$$

Composing the above with π gives the first part of the proposition.

Now, consider the isogeny $\phi : (A, A_{\mathfrak{a}}) \to (A', A'_{\mathfrak{a}})$. Since ℓ is inert, A and A' have supersingular reduction at λ . Thus, the reduced isogeny $\tilde{\phi} : (\tilde{A}, \tilde{A}_{\mathfrak{a}}) \to (\tilde{A}', \tilde{A}'_{\mathfrak{a}})$ must be Frobenius up to automorphism. Thus, $\tilde{x}_p = \tilde{x}_H^{\text{Frob}}$ in $\tilde{X}_0(N)(\mathbb{F}_{\ell^2})$. By the universal property of the Neron model, π reduces to a morphism $\tilde{\pi} : \tilde{X}_0(N) \to \tilde{E}$. Applying this $\tilde{\pi}$ gives the second part of the proof. \Box

Lemma 3.3. Suppose ℓ is a prime not dividing pD_KN , r > 0, and $\operatorname{Frob}_{\ell}(K(E_{p^r})/\mathbb{Q}) = [\tau]$. Then if \tilde{E} is the reduction of E modulo ℓ and $a_{\ell} = \ell + 1 - \#(\tilde{E}(\mathbb{F}_{\ell}))$, we get

- (a) $p^r \mid a_\ell$ and $p^r \mid \ell + 1$
- (b) ℓ remains prime in K

(c)
$$E(\mathbb{Q}_{\ell})_{p^r} \equiv \widetilde{E}(\mathbb{F}_{\ell})_{p^r} \equiv \mathbb{Z}/p^r\mathbb{Z}$$

(d) $(E(K_{\ell})_{p^r})^- \equiv (\widetilde{E}(\mathbb{F}_{\ell^2})_{p^r})^- \equiv \mathbb{Z}/p^r\mathbb{Z}.$

If ℓ is a prime not dividing pD_KN , r > 0 and $\operatorname{Frob}_{\ell}(K(E_{p^r})/\mathbb{Q}) = [\tau]$, then by Lemma 3.3, $p^r \mid a_{\ell}$ and $p^r \mid u_K[K[\ell] : H]$, so by cyclicity, there is a unique subextension H' of $K[\ell]$ of degree p^r . Let ϕ be a choice of lift of $\operatorname{Frob}_{\ell}(H/\mathbb{Q})$ to $\operatorname{Gal}(H'/\mathbb{Q})$ and define $z_1 \in E(H')$ as the point

$$z_1 = u_K \operatorname{Tr}_{K[\ell]/H'}(y_\ell + y_\ell^{\phi}) - (a_\ell/p^r)(y_H + y_H^{\phi}).$$

Then we get the following immediate corollary of Proposition 3.2.

Corollary 3.4. Suppose $\ell \nmid pD_KN$ and $\operatorname{Frob}_{\ell}(K(E_{p^r})/\mathbb{Q}) = [\tau]$. Then, we have

 σ

- (a) $\operatorname{Tr}_{H'/H}(z_1) = 0$
- (b) For any $\sigma \in \text{Gal}(H/K)$, let $\overline{\sigma}$ denote any lift of σ to Gal(H'/K). Then, modulo any prime λ above ℓ , we have

$$\sum_{\in \operatorname{Gal}(H/K)} \widetilde{z_1^{\sigma}} = -((\ell + 1 + a_\ell)/p^r)\widetilde{y}.$$

For each place v of \mathbb{Q} , define

$$m_v = \#(H^1(\mathbb{Q}_v^{\mathrm{unr}}/\mathbb{Q}_v, E(\mathbb{Q}_v^{\mathrm{unr}})))$$

which is finite (ref: Milne, Arithmetic duality theorems I.3.8). Furthermore, it is nontrivial at a finite number of places, so we can define

$$m(p) = \sup\{\operatorname{ord}_p(m_v)\}_v.$$

This number is then 0 for all but a finite number of primes p.

We now have the tools necessary to construct c_{ℓ} .

Proposition 3.5. Suppose $\ell \nmid pD_KN$ and $\operatorname{Frob}_{\ell}(K(E_{p^r})/\mathbb{Q}) = [\tau]$, where r = n + m(p). Then there exists $c_{\ell} \in H^1(\mathbb{Q}, E)_{p^n}$ such that

- (a) $\operatorname{res}_v(c_\ell) = 0$ for all $v \neq \ell$
- (b) the order of $\operatorname{res}_{\ell}(c_{\ell})$ in $H^1(\mathbb{Q}_{\ell}, E)_{p^n}$ is equal to the order of y in $E(K_{\ell})/p^n E(K_{\ell})$.

Proof. First, assume $p \nmid [H:K]$. Then there is a unique extension K' of K of degree p^r in $K[\ell]$. Let

$$z = \operatorname{Tr}_{H'/K'}(z_1) \in E(K').$$

By Corollary 3.4, $\operatorname{Tr}_{K'/K}(z) = 0$. Let σ be a fixed generator of $\operatorname{Gal}(K'/K)$. This gives rise to a group isomorphism

$$\operatorname{Ker}(\operatorname{Tr}_{K'/K} : E(K') \to E(K)) / (\sigma - 1)E(K') \equiv H^{1}(K'/K, E(K')).$$

Let $c'_{\ell} \in H^1(K'/K, E(K')) \subset H^1(K'/K, E(K'))$ be the image of z under this isomorphism.

The isomorphism is not τ -equivariant. However, τ does commute with $\operatorname{Tr}_{K[\ell]/K'}$, so we can conclude that $z^{\tau} = -z$. τ also acts by -1 on $\operatorname{Gal}(K'/K)$, so we can conclude that $(c'_{\ell})^{\tau} = c'_{\ell}$, which means $c'_{\ell} \in (H^1(K, E)_{p^r})^+$.

Recall that for p > 2, the restriction map gives an isomorphism $H^1(\mathbb{Q}, E)_{p^r} \equiv (H^1(K, E)_{p^r})^+$. Thus, we can finally define

$$c_{\ell} = p^{m(p)} c'_{\ell} \in H^1(\mathbb{Q}, E)_{p^n}.$$

(If $p \mid [H : K]$, we do not necessarily have the field K', but we can use z_1 to define $c'_{1,\ell} \in H^1(H, E)_{p^r}$. c'_{ℓ} is defined to be the corestriction of $c'_{1,\ell}$ to $H^1(K, E)$. We can proceed with this construction, but with adjustments.)

If $v \neq \ell$, K'/K is unramified at v, so we have

$$\operatorname{res}_{v}(c_{\ell}) = p^{m(p)} \operatorname{res}_{v}(c_{\ell}') \in p^{m(p)} H^{1}(\mathbb{Q}_{v}^{\operatorname{unr}}/\mathbb{Q}_{v}, E(\mathbb{Q}_{v}^{\operatorname{unr}}))_{p^{r}} = 0.$$

This is true by our definition of m(p).

To determine the order of $\operatorname{res}_{\ell}(c_{\ell})$ in $H^1(\mathbb{Q}_{\ell}, E)_{p^n}$, let I_{ℓ} be the inertia subgroup of $\operatorname{Gal}(\overline{\mathbb{Q}}_{\ell}, \mathbb{Q}_{\ell})$, and consider the maps (which do not form an exact sequence)

$$H^{1}(\mathbb{Q}-\ell, E)_{p^{n}} \hookrightarrow H^{1}(I_{\ell}, E(\overline{\mathbb{Q}}_{\ell}))_{p^{n}} \xrightarrow{\sim} H^{1}(I_{\ell}, \widetilde{E}(\overline{\mathbb{F}}_{\ell}))_{p^{n}} \xrightarrow{\sim} \operatorname{Hom}(\operatorname{Gal}(K'/K), \widetilde{E}_{p^{n}}).$$

The first map is injective since E has good reduction at ℓ which makes $H^1(\mathbb{Q}_{\ell}^{\mathrm{unr}}/\mathbb{Q}_{\ell}, E(\mathbb{Q}_{\ell}^{\mathrm{unr}}))_{p^n}$ zero.

The second map is an isomorphism since the kernel of good reduction modulo ℓ is a pro- ℓ group.

The third map is an isomorphism since I_{ℓ} acts trivially on $\widetilde{E}(\overline{\mathbb{F}}_{\ell})$ and $K'\mathbb{Q}_{\ell}^{\mathrm{unr}}$ is the unique abelian extension of $\mathbb{Q}_{\ell}^{\mathrm{unr}}$ of exponent p^r .

The composition of these maps sends c_{ℓ} to the homomorphism which sends our generator σ of $\operatorname{Gal}(K'/K)$ to $p^{m(p)}\widetilde{z}$. Thus, the order of $\operatorname{res}_{\ell}(c_{\ell})$ in $H^1(\mathbb{Q}_{\ell}, E)_{p^n}$ is the same order of $p^{m(p)}\widetilde{z}$ in $\widetilde{E}(\mathbb{F}_{\ell^2})$.

Corollary 3.4 shows $p^{m(p)}\widetilde{z} = -((\ell+1+a_\ell)/p^n)\widetilde{y}$. Up to a factor of 2, we have

$$#(\widetilde{E}(\mathbb{F}_{\ell^2})^-) = #(\widetilde{E}(\mathbb{F}_{\ell^2})) / #(\widetilde{E}(\mathbb{F}_{\ell})) = \ell + 1 + a_\ell.$$

Since $(\widetilde{E}(\mathbb{F}_{\ell^2})_{p^{\infty}})^-$ is cyclic by Lemma 3.3, we get that $(\ell + 1 + a_{\ell})/p^n$ defines an isomorphism between $\widetilde{E}(\mathbb{F}_{\ell^2})^-/p^n \widetilde{E}(\mathbb{F}_{\ell^2})^-$ and $(\widetilde{E}(\mathbb{F}_{\ell^2})_{p^n})^-$. Thus, the order of $p^{m(p)}\widetilde{z}$ in $\widetilde{E}(\mathbb{F}_{\ell^2})$ is the same as the order of y in $E(K_{\ell})/p^n E(K_{\ell}) \equiv \widetilde{E}(\mathbb{F}_{\ell^2})/p^n \widetilde{E}(\mathbb{F}_{\ell^2})$.

Combining Proposition 3.1 and Proposition 3.5 gives the following corollary.

Corollary 3.6. Suppose $\ell \nmid pD_KN$ and $\operatorname{Frob}_{\ell}(K(E_{p^{n+m(p)}})/\mathbb{Q}) = [\tau]$. If $k \ge 0$ and $p^{n-k-1}y \notin p^n E(K_{\ell})$, then for all $s \in S^{(p^n)}$, $p^k s_{\ell} = 0$.

Let $t \in H^1(K, E_{p^n})$ and write \hat{t} for the image of t under the restriction map

$$H^{1}(K, E_{p^{n}}) \to \operatorname{Hom}(\operatorname{Gal}(\overline{K}/K(E_{p^{n+m(p)}})), E_{p^{n}})^{\operatorname{Gal}(D(E_{p^{n+m(p)}})/K)}.$$

Proof. Since \hat{t} is $\operatorname{Gal}(K(E_{p^{n+m(p)}}), K)$ equivariant, its image is $\operatorname{Gal}(\overline{K}/K)$ -invariant. Since τ acts on \hat{t} by ± 1 , the image is in fact rational over \mathbb{Q} . Thus if the image is cyclic, the order of \hat{t} is at most p^a . The kernel of the restriction map above is $H^1(K(E_{n^{n+m(p)}})/K, E_{p^n})$, so t has order at most p^{a+b} . \Box

4 Proof of Kolyvagin

Fix a prime p not dividing $\#(\mathcal{O}_K^{\times})$ and suppose y has infinite order in E(K). Let k = k(p) be the largest integer such that $y \in p^k E(K) + E(K)_{\text{tors}}$. Fix some $n \geq k + 1$.

First, assume the following:

- (a) E has no p-isogeny defined over \mathbb{Q}
- (b) $H^1(K(E_{p^{n+m(p)}})/K, E_{p^n}) = 0.$

Both of these assumptions hold for all but a finite number of p by Serre's theorem (alternatively via the theory of CM).

Proposition 4.1. Given assumptions (a) and (b), $p^k S^{(p^n)} = 0$.

Let r = n + m(p) and fix $s \in S^{(p^n)}$. Let \hat{s} be the restriction of s to $\operatorname{Gal}(\overline{Q}/K(E_{p^r}))$ and \hat{y} be the restriction of the image of y under the injection

$$E(K)^{-}/p^{n}E(K)^{-} \to H^{1}(K, E_{p^{n}}).$$

Let F be a fixed finite extension of $K(E_{p^r})$ which is Galois over \mathbb{Q} such that both \hat{s} and \hat{y} factor through $G = \operatorname{Gal}(F/K(E_{p^r}))$.

Choose any $\gamma \in G$ and a prime ℓ not dividing pD_KN such that $\operatorname{Frob}_{\ell}(F/\mathbb{Q}) = [\gamma\tau]$. It follows that $\operatorname{Frob}_{\ell}(K(E_{p^r})/\mathbb{Q}) = [\tau]$, and $\operatorname{Frob}_{\ell}(F/K(E_{p^r})) \in [(\gamma\tau)^2]$ so that

$$p^k s_\ell = 0 \Leftrightarrow p^k \widehat{s}((\gamma \tau)^2)$$
$$p^{n-k-1} y \in p^n E(K_\ell) \Leftrightarrow p^{n-k-1} \widehat{y}((\gamma \tau)^2) = 0$$

Since $\hat{s}^{\tau} = \hat{s}$, and $\hat{y}^{\tau} = -\hat{y}$,

$$\widehat{s}((\gamma\tau)^2) = \widehat{s}(\gamma) + \widehat{s}(\tau\gamma\tau)$$
$$= (1+\tau)\widehat{s}(\gamma)$$
$$\widehat{y}((\gamma\tau)^2) = \widehat{y}(\gamma) + \widehat{y}(\tau\gamma\tau)$$
$$= (1-\tau)\widehat{y}(\gamma).$$

By Corollary 6, we conclude that for every $\gamma \in G$, either $p^k \widehat{s}(\gamma) \in (E_{p^n})^-$ or $p^{n-k-1} \widehat{y}(\gamma) \in (E_{p^n})^+$. Thus, we have

$$G = (p^k \widehat{s})^{-1}((E_{p^n})) \cup (p^{n-k-1} \widehat{y}^{-1})((E_{p^n})^+).$$

If A and B are subgroups, then $A \cup B = A$ or $A \cup B = B$. Thus, we have $p^k \widehat{s}(G) \subset (E_{p^n})^-$ or $p^{n-k-1}\widehat{y}(G) \subset (E_{p^n})^+$.

By assumptions (1) and (2) in conjunction with Lemma 3.7, either $p^k s = 0 \in S^{(p^n)}$ or $p^{n-k-1}y = 0 \in E(K)/p^n E(K)$. By our definition of k, the latter is not possible, so $p^k S^{(p^n)} = 0$.

Jae Hyung Sim

10 December 2019

Since $k \neq 0$ for almost all p, this proves Kolyvagin's theorem (Theorem 2.2) except for the finite number of p-parts which have been ruled out.

Without the assumptions (1) and (2), Lemma 3.7 would give a weaker annihilator of $S^{(p^n)}$, but one that is still independent of n. This is done by using the theorem of Serre or the theory of CM to show that the exponent of $H^1(K(E_{p^{n+m(p)}})/K, E_{p^n})$ is bound independent of n.

"With a little more care" (what a flex), one obtains a suitable annihilator when $p \mid \#(\mathcal{O}_K^{\times})$, thereby completing the proof.