Aash Part 1: Overview of GZ
Thun 1
$$g_{A}(z) = \sum_{M \ge 1} \langle c, Tm c^{-7} e^{a\pi imz}$$

is a cusp form of wt an which satisfies
 $(f_{i}g_{A}) = \frac{u^{2} |D|^{1/2} L'_{A}(f_{i})}{8\pi^{2}}$ for all f in the
space of wt a newforms in To(N).
Where: A from Gal(H/F)
 $C = (n) - (\infty)$ and $x =$ Heeguer Point
 $c_{i}, 7$ height pairing
J is Jacobian of Xo(N)
 $K = Q(ND)$ class number h
 H/K hilbert chass field
Du roots of Waity in K.
 $D = D_{K}$ discriminant of Heeguer pt
 $Gal: \langle , 7 \rangle$ breaks up into local height pairing
 $Talk$ about arch
 $A = B\pi^{2}(f, f)h(Cx_{i})^{-1}$

where
$$C_X$$
 is $\sum_{\sigma \in Gal} (H/E)^{\sigma}$
 T a character of $Gal (H/E)^{\sigma}$
 $G_{X,f}$ is the projection to the f -isotypical efficients is the projection to the f -isotypical efficients is the formula of T (f a newform so it's an eigenvector for T)
Than $2 \Rightarrow if (I' \neq 0$ then E contains an elt
of it order (combined w) by Waldspruger's formula)
Part 2 : Height Pairings
Let v be a place of $H/E = 0$ (arch
 $ave ardined$
 $H_v = H_v = 0$ (F)
 $H_v = H_v = 0$ (F)
 $H_v = H_v = 0$ (F)
 $H_v = 0$ (F)
 $= g^{-v(K)}$ for non-archimedean
Nen Névan's theory frives a unique
symbol an relation by prime divisors
(divisors whose supports are dirjoint)
This pairing when defined splits up as
 $= \sum_{v}^{v} < a_1, b>v$.

In GZ brunda want height pairing

$$< c$$
, $Tm C >$
 $c = (x) - (oo)$ Problem?
The sends $cusp \rightarrow cusp$, won't have
disjoint $support$,
 $inskead$, take $d = (x) - (o)$
 $(o) - (oo)$ is finite order in
 $T(a)$ so height is 0, main-Drinfled
 $Then < c$, $Tm co? = < c$, $Tm d^{o}?$
Rink $M_A(m) = 0$, and $N > 1$
 $\#inkegnal ideals$
 $in class of t wilnown m $me modular$
 $recurred.$
then c , Tmd^{o} are realatively prime.
Generalities an local Height Pairings
S compact Riemann Surface There exists a portially
 $chined$
 $< -, -> : Divo(s) \times Divo(s) \rightarrow R$$

So
$$J \rightarrow IR$$
 is
 $b \mapsto [\langle x_{b}, a 7]$ is a continuous
homomorphism
therefore the image is 0, as 0,s
the only compact subgroup of R.
Fix xo, yo cS, Green's Function (to prove
existence of
height paring)
 $G(x, y) = \langle |x| - [x_{0}], |y| - [y_{0}] \rangle$
 $x \neq y, y \neq x_{0}, x \neq y_{0}$
Biadditivity $\Rightarrow \langle a, 57 = \sum n; m; G(x_{i}, y_{i})$
 $a = \sum n i (x_{i}) \quad b = \sum m; (b_{i})$
 $i = \sum n i (x_{i}) \quad b = \sum m; (b_{i})$
 $g_{0} \notin |a|, x_{0} \notin |b|$
Conversely, $G(x, y)$ will define a symbol
 $\langle -, -7 = i i for fixed x \neq y_{0}, y \mapsto G(x, y)$
on $S \setminus i = x, x_{0}$
 $(i) is continuous$
 $k_{i}\log_{-3}(a)$ is harmonic, is $\nabla_{y}^{2}G(x, y) = 0$.

Then

$$\langle -, - \rangle$$
 defined $+ \operatorname{cts} + \operatorname{bi-additive}$
Proof Consider(f) = $\sum_{j=1}^{k} m_j(y_j)$ principal
divisor, $x_0 \notin |f|$ and Define
 $8 = x \mapsto < (\pi) - (\pi_0), f >$
 $-(\log |f(x)|^2 - \log |f(x_0)|^2)$
 $= \sum_{j=1}^{k} m_j G(x, y_j) - [\log |f(x_0)|^2 - \log |f(x_0)|^2]$
is harmonic for $x \in S \setminus \{y_0, ..., y_k\}$
 $+ \operatorname{cts}$ everywhere therefore the difference
is constant.
 $\langle \geq n_i(\pi_2), (f_i) > - \geq n_i \log |f_i(x_i)|^2$
 $= \sum_{j=1}^{k} S(\pi_i) = \sum_{j=1}^{k} c \in O.$
So G w/ given hypothesis gives us $\langle -, - \rangle$.
Where do we find G?
Now we set $S = X_0(N)(C)$.

set X0=00, Y0=0 Conditions on G needed : GI: G real value d' cts harmonic for on E= ? (2, 2') = 22 / 2 / [2 / [. (N) 2'] such that $G(\mathcal{X}_{2},\mathcal{Y}_{2}')=G(\mathcal{Z}_{2},\mathcal{Z}')$ ∀(z,z)EE, J,J'E [, (N) G2: Fix ZEH G(2,2') = ez log | Z-z' | 2+0(1) as z' -> Z where ez is the order of the stabilizer in Fo(N) G3: For fixed z $\in \mathcal{H}$, $G(z, z') = 4\pi y' + O(1)$ as $z' = x' + iy' \rightarrow \infty$ and G(z, z') = O(1)at other cusps. G4: z'EH fixed, $G(z, z') = \frac{4\pi y}{N/z} + O(1)$ $a \circ 2=x + i + y \rightarrow 0$ and G(Z,Z') = O(1) as Z > any other cusp. Ga, G3, Gy come from uniformizing parameters fir log singularities: a ~ e^{2ntiz} [2'-21 other 0 ~ e^{-2tci} [2'-21 other 0 ~ e^{-2tci}

The Green's function we eventually get is

$$G(z,z') = \lim_{S \to I} [G_{N,S}(z,z') + 4\pi E_{N}(\omega_{N}z,s) + 4\pi E_{N}(\omega_{N}z,s) + \frac{K}{S-I}] + C$$

$$\frac{1 \text{ dea}: \text{ sum something } PSL_2 \text{ invariant over}}{\text{ orbits, There are good condidates}} \\ \frac{Problem!}{Problem!} \quad \text{ diverges!} \\ \text{ have to do this instead, sum this other fr / orbits, not harmonic, introduce this s-parmeter}} \\ \text{ Notation: } E_N \text{ eisensten series} \\ K_N = -12 \\ \end{array}$$

 $\overline{[SL_2(Z): \Gamma_0(N)]}$