
ON THE HALL ALGEBRA OF COHERENT
SHEAVES ON P1 OVER F1.

MATT SZCZESNY

Abstract. We define and study the category Cohn(P1) of normal coherent sheaves
on the monoid scheme P1 (equivalently, the M0-scheme P1/F1 in the sense of Connes-
Consani-Marcolli [4] ). This category resembles in most ways a finitary abelian cate-
gory, but is not additive. As an application, we define and study the Hall algebra of
Cohn(P1). We show that it is isomorphic as a Hopf algebra to the enveloping algebra
of the product of a non-standard Borel in the loop algebra Lgl2 and an abelian Lie
algebra on infinitely many generators. This should be viewed as a (q = 1) version
of Kapranov’s result relating (a certain subalgebra of ) the Ringel-Hall algebra of P1

over Fq to a non-standard quantum Borel inside the quantum loop algebra Uν(ŝl2),
where ν2 = q.

1. introduction

If A is an abelian category defined over a finite field Fq, and finitary in the sense that
Hom(M,N) and Ext1(M,N) are finite-dimensional ∀ M,N ∈ A, one can attach to it
an associative algebra H(A) defined over the field Q(ν), ν =

√
q, called the Ringel-Hall

algebra of A. As a Q(ν)–vector space, H(A) is spanned by the isomorphism classes
of objects in A, and its structure constants are expressed in terms of the number of
extensions between objects. Under additional assumptions on A, it can be given the
structure of a Hopf algebra (see [16]).

Let X be a smooth projective curve over Fq. It is known that the abelian category
Coh(X) of coherent sheaves on X is finitary, and one can therefore consider its Ringel-
Hall algebra H(X). This algebra was studied by Kapranov in the important paper
[11] (see also [1]), in the context of automorphic forms over the function field Fq(X).
Let Lsl2 := sl2 ⊗ C[t, t−1] be the loop algebra of sl2, and Uν(Lsl2) the corresponding
quantum loop algebra (see [16]) . Denote by Lsl+2 the ”positive” subalgebra spanned
by e⊗ tk and h⊗ tl, k ∈ Z, l ∈ N, and let Uν(Lsl+2 ) be the corresponding deformation of
the enveloping algebra U(Lsl+2 ) inside Uν(Lsl2). In the case X = P1, Kapranov shows
in [11] that there exists an embedding of bialgebras

Ψ : Uν(Lsl+2 )→ H(P1).

In this paper, we define and study a version of the category of coherent sheaves on the
monoid scheme P1. The theory of monoid schemes is one of several models of the theory
of schemes over F1 - the field with one element, and was developed by Kato [13], Deitmar
[6], Connes-Consani-Marcolli [4]. A monoid scheme X is defined as a topological space
locally modeled on the spectrum of a commutative unital monoid with 0, carrying a
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structure sheaf of commutative monoids OX . We define coherent sheaves on X as
sheaves of pointed sets carrying an action of OX satisfying a ”normality” condition,
which are locally finitely generated in a suitable sense. This is a modification of the
notion of coherent sheaf defined in [6]. We will denote the corresponding category by
Cohn(XF1). In this framework, one can make sense of most of the usual notions of
algebraic geometry, such as locally free sheaves, line bundles, and torsion sheaves. The
category Cohn(XF1) behaves very much like a finitary abelian category except in that
Hom(F ,G) only has the structure of a pointed set (which corresponds to the notion of
F1–vector space). We show that as in the case of P1 over a field, every locally free sheaf
is a direct sum of line bundles, and that every coherent sheaf is a direct sum of a torsion
sheaf and a torsion-free sheaf. However, over F1, in addition to locally free sheaves,
there is a class of torsion-free sheaves which we call cyclic sheaves. As an application,
we define the Hall algebra H(P1

F1
) of Cohn(P1

F1
), and describe its structure. Letting

Lgl+2 = (d⊗ tC[t])⊕ (e⊗ C[t, t−1]), where

d := span

{
h1 =

[
1 0
0 0

]
, h2 =

[
0 0
0 1

]}
and e =

[
0 1
0 0

]
,

and letting κ denote the abelian Lie algebra on generators {κn}n∈N, the main result is
the following:

Theorem 1.
H(P1

F1
) ' U(Lgl+2 ⊕ κ).

This result should be naturally viewed as the q = 1 version of Kapranov’s theorem.
As seen in this paper, the category Cohn(XF1) is in many ways much simpler than
Coh(XF1 ⊗ Fq), where XF1 ⊗ Fq denotes the base-change of the scheme XF1 to Fq. For
instance, P1 over F1 possesses three points - two closed points {0,∞}, and a generic
point η. The category Coh(XF1) is thus essentially combinatorial in nature. This
suggests a possible application of the ideas of algebraic geometry over F1 to the study
of Hall algebras of higher-dimensional varieties. The problem of studying the Hall
algebra of Coh(PkFq

) for k > 1 seems somewhat difficult, while that of Coh(PkF1
) may

be much more manageable. The latter should be viewed as a degenerate (i.e. q = 1)
version of the original object, and would give some hints as to its structure.

The paper is structured as follows. In section 2 we recall basic notions related to
monoid schemes and coherent sheaves on them. Section 3 classifies normal coherent
sheaves on A1

F1
. In section 4, we study the category Cohn(P1

F1
) and establish basic

structural results. In section 5 we introduce the Hall algebra H(P1
F1

) of Cohn(P1
F1

).
Finally, in section 6 we describe the structure of H(P1

F1
) and prove Theorem 1.

Remark 1. In the remainder of this paper, unless otherwise indicated, all schemes
will be monoid schemes (i.e. over F1), and we will omit the subscript F1, which
was used in the introduction for emphasis and contrast. Thus instead of writing
XF1 ,P1

F1
,A1

F1
, Cohn(XF1), etc. we will write simply X,P1,A1, Cohn(X) etc.

Acknowledgements: In writing this paper, the author benefited greatly from the
presentation of the theory of monoid schemes found in [5], and thanks C. Weibel for
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kindly sharing this preprint with him. He would also like to thank Oliver Lorscheid for
many valuable conversations.

2. Monoid schemes

In this section, we briefly recall the notion of a monoid scheme following [5]. This is
essentially equivalent to the notion of M0-scheme in the sense of [4] For other approaches
to schemes over F1, see [2, 3, 4, 8, 10, 17, 19].

Recall that ordinary schemes are ringed spaces locally modeled on affine schemes,
which are spectra of commutative rings. A monoid scheme is locally modeled on an
affine monoid scheme, which is the spectrum of a commutative unital monoid with 0.
In the following, we will denote monoid multiplication by juxtaposition or ·. In greater
detail:

A monoid A will be a commutative associative monoid with identity 1A and zero 0A
(i.e. the absorbing element). We require

1A · a = a · 1A = a 0A · a = a · 0A = 0A ∀a ∈ A
Maps of monoids are required to respect the multiplication as well as the special ele-
ments 1A, 0A. An ideal of A is a subset a ⊂ A such that a · A ⊂ a. An ideal p ⊂ A is
prime if xy ∈ p implies either x ∈ p or y ∈ p.

Given a monoid A, the topological space SpecA is defined to be the set

SpecA := {p|p ⊂ A is a prime ideal },
with the closed sets of the form

V (a) := {p|a ⊂ p, p prime },
together with the empty set. Given a multiplicatively closed subset S ⊂ A, the local-
ization of A by S, denoted S−1A, is defined to be the monoid consisting of symbols
{a
s
|a ∈ A, s ∈ S}, with the equivalence relation

a

s
=
a′

s′
⇐⇒ ∃ s′′ ∈ S such that as′s′′ = a′ss′′,

and multiplication is given by a
s
× a′

s′
= aa′

ss′
.

For f ∈ A, let Sf denote the multiplicatively closed subset {1, f, f 2, f 3, · · · , }. We
denote by Af the localization S−1

f A, and by D(f) the open set SpecA\V (f) ' SpecAf ,
where V (f) := {p ∈ SpecA|f ∈ p}. The open sets D(f) cover SpecA. SpecA is
equipped with a structure sheaf of monoids OA, satisfying the property Γ(D(f),OA) =
Af . Its stalk at p ∈ SpecA is Ap := S−1

p A, where Sp = A\p.
A unital homomorphism of monoids φ : A → B is local if φ−1(B×) ⊂ A×, where

A× (resp. B×) denotes the invertible elements in A (resp. B). A monoidal space
is a pair (X,OX) where X is a topological space and OX is a sheaf of monoids. A
morphism of monoidal spaces is a pair (f, f#) where f : X → Y is a continuous map,
and f# : OY → f∗OX is a morphism of sheaves of monoids, such that the induced
morphism on stalks f#

p : OY,f(p) → f∗OX,p is local. An affine monoidal scheme is
a monoidal space isomorphic to (SpecA,OA). Thus, the category of affine monoidal
schemes is opposite to the category of monoids. A monoidal space (X,OX) is called
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a monoidal scheme, if for every point x ∈ X there is an open neighborhood Ux ⊂ X
containing x such that (Ux,OX |Ux) is an affine monoidal scheme. We denote by Msch
the category of monoid schemes.

Example 1. Denote by 〈t〉 the free commutative unital monoid with zero generated
by t, i.e.

〈t〉 := {0, 1, t, t2, t3, · · · , tn, · · · },
and let A1 := Spec 〈t〉 - the monoidal affine line. Let 〈t, t−1〉 denote the monoid

〈t, t−1〉 := {· · · , t−2, t−1, 1, 0, t, t2, t3, · · · }.

We obtain the following diagram of inclusions

〈t〉 ↪→ 〈t, t−1〉 ←↩ 〈t−1〉.

Taking spectra, and denoting by U0 = Spec 〈t〉, U∞ = Spec 〈t−1〉, we obtain the diagram

A1 ' U0 ←↩ U0 ∩ U∞ ↪→ U∞ ' A1.

We define P1, the monoid projective line, to be the monoid scheme obtained by gluing
two copies of A1 according to this diagram. It has three points - two closed points
0 ∈ U0, ∞ ∈ U∞, and the generic point η. Denote by ι0 : U0 ↪→ P1, ι∞ : U∞ ↪→ P1 the
corresponding inclusions.

Given a commutative ring R, there exists a base-change functor ⊗R from Msch to
Sch / SpecR. On affine schemes, ⊗R is defined by setting ⊗R(SpecA) = SpecR[A],
where R[A] is the monoid algebra:

R[A] :=
{∑

riai|ai ∈ A, ai 6= 0, ri ∈ R
}

with multiplication induced from the monoid multiplication. For a general monoid
scheme X, ⊗R is defined by gluing the open affine subfunctors of X. We denote
⊗R(X) by X ⊗R.

2.1. Coherent sheaves.

2.1.1. Vector spaces over F1. In this section we recall the category of vector spaces over
F1 following [12, 9].

Definition 1. The category Vect(F1) of vector spaces over F1 is defined as follows.

Ob(Vect(F1)) := { pointed sets (V, ∗V )}
Hom(V,W ) := { maps f : V → W | f(∗V ) = ∗W

and f |V \f−1(∗W ) is an injection }

Composition of morphisms is defined as the composition of maps of sets, and so is
associative. We refer to the unique morphism f ∈ Hom(V,W ) such that f(V ) = ∗W as
the zero map. If V ∈ Vect(F1) is a finite set, we define the dimension of V ∈ Vect(F1)
as dim(V ) := |V | := #V − 1 (i.e. we do not count the basepoint).
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Now Hom(V,W ) is a pointed set, with distinguished element the zero map. Thus
Hom(V,W ) ∈ Vect(F1). For a fixed V ∈ Vect(F1), End(V ) := Hom(V, V ) has the struc-
ture of a (generally) non-commutative monoid with 0 (the zero map) and 1 (the identity
map).

2.1.2. A–modules. Let A be a monoid. An A–module is a pointed set (M, ∗M) together
with an action

µ : A×M →M

(a,m)→ a ·m

which is compatible with the monoid multiplication (i.e. 1A·m = m, a·(b·m) = (a·b)·m),
and 0A ·m = ∗M ∀m ∈M). We will refer to elements of M\∗M as nonzero elements.

A morphism of A–modules f : (M, ∗M) → (N, ∗N) is a map of pointed sets (i.e. we
require f(∗M) = ∗M) compatible with the action of A, i.e. f(a ·m) = a · f(m).

A pointed subset (M ′, ∗M) ⊂ (M, ∗M) is called an A–submodule if A · M ′ ⊂ M ′.
In this case we may form the quotient module M/M ′, where M/M ′ := M\(M ′\∗M),
∗M/M ′ = ∗M , and the action of A is defined by setting

a ·m =

{
a ·m if a ·m /∈M ′

∗M/M ′ if a ·m ∈M ′

where m denotes m viewed as an element of M/M ′. If M is finite, we define |M | =
#M − 1, i.e. the number of non-zero elements.

Denote by A−mod the category of A–modules. It has the following properties:

(1) A−mod has a zero object ∅, namely the one-element pointed set {∗}.
(2) A morphism f : (M, ∗M) → (N, ∗N) has a kernel (f−1(∗N), ∗M) and a cokernel

N/ Im(f).
(3) A−mod has a symmetric monoidal structure M⊕N := M∨N := M

∐
N/∗M ∼

∗N which we will call ”direct sum”.
(4) If R ⊂M ⊕N is an A–submodule, then R = (R ∩M)⊕ (R ∩N).
(5) A−mod has a symmetric monoidal structure M ⊗N := M ∧N := M ×N/ ∼,

where ∼ is the equivalence relation generated by (a ·m,n) ∼ (m, a · n).
(6) ⊕,⊗ satisfy the usual associativity and distributivity properties.

M ∈ A−mod is finitely generated if there exists a surjection ⊕ni=1A � M of A–
modules for some n. Explicitly, this means that there are m1, · · · ,mn ∈ M such that
for every m ∈M , m = a ·mi for some 1 ≤ i ≤ n, and we refer to the mi as generators.
M is said to be free of rank n if M ' ⊕ni=1A. For an element m ∈M , define

AnnA(m) := {a ∈ A|a ·m = ∗M}.

Obviously 0A ⊂ AnnA(m) ∀m ∈ M . An element m ∈ M is torsion if AnnA(m) 6= 0A.
The subset of all torsion elements in M forms an A–submodule, called the torsion
submodule of M , and denoted Mtor. An A–module is torsion-free if Mtor = {∗M} and
torsion if Mtor = M .
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Given a multiplicatively closed subset S ⊂ A and an A–module M , we may form the
S−1A–module S−1M , where

S−1M := {m
s
| m ∈M, s ∈ S}

with the equivalence relation

m

s
=
m′

s′
⇐⇒ ∃ s′′ ∈ S such that s′s′′m = ss′′m′,

where the S−1A–module structure is given by a
s
· m
s′

:= am
ss′
. For f ∈ A, we define Mf to

be S−1
f M .

Let X be a topological space, and A a sheaf of monoids on X. We say that a sheaf of
pointed sets M is an A–module if for every open set U ⊂ X, M(U) has the structure
of an A(U)–module with the usual compatibilities. In particular, given a monoid A

and an A–module M , there is a sheaf of OA–modules M̃ on SpecA, defined on basic

affine sets D(f) by M̃(D(f)) := Mf . For a monoid scheme X, a sheaf of OX–modules
F is said to be quasicoherent if for every x ∈ X there exists an open affine Ux ⊂ X

containing x and an OX(Ux)–module M such that F|Ux ' M̃ . F is said to be coherent
if M can always be taken to be finitely generated, and locally free if M can be taken to
be free. Please note that here too our conventions are different from [6]. For a monoid
A, there is an equivalence of categories between the category of quasicoherent sheaves
on SpecA and the category of A–modules, given by Γ(SpecA, ·). A coherent sheaf F on
X is torsion (resp. torsion-free) if F(U) is a torsion OX(U)–module (resp. torsion-free
OX(U)–module ) for every open affine U ⊂ X. If X is connected, we can define the
rank of a locally free sheaf F to be the rank of the stalk Fx as an OX,x–module for any
x ∈ X. A locally free sheaf of rank one will be called a line bundle.

Remark 2. It is clear that if F is torsion and F ′ torsion-free, then Hom(F ,F ′) = 0.

Remark 3. It follows from property (4) of the category A−mod that if F ,F ′ are qua-
sicoherent OX–modules, and G ⊂ F⊕F ′ is a submodule, then G = (G ∩ F)⊕ (G ∩ F ′),
where for an open subset U ⊂ X,

(G ∩ F)(U) := G(U) ∩ F(U).

If X is a monoid scheme, we will denote by Coh(X) the category of coherent
OX–modules on X. It follows from the properties of the category A−mod listed in
section 2.1 that Coh(X) possesses a zero object ∅ (defined as the zero module ∅ on
each open affine SpecA ⊂ X), kernels and cokernels, as well as monoidal structures ⊕
and ⊗. We may therefore talk about exact sequence in Coh(X). A short exact sequence
isomorphic to one of the form

∅ → F → F ⊕ G → G → ∅
is called split. A coherent sheaf F which cannot be written as F = F ′ ⊕ F ′′ for non-
zero coherent sheaves is called indecomposable. A coherent sheaf containing no non-zero
proper sub-sheaves is called simple.
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If

∅ → F j1→ F ′ p1→ F ′′ → ∅
and

∅ → G j2→ G ′ p2→ G ′′ → ∅
are two short exact sequences in Coh(X), we say that the short exact sequence

∅ → F ⊕ G j1⊕j2→ F ′ ⊕ G ′ p1⊕p2→ F ′′ ⊕ G ′′ → ∅

is their direct sum.

Remark 4. Because of the property of Coh(X) discussed in Remark 3, it follows that
if F is an indecomposable coherent sheaf, and F ⊂ F ′ ⊕F ′′, then F ⊂ F ′ or F ⊂ F ′′.

Every coherent sheaf can be written as a direct sum of indecomposable coherent
sheaves, and this decomposition is unique up to permutation of the factors.

We will make use of the gluing construction for coherent sheaves. Namely, suppose
that U = {Ui}i∈I is an affine open cover of X, and suppose we are given for each i ∈ I
a sheaf Fi on Ui, and for each i, j ∈ I an isomorphism φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
such

that

(1) φii = id
(2) For each i, j, k ∈ I, φik = φjk ◦ φij on Ui ∩ Uj ∩ Uk

Then there exists a unique sheaf F on X together with isomorphisms ψi : F|Ui
→ Fi,

such that for each i, j ψj = φij ◦ ψi on Ui ∩Uj. If moreover the Fi are coherent and φij
isomorphisms of coherent OX–modules, then F is itself coherent.

2.2. Normal modules, coherent sheaves, and exact sequences.

Definition 2. An A–module (M, ∗M) is normal if it is an A–module in the category
Vect(F1). More precisely, we require that for each a ∈ A, the map

la : M →M

m→ a ·m

be a morphism in Vect(F1) - i.e. in particular la|M\l−1
a (∗M ) is an injection. A morphism

f : (M, ∗M)→ (N, ∗N)

of A–modules is normal if it is a morphism in Vect(F1) - i.e. f |M\f−1(∗N ) is an injection.

Definition 3. Let X be a monoid scheme, and F a coherent sheaf on X. F is normal

if for every open affine U ⊂ X, F = M̃ for a normal OX(U)–module (M, ∗M). A
morphism of coherent sheaves φ : F → F ′ is normal if its restriction to every open
affine U ⊂ X is given by a normal morphism ofOX(U)–modules. A short exact sequence
of coherent sheaves

∅ → F → F ′ → F ′′ → ∅
is normal if F ,F ′,F ′′ are normal coherent sheaves, and all morphisms are normal.
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Normal coherent sheaves and morphisms form a (non-full) subcategory of Coh(X)
possessing a zero object, kernels, cokernels, and closed under the operations ⊕,⊗. We
denote this subcategory by Cohn(X).

Remark 5. The reason to restrict attention to the category Cohn(X) is that it is better
behaved with respect to extensions. For example, even on P1, given coherent sheaves
F ,F ′, Ext1(F ,F ′) may well be infinite (as a set), which introduces problems in the
definition of the Hall algebra below.

From now on, we will focus primarily on the category Cohn(X).

3. Normal coherent sheaves on A1

In this section, we proceed to classify normal coherent sheaves on A1 = Spec〈t〉. By
the results of section 2.1.2, each such corresponds to a finitely generated 〈t〉–module

(M, ∗M). To M , we may attach a directed graph Γ̃M , whose vertices correspond to

elements of M , and where we draw an arrow from m to t ·m. The graph Γ̃M has the
property that each vertex except for ∗M has at most one incoming arrow and exactly one
outgoing arrow (this follows from normality). Let ΓM be the directed graph obtained

from Γ̃M by removing the vertex ∗M and all arrows leading to it. The connected
components of ΓM correspond to normal indecomposable 〈t〉–modules. Let us consider
the following three types of 〈t〉–modules:

(1) The free module 〈t〉 viewed as a module over itself. The graph Γ〈t〉 consists of
an infinite ladder with initial vertex 1. 〈t〉 is torsion-free.

(2) For n ∈ N, let En denote the 〈t〉–submodule {0, tn, tn+1, · · · } of 〈t〉. Let Tn
denote the quotient 〈t〉–module 〈t〉/En. The graph ΓTn is an n-step ladder. Tn
is a torsion module.

(3) For n ∈ N, let Cn denote the 〈t〉–module whose elements are {z[i], ∗}, [i] ∈ Z/nZ
(where the basepoint is denoted by ∗), and where the action of 〈t〉 is given by
t · z[i] = z[i+1], and 0 sends everything to ∗. The graph ΓCn is a directed cycle
with n vertices. Cn is torsion-free.

Remark 6. If m ≤ n, then the 〈t〉–module Tn contains a unique submodule isomorphic
to Tm ( given by {tn−m, tn−m+1, · · · , tn−1, 0} ) and we have a short exact sequence

∅ → Tm → Tn → Tn−m → ∅

Lemma 1. (1) Every indecomposable normal 〈t〉–module is one of 〈t〉, Tn, or Cn.
(2) Every finitely generated normal 〈t〉–module M is of the form

〈t〉⊕m ⊕ki=1 Tni
⊕lj=1 Cnj

Proof. For (a), it suffices to classify connected directed graphs Γ having the properties:
every vertex of Γ has at most one incoming arrow, and every vertex of Γ has at most
one outgoing arrow. It is immediate that the three possibilities enumerated above are
the only ones. Part (b) is now immediate from the decomposition of the graph ΓM into
connected components. �
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4. Normal coherent sheaves on P1

In this section, we study normal coherent sheaves on P1. Recall from example 1
that P1 is obtained by gluing two copies of A1 labeled U0, U∞, and has three points -
0,∞, and η, where the first two are closed, and η is the generic point. The data of
a coherent sheaf on P1 therefore corresponds to a pair of coherent sheaves F0,F∞ on
U0, U∞, together with a clutching isomorphism

τ : F0|U0∩U∞ → F∞|U0∩U∞ .

In other words, a 〈t〉– module M0, a 〈t−1〉– module M∞, and a 〈t, t−1〉–equivariant
isomorphism

τ̃ : S−1
0 M0 → S−1

∞ M∞,

where S0 = {1, t, t2, · · · } ⊂ 〈t〉 and S∞ = {1, t−1, t−2, · · · } ⊂ 〈t−1〉. The resulting
coherent sheaf F if normal if and only if M0,M∞ are normal.

Since the only open set of A1 containing the closed point is all of A1, any locally
free sheaf on A1 is trivial. Observe furthermore that AutOA1 (O⊕nA1 ) = Sn (i.e. any
automorphism of a free module is determined by a permutation of the generators).

4.1. Building blocks of Cohn(P1). We proceed to introduce the building blocks
of Cohn(P1) - the line bundles O(n), the cyclic sheaves Cn, and the torsion sheaves
Tx,n, x = 0,∞.

• Since Aut(OA1) = {1}, the data of a line bundle on P1
F1

corresponds to an
OP1–linear clutching isomorphism

τ : OU0|U0∩U∞ → OU∞ |U0∩U∞

i.e. an automorphism τ of {· · · t−2, t−1, 0, 1, t, t2, · · · } equivariant with respect
to the action of 〈t, t−1〉 - these are of the form τm(tk) = tk−m, and are therefore
determined by an integer m ∈ Z. Denote by O(m) the line bundle obtained from
the clutching map τm (we have chosen the convention so that Γ(P1,O(m)) 6= ∅
for m ≥ 0).
• We may glue two copies of Cn, one on U0 and one on U∞ along U0∩U∞. Let C0

n

be the 〈t〉–module Cn from section 3, and C∞n the 〈t−1〉–module with elements
{z̃[j], ∗}, j ∈ Z/nZ, where t−1 · z̃[j] = z̃[j−1], and 0 sends everything to ∗. Note
that any element of S−1

0 C0
n (resp. S−1

∞ C∞n ) is equivalent to one of the form

z[i] =
z[i]
1

(resp. z̃[j] =
ez[j]
1

). An isomorphism of 〈t, t−1〉–modules

τ̃ : S−1
0 C0

n → S−1
∞ C∞n

is determined by where it sends the element z[0] =
z[0]
1

, and the image τ̃(z[0])
may be any non-zero element z̃[j] of S−1

∞ C∞n . Let Cn[m] be the normal coherent
sheaf on P1 given by the clutching isomorphism τ̃m(z[0]) = z̃[m], m ∈ Z/nZ. I
claim that Cn[m] ' Cn[m′] for any m,m′ ∈ Z/nZ. The data of an isomorphism

φ : Cn[m]→ Cn[m′]
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is equivalent to the data of isomorphisms

φ0 : C0
n → C0

n

φ∞ : C∞n → C∞n

satisfying the property

τ̃m′ ◦ S−1
0 φ0 = S−1

∞ φ∞ ◦ τ̃m.
Let k0, k∞ ∈ Z/nZ be such that k0 +m′ ≡ k∞+m mod n. Then we may define
φ0(z[i]) = z[i+k0], and φ∞(z̃[j]) = z̃[j+k∞]. One checks easily that the condition
4.1 is satisfied, so that φ0, φ∞ indeed glue to yield an isomorphism. We denote
the corresponding isomorphism class of normal coherent sheaf on P1 by Cn. Cn
is torsion-free and simple.
• Since Tn is a torsion sheaf, we have S−1

0 Tn = 0, which implies that a sheaf on
U0 isomorphic to Tn can only be glued to the 0 sheaf on U∞ (and similarly with
the roles of U0, U∞ interchanged ). We thus obtain torsion sheaves T0,n, T∞,n on
P1 supported at 0,∞ respectively.

Remark 7. It is clear that each of O(n), Cm, T0,k, T∞,l is indecomposable.

We are now ready to classify normal coherent sheaves on P1.

Lemma 2. Let X be a monoid scheme, {Fi}i∈I , {Gj}j∈J finite collections of indecom-
posable normal coherent sheaves on X, and

ψ : ⊕i∈IFi → ⊕j∈JGj
an isomorphism. Then |I| = |J |, and ψ is given by collection of isomorphisms ψi : Fi →
Gji , i ∈ I.

Proof. We may reduce to the case where X is affine, and proceed by induction on |I|.
The statement is obvious when |I| = 1. Suppose the statement holds for |I| ≤ k, and
suppose that |I| = k + 1. Let i1 ∈ I, then by Remark 4, we have

ψ(Fi1) = ⊕j∈Jψ(Fi1) ∩ Gj
Since ψ(Fi1) is indecomposable, we have ψ(Fi1) ⊂ Gji1 for some ji1 ∈ J . We thus have

ψ−1(Gji1 ) = Fi1 ⊕ K for some normal coherent sheaf K. Since Gji1 is indecomposable,
K = 0, and ψ|Fi1

: Fi1 → Gji1 is an isomorphism. Thus, ψ| ⊕i 6=i1 Fi → ⊕j 6=ji1Gj is an
isomorphism, and the statement follows by induction. �

Theorem 2. Every normal coherent sheaf on P1 is a direct sum of the indecomposable
normal coherent sheaves O(n), Cm, T0,k, T∞,l, for n ∈ Z, m, k, l ∈ N.

Proof. This follows from Lemma 2, with X = U0 ∩ U∞, ψ = τ , and the collections of
normal coherent sheaves {Fi}, {Gj} corresponding to the 〈t, t−1〉 modules S−1

0 M0 and
S−1
∞ M∞ respectively. �

Corollary 1. (1) Every normal coherent sheaf on P1 is of the form

F = Ftor ⊕Ftf
with Ftor a torsion coherent sheaf, and Ftf torsion-free.
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(2) Ftor is a direct sum of sheaves T0,k, T∞,l for k, l ∈ N, and Ftf is a direct sum of
sheaves O(n), Cm for n ∈ Z,m ∈ N.

(3) Every locally free coherent sheaf on P1 is a direct sum of O(n).

Lemma 3. LetX be a monoid scheme, and F , {Gj}j∈J indecomposable normal coherent
sheaves on X. Then any exact sequence of the form

∅ → F f→ ⊕j∈JGj
g→ H→ ∅

is a direct sum of exact sequences

∅ → F f→ Gr
p→ Gr/F → ∅

and
∅ → ∅→⊕j 6=r,j∈J Gj

q→ ⊕j 6=r,j∈JGj → ∅
where r ∈ J , f is an injective map of coherent sheaves, and q an isomorphism.

Proof. We may reduce to the case where X is affine. By Remark 4, f maps F injectively
to a subsheaf of some Gr, r ∈ J . The rest of the Lemma follows from this observation.

�

Lemma 4.

Hom(Tx,n,F) = 0 if F is torsion-free(1)

Hom(Tx,n, Tx′,m) = 0 if x 6= x′(2)

Hom(Cn, Cm) = 0 if n 6= m(3)

Hom(Cn, Tx,m) = 0(4)

Hom(Cn,O(m)) = 0(5)

Hom(O(m), Cn) = 0(6)

Proof. Part (1) follows from remark 2. (2) follows from the observation that Tx,n and
Tx′,m have disjoint supports. (3) follows from the fact that Cn are simple. Finally,
parts (4), (5), (6) follow by restricting to U0, U∞ and the corresponding statements for
〈t〉, 〈t−1〉–modules. �

Lemma 5.

|Hom(O(n),O(m))| =
{

0 if n > m
m− n+ 1 if n ≤ m

Proof. Let ρ ∈ Hom(O(n),O(m)), and let ρ0 (resp. ρ∞) denote the restriction of ρ
to U0 (resp. U∞). Trivializing O(n),O(m) on U0, U∞, we may write ρ0(t

k) = tk+a0 ,
ρ(tl) = tl+a∞ , where a0 ≥ 0, a∞ ≤ 0. The condition ρ0|U0∩U∞ = ρ∞|U0∩U∞ becomes

σm ◦ ρ0 = ρ∞ ◦ σn,
which reduces to a0 − a∞ = m − n. It is clear that the number of solutions to this
equation with a0 ≥ 0, a∞ ≤ 0 is m− n+ 1 if m ≥ n and 0 otherwise. �
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Remark 8. It follows from the proof of the last Lemma that if

∅ → O(n)→ O(m)→ T → ∅

is a short exact sequence, then T ' T0,k0 ⊕ T∞,k∞ with k0 + k∞ = m− n ≥ 0. There is
precisely one such short exact sequence with fixed cokernel.

Lemma 6. If x ∈ {0,∞}, then

|Hom(Tx,m, Tx,n)| =
{

1 if n ≥ m
0 if n < m

Proof. This follows from Remark 6. �

Theorem 3. Every short exact sequence in Cohn(P1) is a direct sum of short exact
sequences of the form

(1)

∅ → Tx,m → Tx,n → Tx,n−m → ∅, x ∈ {0,∞},
(2)

∅ → O(n)→ O(m)→ T → ∅
as in Remark 8

(3) Split short exact sequences.

Proof. Let

∅ → F → F ′ → F ′′ → ∅
be a short exact sequence in Cohn(P1). By Theorem 2, F can be uniquely written
as a sum of indecomposable factors O(n), Cm, T0,k, T∞,l, and we proceed by induction
on the number r of these. If r = 1, then the statement follows from Remark 4, and
Lemmas 4, 5, and 6. Suppose now the theorem holds for r ≤ p, p ≥ 1, and F has p+ 1
indecomposable factors. Write F = I ⊕ H with I indecomposable. By Remark 4, I
maps into an indecomposable factor J of F ′, and is moreover the only factor of F to
map into J . Writing F ′ = J ⊕K, it follows that the sequence is a direct sum of

∅ → I → J → J /I → ∅

and

∅ → H → K → K/H → ∅
and the result follows from the inductive hypothesis. �

Corollary 2. Let F ,G be normal coherent sheaves on P1. Then

(1) |Hom(F ,G)| <∞
(2) The number of extensions of F by G is finite.
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Proof. Let
F = ⊕ki=1Fi and G = ⊕lj=1Gj,

where Fi,Gj are indecomposable. Since any φ ∈ Hom(F ,G) is determined by its re-
striction φi to each Fi, and each φi by its projections φij ∈ Hom(Fi,Gj), we have

Hom(F ,G) ⊂ ⊕i,j Hom(Fi,Gj)
By Lemmas 4, 5, and 6, each Hom(Fi,Gj) is finite, and this proves part (1). Part (2)
follows from Theorem 3. �

Denote by Iso(Cohn(P1)) the set of isomorphism classes of normal coherent sheaves
on P1. Define the Grothendieck group K0(P1) of Cohn(P1) by

K0(P1) := Z[Iso(Cohn(P1))]/ ∼
where ∼ is the subgroup generated by [F ] + [F ′′] − [F ′] for each short exact sequence
0→ F → F ′ → F ′′ → 0. Define a homomorphism of abelian groups

Ψ : Z[Iso(Cohn(P1))]→ Z⊕ Z⊕ (⊕∞i=1Z)

on generators by

Ψ([O(k)]) = (1, k, 0)

Ψ([Tx,n]) = (0, n, 0)

Ψ([Cm]) = (0, 0, em)

where 0 denotes the 0 vector in ⊕∞i=1Z, and em the one with a 1 in the m-th position,
and 0 everywhere else. Since Ψ is additive on every short exact sequence in Theorem
3, it follows that Ψ descends to K0(P1), and it is easy to see that it is an isomorphism.
We have thus shown:

Theorem 4. K0(P1) ' Z⊕ Z⊕ (⊕∞i=1Z).

We call the first factor rank and the second degree in analogy with the case of P1

over a field.

5. Hall algebras

In this section, we introduce the Hall algebra H(P1) of the category Cohn(P1). For
more on Hall algebras see [16]. As a vector space:

H(P1) := {f : Iso(Cohn(P1))→ C | # supp(f) <∞}.
We equip H(P1) with the convolution product

f ? g(F) =
∑
F ′⊂F

f(F/F ′)g(F ′),

where the sum is over all coherent sub-sheaves F ′ of the isomorphism class F (in what
follows, it is conceptually helpful to fix a representative of each isomorphism class).
Note that Corollary 2 and the finiteness of the support of f, g ensures that the sum in
the convolution product is finite.

Lemma 7. The convolution product ∗ is associative.
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Proof. Suppose f, g, h ∈ H(P1). Then

(f ? (g ? h))(F) =
∑
F ′⊂F

f(F/F ′)(g ? h)(F ′)

=
∑
F ′⊂F

f(F/F ′)(
∑
F ′′⊂F ′

g(F ′/F ′′)h(F ′′))

=
∑

F ′′⊂F ′⊂F

f(F/F ′)g(F ′/F ′′)h(F ′′)

whereas

((f ? g) ? h)(F) =
∑
F ′′⊂F

(f ? g)(F/F ′′)h(F ′′)

=
∑
F ′′⊂F

(
∑

K⊂F/F ′′
f((F/F ′′)/K)g(K))h(F ′′)

=
∑

F ′′⊂F ′⊂F

f(F/F ′)g(F ′/F ′′)h(F ′′),

where in the last step we have used the fact that there is an inclusion-preserving bijection
between sub-sheaves K ⊂ F/F ′′ and sub-sheaves F ′ ⊂ F containing F ′′, under which
F ′/F ′′ ' K. This bijection is compatible with taking quotients in the sense that
(F/F ′′)/K ' F/F ′. �

We may also equip H(P1) with a coproduct

∆ : H(P1)→ H(P1)⊗H(P1)

given by ∆(f)(F ,F ′) := f(F ⊕ F ′). The coproduct ∆ is clearly co-commutative.

Lemma 8. The following holds in H(P1):

(1) ∆ is co-associative: (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆
(2) ∆ is compatible with ?: ∆(f ? g) = ∆(f) ?∆(g).

Proof. The proof of both parts is the same as the proof of the corresponding statements
for the Hall algebra of the category of quiver representations over F1, given in [18]. �

We may equip H(P1) with a grading by K+
0 (P1) - the effective cone inside K0(P1),

(which by Theorem 4 is isomorphic to N × N × N) as follows. H(P1) is spanned by
δ-functions δF supported on individual isomorphism classes, and we define

deg(δF) = [F ] ∈ K0(P1)

where [F ] denotes the class of F in the Grothendieck group. With this grading, H(P1)
becomes a graded, connected, co-commutative Hopf algebra. By the Milnor-Moore
Theorem, H(P1) is isomorphic to U(q) - the universal enveloping algebra of q, where
the latter is the Lie algebra of its primitive elements. The definition of the co-product
implies that q is spanned by δF for isomorphism classes F of indecomposable coherent
sheaves, which by Theorem 2 are O(n), Cm, T0,k, T∞,l, for n ∈ Z, m, k, l ∈ N.
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6. The structure of H(P1)

In this section we compute the structure of the Hopf algebra H(P1). We will use the
shorthand notation F for δF - the delta-function supported on the isomorphism class
of F . The following theorem follows from Theorem 2 and Theorem 3:

Theorem 5. The following identities hold in H(P1):

O(n) · O(m) = O(n)⊕O(m) if m 6= n

Tx,n · O(m) = O(n+m) + Tx,n ⊕O(m)

O(m) · Tx,n = Tx,n ⊕O(m)

Tx,n · Tx,m = Tx,n+m + Tx,n ⊕ Tx,m for x = 0,∞, m 6= n

Tx,n · Tx′,m = Tx,n ⊕ Tx′,m for x 6= x′

Cn · F = Cn ⊕F if F is indecomposable and F 6= Cn

Corollary 3. From Theorem 5 we deduce the following commutation relations:[
O(n),O(m)

]
= 0[

Tx,n,O(m)
]

= [O(m+ n)][
Tx,n, Tx′,m

]
= 0[

Cn,F
]

= 0 for any indecomposable F .

Let Lgl2 := gl2 ⊗ C[t, t−1], and Lgl+2 = (d⊗ tC[t])⊕ (e⊗ C[t, t−1]) where

d := span

{
h1 =

[
1 0
0 0

]
, h2 =

[
0 0
0 1

]}
and e =

[
0 1
0 0

]
.

Let κ be the abelian Lie algebra with generators κn, n ∈ N. Define

ρ : Lgl+2 ⊕ κ→ H(P1)

by setting ρ(e ⊗ tk) = O(k), ρ(h1 ⊗ tn) = T0,n, ρ(h2 ⊗ tm) = −T0,m, and ρ(κn) = Cn.
The following theorem now follows from the commutation relations in Corollary 3.

Theorem 6. ρ is an isomorphism of Lie algebras. Consequently, H(P1) ' U(Lgl+2 ⊕κ).

The sub-algebra H̃(P1) of H(P1) generated by O(k), T0,n + T∞,n is analogous to the
sub-algebra of the Ringel-Hall algebra studied by Kapranov in [11]. It is easily seen to
be isomorphic to U(Lsl+2 ), with Lsl+2 = (h⊗ tC[t])⊕ (e⊗ C[t, t−1]), where

h = C ·
[
1 0
0 −1

]
.



16 MATT SZCZESNY

References

[1] Baumann P; Kassel C. The Hall algebra of the category of coherent sheaves on the projective line.
J. Reine Angew. Math. 533 (2001), 207–233.

[2] Connes, Alain; Consani, Caterina. On the notion of geometry over F1. Preprint arXiv:0809.2926
[3] Connes, Alain; Consani, Caterina. Schemes over F1 and zeta functions. Compos. Math. 146 (2010),

1383–1415.
[4] Connes, Alain; Consani, Caterina; Marcolli, Matilde Fun with F1. J. Number Theory 129 (2009),

no. 6, 1532–1561.
[5] Cortinas, G.; Hasemeyer C.; Walker M.; Weibel C. Toric varieties, monoid schemes, and cdh

descent. Preprint arXiv:1106.1389.
[6] Deitmar, Anton. Schemes over F1. Number fields and function fields—two parallel worlds, 87–100,
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