ON THE HALL ALGEBRA OF COHERENT SHEAVES ON \(\mathbb{P}^1 \) OVER \(\mathbb{F}_1 \)

MATT SZCZESNY

Abstract. Using a model of schemes over \(\mathbb{F}_1 \) in the spirit of Deitmar and Haran, we study the category \(\text{Coh}(\mathbb{P}^1) \) of coherent sheaves on \(\mathbb{P}^1 \) over \(\mathbb{F}_1 \). This category resembles in most ways a finitary abelian category, but is not additive. As an application, we define and study the Hall algebra of \(\text{Coh}(\mathbb{P}^1) \). We show that it is isomorphic as a Hopf algebra to the enveloping algebra of a non-standard Borel in the loop algebra \(L_{\mathfrak{gl}2} \). This should be viewed as a \((q = 1)\) version of Kapranov’s result relating (a certain subalgebra of) the Ringel-Hall algebra of \(\mathbb{P}^1 \) over \(\mathbb{F}_q \) to a non-standard quantum Borel inside the quantum loop algebra \(\mathcal{U}_\nu(\widehat{\mathfrak{sl}2}) \), where \(\nu^2 = q \).

1. Introduction

If \(\mathcal{A} \) is an abelian category defined over a finite field \(\mathbb{F}_q \), and finitary in the sense that \(\text{Hom}(M,N) \) and \(\text{Ext}^1(M,N) \) are finite-dimensional \(\forall M, N \in \mathcal{A} \), one can attach to it an associative algebra \(\mathcal{H}(\mathcal{A}) \) defined over the field \(\mathbb{Q}(\nu) \), \(\nu = \sqrt{q} \), called the Ringel-Hall algebra of \(\mathcal{A} \). As a \(\mathbb{Q}(\nu) \)-vector space, \(\mathcal{H}(\mathcal{A}) \) is spanned by the isomorphism classes of objects in \(\mathcal{A} \), and its structure constants are expressed in terms of the number of extensions between objects. Under additional assumptions on \(\mathcal{A} \), it can be given the structure of a Hopf algebra (see [14]).

Let \(X \) be a smooth projective curve over \(\mathbb{F}_q \). It is known that the abelian category \(\text{Coh}(X) \) of coherent sheaves on \(X \) is finitary, and one can therefore consider its Ringel-Hall algebra \(\mathcal{H}(X) \). This algebra was studied by Kapranov in the important paper [10] (see also [1]), in the context of automorphic forms over the function field \(\mathbb{F}_q(X) \). Let \(L_{\mathfrak{sl}2} := \mathfrak{sl}_2 \otimes \mathbb{C}[t, t^{-1}] \) be the loop algebra of \(\mathfrak{sl}_2 \), and \(\mathcal{U}_\nu(L_{\mathfrak{sl}2}) \) the corresponding quantum loop algebra (see [14]). Denote by \(L_{\mathfrak{sl}_2^+} \) the ”positive” subalgebra spanned by \(e \otimes t^k \) and \(h \otimes t^l \), \(k \in \mathbb{Z}, l \in \mathbb{N} \), and let \(\mathcal{U}_\nu(L_{\mathfrak{sl}_2^+}) \) be the corresponding deformation of the enveloping algebra \(\mathcal{U}(L_{\mathfrak{sl}_2^+}) \) inside \(\mathcal{U}_\nu(L_{\mathfrak{sl}_2}) \). In the case \(X = \mathbb{P}^1 \), Kapranov shows in [10] that there exists an embedding of bialgebras

\[
\Psi : \mathcal{U}_\nu(L_{\mathfrak{sl}_2^+}) \rightarrow \mathcal{H}(\mathbb{P}^1).
\]

In this paper, we study the category of coherent sheaves on \(\mathbb{P}^1 \) over \(\mathbb{F}_1 \), the field of one element, using a notion of schemes over \(\mathbb{F}_1 \) based on work of Deitmar ([5]) and Haran ([8]). A scheme \(X \) over \(\mathbb{F}_1 \) is defined as a topological space locally modeled on the spectrum of a commutative unital monoid with 0, carrying a structure sheaf of commutative monoids \(\mathcal{O}_X \). One defines coherent sheaves on \(X \) as sheaves of pointed sets carrying an action of \(\mathcal{O}_X \), which are locally finitely generated in a suitable sense.

The author is supported by an NSA grant.
ON THE HALL ALGEBRA OF COHERENT SHEAVES ON \mathbb{P}^1 OVER \mathbb{F}_1

MATT SZCZESNY

We will denote the corresponding category by $\text{Coh}(X_{\mathbb{F}_1})$. In this framework, one can make sense of most of the usual notions of algebraic geometry, such as locally free sheaves, line bundles, and torsion sheaves. The category $\text{Coh}(X_{\mathbb{F}_1})$ behaves very much like a finitary abelian category except that $\text{Hom}(\mathcal{F}, \mathcal{G})$ only has the structure of a pointed set (which corresponds to the notion of \mathbb{F}_1–vector space). We show that as in the case of \mathbb{P}^1 over a field, every coherent sheaf is a direct sum of a locally free and a torsion sheaf, and that moreover, locally free sheaves are direct sums of line bundles.

As an application, we define the Hall algebra $\mathcal{H}(\mathbb{P}^1_{\mathbb{F}_1})$ of $\text{Coh}(\mathbb{P}^1_{\mathbb{F}_1})$, and describe its structure. Letting $L\mathfrak{gl}^+_2 = (\mathfrak{d} \otimes t\mathbb{C}[t]) \oplus (e \otimes \mathbb{C}[t, t^{-1}])$, where $\mathfrak{d} := \text{span}\left\{ h_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, h_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ and $e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, the main result is the following:

Theorem 1.

$$\mathcal{H}(\mathbb{P}^1_{\mathbb{F}_1}) \cong \mathcal{U}(L\mathfrak{gl}^+_2).$$

This result should be naturally viewed as the $q = 1$ version of Kapranov’s theorem. As seen in this paper, the category $\text{Coh}(X_{\mathbb{F}_1})$ is much simpler than $\text{Coh}(X_{\mathbb{F}_1} \otimes \mathbb{F}_q)$, where $X_{\mathbb{F}_1} \otimes \mathbb{F}_q$ denotes the base-change of the scheme $X_{\mathbb{F}_1}$ to \mathbb{F}_q. For instance, \mathbb{P}^1 over \mathbb{F}_1 possesses three points - two closed points $\{0, \infty\}$, and a generic point η. The category $\text{Coh}(X_{\mathbb{F}_1})$ is thus essentially combinatorial in nature. This suggests a possible application of the ideas of algebraic geometry over \mathbb{F}_1 to the study of Hall algebras of higher-dimensional varieties. The problem of studying the Hall algebra of $\text{Coh}(\mathbb{P}^k_{\mathbb{F}_1})$ for $k > 1$ seems somewhat difficult, while that of $\text{Coh}(\mathbb{P}^1_{\mathbb{F}_1})$ may be much more manageable. The latter should be viewed as a degenerate (i.e. $q = 1$) version of the original object, and would give some hints as to its structure.

The paper is structured as follows. In section 2 we recall basic notions related to schemes over \mathbb{F}_1 and coherent sheaves on them. In section 3, we study the category $\text{Coh}(\mathbb{P}^1_{\mathbb{F}_1})$ and establish basic structural results. In section 4 we introduce the Hall algebra $\mathcal{H}(\mathbb{P}^1_{\mathbb{F}_1})$ of $\text{Coh}(\mathbb{P}^1_{\mathbb{F}_1})$. Finally, in section 5 we describe the structure of $\mathcal{H}(\mathbb{P}^1_{\mathbb{F}_1})$ and prove Theorem 1.

Remark 1. In the remainder of this paper, unless otherwise indicated, all schemes will be over \mathbb{F}_1, and we will omit the subscript \mathbb{F}_1, which was used in the introduction for emphasis and contrast. Thus instead of writing $X_{\mathbb{F}_1}, \mathbb{P}^1_{\mathbb{F}_1}, \mathbb{A}^1_{\mathbb{F}_1}, \text{Coh}(X_{\mathbb{F}_1})$, etc. we will write simply $X, \mathbb{P}^1, \mathbb{A}^1, \text{Coh}(X)$ etc.

2. Schemes over \mathbb{F}_1

In this section, we briefly recall the notion of a scheme over \mathbb{F}_1. We essentially follow the approach of [5], with some minor differences (for instance, we work with monoids with 0, and use a somewhat different definition of the category of coherent sheaves). Our approach is also equivalent to a special case of the notion of scheme over \mathbb{F}_1 developed in [8]. Please consult the references for details. For other approaches to schemes over \mathbb{F}_1, see [2, 3, 4, 7, 9, 15, 17].
We require structure sheaf with a where which are spectra of commutative rings. A scheme over \(\mathbb{F}_1 \) is locally modeled on an affine \(\mathbb{F}_1 \)-scheme, which is the spectrum of a commutative unital monoid with 0. In the following, we will denote monoid multiplication by juxtaposition or \(\cdot \). In greater detail:

A monoid \(A \) will be a commutative associative monoid with identity \(1_A \) and zero \(0_A \). We require

\[
1_A \cdot a = a \cdot 1_A = a \quad \quad 0_A \cdot a = a \cdot 0_A = 0_A \quad \forall a \in A
\]

Maps of monoids are required to respect the multiplication as well as the special elements \(1_A, 0_A \). An ideal of \(A \) is a subset \(a \subset A \) such that \(a \cdot A \subset a \). An ideal \(p \subset A \) is prime if \(xy \in p \) implies either \(x \in p \) or \(y \in p \).

Given a monoid \(A \), the topological space \(\text{Spec} A \) is defined to be the set

\[
\text{Spec} A := \{ p \mid p \subset A \text{ is a prime ideal } \},
\]

with the closed sets of the form

\[
V(a) := \{ p \mid a \subset p, p \text{ prime } \},
\]

together with the empty set. Given a multiplicatively closed subset \(S \subset A \), the localization of \(A \) by \(S \), denoted \(S^{-1}A \), is defined to be the monoid consisting of symbols \(\frac{a}{s} | a \in A, s \in S \}, with the equivalence relation

\[
\frac{a}{s} \equiv \frac{a'}{s'} \iff \exists s'' \in S \text{ such that } as'' = a's''
\]

and multiplication is given by \(\frac{a}{s} \times \frac{a'}{s'} = \frac{aa'}{ss'} \).

For \(f \in A \), let \(S_f \) denote the multiplicatively closed subset \{1, f, f^2, f^3, \cdots \}. We denote by \(A_f \) the localization \(S_f^{-1}A \), and by \(D(f) \) the open set \(\text{Spec} A \backslash V(f) \cong \text{Spec} A_f \), where \(V(f) := \{ p \in \text{Spec} A | f \in p \} \). The open sets \(D(f) \) cover \(\text{Spec} A \). Spec \(A \) is equipped with a structure sheaf of monoids \(O_A \), satisfying the property \(\Gamma(D(f), O_A) = A_f \). Its stalk at \(p \in \text{Spec} A \) is \(A_p := S_p^{-1}A \), where \(S_p = A \backslash p \).

A unital homomorphism of monoids \(\phi : A \to B \) is local if \(\phi^{-1}(B^\times) \subset A^\times \), where \(A^\times \) (resp. \(B^\times \) denotes the invertible elements in \(A \) (resp. \(B \)). A monoidal space is a pair \((X, O_X) \) where \(X \) is a topological space and \(O_X \) is a sheaf of monoids. A morphism of monoidal spaces is a pair \((f, f^\#) \) where \(f : X \to Y \) is a continuous map, and \(f^\# : O_Y \to f_*O_X \) is a morphism of sheaves of monoids, such that the induced morphism on stalks \(f^\#: O_{Y, f(y)} \to f_*O_{X, x} \) is local. An affine \(\mathbb{F}_1 \)-scheme is a monoidal space isomorphic to \((\text{Spec} A, O_A) \). Thus, the category of affine \(\mathbb{F}_1 \)-schemes is opposite to the category of monoids. A monoidal space \((X, O_X) \) is called a scheme over \(\mathbb{F}_1 \), if for every point \(x \in X \) there is an open neighborhood \(U_x \subset X \) containing \(x \) such that \((U_x, O_{X|U_x}) \) is an affine scheme over \(\mathbb{F}_1 \).

Example 1. Denote by \(\langle t \rangle \) the free commutative unital monoid with zero generated by \(t \), i.e.

\[
\langle t \rangle := \{0, 1, t, t^2, t^3, \cdots, t^n, \cdots\},
\]

and let \(\mathbb{A}^1 := \text{Spec} \langle t \rangle \) - the affine line over \(\mathbb{F}_1 \). Let \(\langle t, t^{-1} \rangle \) denote the monoid

\[
\langle t, t^{-1} \rangle := \{\cdots, t^{-2}, t^{-1}, 0, t, t^2, t^3, \cdots\}.
\]
We define \(P \) and obtain the following diagram of inclusions

\[
\langle t \rangle \hookrightarrow \langle t, t^{-1} \rangle \hookrightarrow \langle t^{-1} \rangle.
\]

Taking spectra, and denoting by \(U_0 = \text{Spec} \langle t \rangle, U_\infty = \text{Spec} \langle t^{-1} \rangle \), we obtain

\[
A^1 = U_0 \hookrightarrow U_0 \cap U_\infty \hookrightarrow U_\infty = A^1
\]

We define \(\mathbb{P}^1 \), the projective line over \(\mathbb{F}_1 \), to be the scheme obtained by gluing two copies of \(A^1 \) according to the diagram 2. It has three points - two closed points \(0 \in U_0, \infty \in U_\infty \), and the generic point \(\eta \). Denote by \(t_0 : U_0 \hookrightarrow \mathbb{P}^1, t_\infty : U_\infty \hookrightarrow \mathbb{P}^1 \) the corresponding inclusions.

Given a commutative ring \(R \), there exists a base-change functor

\[
\otimes R : \text{Sch} / \mathbb{F}_1 \rightarrow \text{Sch} / \text{Spec} R
\]

On affine schemes, \(\otimes R \) is defined by setting

\[
\otimes R(\text{Spec} A) = \text{Spec} R[A]
\]

where \(R[A] \) is the monoid algebra:

\[
R[A] := \left\{ \sum r_i a_i | a_i \in A, a_i \neq 0, r_i \in R \right\}
\]

with multiplication induced from the monoid multiplication. For a general scheme \(X \) over \(\mathbb{F}_1 \), \(\otimes R \) is defined by gluing the open affine subfunctors of \(X \). We denote \(\otimes R(X) \) by \(X \otimes R \).

2.1. **Coherent sheaves.** Let \(A \) be a monoid. An \(A \)-module is a pointed set \((M, \ast_M)\) together with an action

\[
\mu : A \times M \rightarrow M
\]

\[(a, m) \mapsto a \cdot m
\]

which is compatible with the monoid multiplication (i.e. \(1_A \cdot m = m, a \cdot (b \cdot m) = (a \cdot b) \cdot m \), and \(0_A \cdot m = \ast_M \forall m \in M \)). We will refer to elements of \(M \setminus \ast_M \) as nonzero elements.

A morphism of \(A \)-modules \(f : (M, \ast_M) \rightarrow (N, \ast_N) \) is a map of pointed sets (i.e. we require \(f(\ast_M) = \ast_N \)) satisfying the following two properties:

- \(f(a \cdot m) = a \cdot f(m) \) i.e. \(f \) is compatible with the action of \(A \).
- \(f|_{M \setminus \ast_N} \) is injective.

Remark 2. Our definition of \(A \)-module differs somewhat from that in [5].

A pointed subset \((M', \ast_M) \subset (M, \ast_M)\) is called an \(A \)-sub-module if \(\mu(A, M') \subset M' \). In this case we may form the quotient module \(M/M' \), where \(M/M' := M \setminus (M' \setminus \ast_M) \), \(\ast_{M/M'} = \ast_M \), and the action of \(A \) is defined by setting

\[
a \cdot \overline{m} = \left\{
\begin{array}{ll}
\overline{a \cdot m} & \text{if } a \cdot m \notin M' \\
\ast_{M/M'} & \text{if } a \cdot m \in M'
\end{array}
\right.
\]

where \(\overline{m} \) denotes \(m \) viewed as an element of \(M/M' \). If \(M \) is finite, we define \(|M| = \#M - 1 \), i.e. the number of non-zero elements.
Denote by $A \text{–mod}$ the category of A–modules. It has the following properties:

1. $A \text{–mod}$ has a zero object $\emptyset = \{\star\}$ - the one-element pointed set.
2. A morphism $f : (M, *_M) \to (N, *_N)$ has a kernel $(f^{-1}(*_N), *_N)$ and a cokernel $\mathbb{N}/ \operatorname{Im}(f)$.
3. $A \text{–mod}$ has a symmetric monoidal structure $M \oplus N := M \vee N := M \bigsqcup N/ *_M \sim *_N$ which we will call "direct sum".
4. If $R \subset M \oplus N$ is an A–submodule, then $R = (R \cap M) \oplus (R \cap N)$.
5. $A \text{–mod}$ has a symmetric monoidal structure $M \otimes N := M \wedge N := M \times N/ \sim$, where \sim is the equivalence relation generated by $(a \cdot m, n) \sim (m, a \cdot n)$.
6. \oplus, \otimes satisfy the usual associativity and distributivity properties.

$M \in A \text{–mod}$ is finitely generated if there exists a surjection $\oplus_{i=1}^n A \twoheadrightarrow M$ of A–modules for some n. Explicitly, this means that there are $m_1, \cdots, m_n \in M$ such that for every $m \in M$, $m = a \cdot m_i$, for some $1 \leq i \leq n$, and we refer to the m_i as generators. M is said to be free of rank n if $M \cong \oplus_{i=1}^n A$. For an element $m \in M$, define $\operatorname{Ann}_A(m) := \{a \in A | a \cdot m = *_M\}$.

Obviously $0_A \subset \operatorname{Ann}_A(m) \forall m \in M$. An element $s \in S$ is torsion if $\operatorname{Ann}_A(s) \neq 0_A$. The subset of all torsion elements in M forms an A–submodule, called the torsion submodule of M, and denoted M_{tor}. An A–module is torsion-free if $M_{\text{tor}} = \{*_M\}$ and torsion if $M_{\text{tor}} = M$. Every M can be uniquely written $M = M_{\text{tor}} \oplus M_{\text{ff}}$, where M_{ff} is torsion-free. We define the length of a torsion module M to be $|M|$.

Given a multiplicatively closed subset $S \subset A$ and an A–module M, we may form the $S^{-1}A$–module $S^{-1}M$, where

$$S^{-1}M := \{ \frac{m}{s} | m \in M, s \in S \}$$

with the equivalence relation

$$\frac{m}{s} = \frac{m'}{s'} \iff \exists s'' \in S \text{ such that } s's''m = ss'm',$$

where the $S^{-1}A$–module structure is given by $\frac{a}{s} \cdot \frac{m}{s'} := \frac{am}{ss'}$. For $f \in A$, we define M_f to be $S_f^{-1}M$.

Let X be a topological space, and \mathcal{A} a sheaf of monoids on X. We say that a sheaf of pointed sets \mathcal{M} is an \mathcal{A}–module if for every open set $U \subset X$, $\mathcal{M}(U)$ has the structure of an $\mathcal{A}(U)$–module with the usual compatibilities. In particular, given a monoid A and an A–module M, there is a sheaf of $\mathcal{O}_{\text{Spec} A}$–modules \tilde{M} on $\text{Spec} A$, defined on basic affine sets $D(f)$ by $\tilde{M}(D(f)) := M_f$. For a scheme X over \mathbb{F}_1, a sheaf of \mathcal{O}_X–modules \mathcal{F} is said to be quasicoherent if for every $x \in X$ there exists an open affine $U_x \subset X$ containing x and an $\mathcal{O}_X(U_x)$–module M such that $\mathcal{F}|_{U_x} \cong \tilde{M}$. \mathcal{F} is said to be coherent if M can always be taken to be finitely generated, and locally free if M can be taken to be free. Please note that here too our conventions are different from [5]. For a monoid A, there is an equivalence of categories between the category of quasicoherent sheaves on $\text{Spec} A$ and the category of A–modules, given by $\Gamma(\text{Spec} A, \cdot)$. A coherent sheaf \mathcal{F}
on X is torsion (resp. torsion-free) if $F(U)$ is a torsion $O_X(U)$–module (resp. torsion-free $O_X(U)$–module) for every open affine $U \subset X$. If X is connected, we can define the rank of a locally free sheaf F to be the rank of the stalk F_x as an O_X,x–module for any $x \in X$. A locally free sheaf of rank one will be called a line bundle.

Remark 3. It follows from property (4) of the category $A - mod$ that if F, F' are quasicoherent O_X–modules, and $G \subset F \oplus F'$ is an O_X–submodule, then $G = (G \cap F) \oplus (G \cap F')$, where for an open subset $U \subset X$,

$$\text{(3)} \quad (G \cap F)(U) := G(U) \cap F(U).$$

If X is a scheme over \mathbb{F}_1, we will denote by $\text{Coh}(X)$ the category of coherent O_X–modules on X. It follows from the properties of the category $A - mod$ listed in section 2.1 that $\text{Coh}(X)$ possesses a zero object \emptyset (defined as the zero module \emptyset on each open affine $\text{Spec} A \subset X$), kernels and co-kernels, as well as monoidal structures \oplus and \otimes. We may therefore talk about exact sequence in $\text{Coh}(X)$. A short exact sequence isomorphic to one of the form

$$\emptyset \to F \to F \oplus G \to G \to \emptyset$$

is called split. A coherent sheaf F which cannot be written as $F = F' \oplus F''$ for non-zero coherent sheaves is called indecomposable.

Remark 4. Because of the property of $\text{Coh}(X)$ discussed in Remark 3, it follows that if F is an indecomposable coherent sheaf, and $F \subset F' \oplus F''$, then $F \subset F'$ or $F \subset F''$.

We will make use of the gluing construction for coherent sheaves. Namely, suppose that $U = \{U_i\}_{i \in I}$ is an affine open cover of X, and suppose we are given for each $i \in I$ a sheaf F_i on U_i, and for each $i, j \in I$ an isomorphism $\phi_{ij} : F_i|_{U_i \cap U_j} \to F_j|_{U_i \cap U_j}$ such that

1. $\phi_{ii} = id$
2. For each $i, j, k \in I$, $\phi_{ik} = \phi_{jk} \circ \phi_{ij}$ on $U_i \cap U_j \cap U_k$

Then there exists a unique sheaf F on X together with isomorphisms $\psi_i : F_i \to F$, such that for each $i, j \psi_j = \phi_{ij} \circ \psi_i$ on $U_i \cap U_j$. If moreover, F_i are coherent and ϕ_{ij} isomorphisms of coherent O_X–modules, then F is itself coherent.

3. Coherent sheaves on \mathbb{P}^1

In this section, we study coherent sheaves on \mathbb{P}^1. Recall from example 1 that \mathbb{P}^1 is obtained by gluing two copies of \mathbb{A}^1 labeled U_0, U_∞, and has three points - $0, \infty$, and η, where the first two are closed, and η is the generic point. Since the only open set of \mathbb{A}^1 containing the closed point is all of \mathbb{A}^1, any locally free sheaf on \mathbb{A}^1 is trivial. Observe furthermore that $\text{Aut}_{\mathbb{A}^1}(\mathcal{O}_{\mathbb{A}^1}) = S_n$ (i.e. any automorphism of a free module is determined by a permutation of the generators).

6
3.1. Building blocks of \(\text{Coh}(\mathbb{P}^1) \). We proceed to introduce the building blocks of \(\text{Coh}(\mathbb{P}^1) \) - the line bundles \(\mathcal{O}(n) \) and the torsion sheaves \(\mathcal{T}_{x,n}, \ x = 0, \infty \).

- Since \(\text{Aut}(\mathcal{O}_A) = \{1\} \), the data of a line bundle on \(\mathbb{P}^1_{\mathbb{F}_1} \) corresponds to an \(\mathcal{O}_{\mathbb{P}^1} \)-linear clutching isomorphism
 \[
 \tau : \mathcal{O}_{U_0}|_{U_0 \cap U_\infty} \to \mathcal{O}_{U_\infty}|_{U_0 \cap U_\infty},
 \]
 i.e. an automorphism \(\tau \) of \(\{\cdots t^{-2}, t^{-1}, 0, 1, t, t^2, \cdots\} \) equivariant with respect to the action of \(\langle t, t^{-1} \rangle \) - these are of the form \(\tau_m(t^k) = t^{k - m} \), and are therefore determined by an integer \(m \in \mathbb{Z} \). Denote by \(\mathcal{O}(m) \) the line bundle obtained from the clutching map \(\tau_m \) (we have chosen the convention so that \(\mathcal{O}(\mathbb{P}^1, \mathcal{O}(m)) \neq \emptyset \) for \(m \geq 0 \).

- For \(n \in \mathbb{N} \), let \(C_n \) denote the \(\langle t \rangle \)-submodule \(\{t^n, t^{n+1}, \cdots\} \) of \(\langle t \rangle \). Let \(T_n \) denote the quotient \(\langle t \rangle \)-module \(\langle t \rangle/C_n \), and \(\mathcal{T}_n \) the corresponding coherent sheaf on \(\mathbb{A}^1 \). This is a torsion sheaf of length \(n \). Denote by \(\mathcal{T}_{0,n} \) (resp. \(\mathcal{T}_{\infty,n} \)) the torsion sheaves \(t_{0,\infty}(\mathcal{T}_n) \) (resp. \(t_{\infty,\infty}(\mathcal{T}_n) \)) supported at 0 (resp. \(\infty \)).

Remark 5. If \(m \leq n \), then the \(\langle t \rangle \)-module \(T_n \) contains a unique submodule isomorphic to \(T_m \) (given by \(\{t^m, t^{m+1}, \cdots, t^{n-1}, 0\} \)) and we have a short exact sequence
\[
\emptyset \to T_m \to T_n \to T_{n-m} \to \emptyset \tag{4}
\]
which yields corresponding short exact sequences of torsion sheaves:
\[
\emptyset \to \mathcal{T}_{x,m} \to \mathcal{T}_{x,n} \to \mathcal{T}_{x,n-m} \to \emptyset \tag{5}
\]
for \(n \geq m \), and \(x = 0, \infty \).

We proceed to prove a few short lemmas establishing the structure of the category \(\text{Coh}(\mathbb{P}^1) \).

Lemma 1. Let \(X \) be a scheme over \(\mathbb{F}_1 \), and \(\mathcal{F} \) a coherent sheaf on \(X \). Then
\[
\mathcal{F} = \mathcal{F}_{\text{tor}} \oplus \mathcal{F}_{\text{tf}}, \tag{6}
\]
where \(\mathcal{F}_{\text{tor}} \) is a torsion sheaf and \(\mathcal{F}_{\text{tf}} \) is torsion-free.

Proof. If \(X \) is affine, the statement is trivial. It suffices to check that the decomposition \(6 \) persists under the gluing of coherent sheaves, but this is clear since it is compatible with localization - i.e. if \(M \) is an \(A \)-module, \(M = M_{\text{tor}} \oplus M_{\text{tf}} \) its decomposition into a direct sum of torsion and torsion-free components, and \(S \) a multiplicatively closed subset of \(A \), then \((S^{-1}M)_{\text{tor}} = S^{-1}M_{\text{tor}} \) and \((S^{-1}M)_{\text{tf}} = S^{-1}M_{\text{tf}} \). \(\square \)

Lemma 2. On \(\mathbb{P}^1 \) every torsion-free coherent sheaf is locally free.

Proof. The statement will follow if we can show that every torsion-free coherent sheaf on \(\mathbb{A}^1_{\mathbb{F}_1} \) is free. Coherent sheaves on \(\mathbb{A}^1 \) are of the form \(\mathcal{M} \) for some finitely generated \(\langle t \rangle \)-module \(M \). Let
\[
\emptyset \to K \to \oplus_{i=1}^n \langle t_i \rangle \to M \to \emptyset
\]
be a resolution of M. By property (4) of section 2.1, we have

$$K = \phi_{i=1}^n (K \cap \langle t_i \rangle),$$

and so

$$M = \phi_{i=1}^n (\langle t_i \rangle) / (K \cap \langle t_i \rangle).$$

The only $\langle t \rangle$-submodules of $\langle t \rangle$ are of the form C_n, and $\langle t \rangle / C_n \cong T_n$. Since M is torsion-free, we must have

$$K \cap \langle t_i \rangle = 0 \text{ or } K \cap \langle t_i \rangle = \langle t_i \rangle,$$

which proves that M is free. \hfill \Box

Lemma 3. Every torsion sheaf on \mathbb{P}^1 is a direct sum of sheaves $\mathcal{T}_{0,n}$ and $\mathcal{T}_{\infty,n}$ for $m, n \geq 0$.

Proof. The proof of the preceding lemma shows that every coherent torsion sheaf on $\mathbb{A}^1 = \text{Spec}(\langle t \rangle)$ is of the form $\phi_{i=1}^k \mathcal{T}_{0,n_i}$. Since $\mathcal{T}_{0,n} |_{U_0 \cap U_\infty} = 0$, the gluing data for torsion sheaves on U_0 and U_∞ is trivial, and so the statement follows. \hfill \Box

Lemma 4. Every locally free sheaf on \mathbb{P}^1 is of the form $\mathcal{O}(n_1) \oplus \mathcal{O}(n_2) \oplus \cdots \oplus \mathcal{O}(n_k)$ for integers $n_1, \ldots, n_k \in \mathbb{Z}$.

Proof. A locally free sheaf \mathcal{F} on \mathbb{P}^1 of rank k is determined by its gluing data on $U_0 \cap U_\infty$, which is a $\langle t, t^{-1} \rangle$-linear automorphism $\phi_{0,\infty}$ of $\phi_{i=1}^k \mathcal{T}_{0,n_i}$. Every such is of the form $\phi_{0,\infty}(t_i^m) = t_i^{m_i-n_i}$, where $\sigma \in S_k$ is a permutation, and $n_i \in \mathbb{Z}$. We thus have $\mathcal{F} \cong \phi_{i=1}^k \mathcal{O}(n_i)$. \hfill \Box

Combining the results of Lemmas 4 and 3, we obtain:

Corollary 1. The only indecomposable sheaves on \mathbb{P}^1 are $\mathcal{O}(k)$, $k \in \mathbb{Z}$, and $\mathcal{T}_{0,n}, \mathcal{T}_{\infty,m}$, $m, n \in \mathbb{N}$.

Lemma 5.

(7) \hspace{1cm} Hom($\mathcal{T}_{x,n}, \mathcal{O}(m)$) = \emptyset

(8) \hspace{1cm} Hom($\mathcal{T}_{x,n}, \mathcal{T}_{x',m}$) = \emptyset if $x \neq x'$

(9) \hspace{1cm} $|\text{Hom}(\mathcal{O}(n), \mathcal{O}(m))| = \begin{cases} 0 \text{ if } n > m \\ m - n + 1 \text{ if } n \leq m \end{cases}$

Proof. (7) is trivial. (8) follows from the observation that $\mathcal{T}_{x,n}$ and $\mathcal{T}_{x',m}$ have disjoint supports.

For (9), let $\rho \in \text{Hom}(\mathcal{O}(n), \mathcal{O}(m))$, and let ρ_0 (resp. ρ_∞) denote the restriction of ρ to U_0 (resp. U_∞). Trivializing $\mathcal{O}(n), \mathcal{O}(m)$ on $U_0 \cap U_\infty$, we may write $\rho_0(t^k) = t^{k+a_0}$, $\rho(t^l) = t^{l+a_\infty}$, where $a_0 \geq 0, a_\infty \leq 0$. The condition $\rho_0 |_{U_0 \cap U_\infty} = \rho_\infty |_{U_0 \cap U_\infty}$ becomes

$$\sigma_m \circ \rho_0 = \rho_\infty \circ \sigma_n,$$
which reduces to $a_0 - a_\infty = m - n$. It is clear that the number of solutions to this equation with $a_0 \geq 0, a_\infty \leq 0$ is $m - n + 1$ if $m \geq n$ and 0 otherwise. □

Remark 6. It follows from the proof of the last lemma that if

$$0 \to O(n) \to O(m) \to \mathcal{T} \to 0$$

is a short exact sequence, then $\mathcal{T} \cong \mathcal{T}_{0,k_0} \oplus \mathcal{T}_{\infty,k_\infty}$ with $k_0 + k_\infty = m - n$ (i.e. $|\mathcal{T}| = m - n$). There is precisely one such short exact sequence with fixed cokernel.

If

$$0 \to \mathcal{F} \xrightarrow{j_1} \mathcal{F}' \xrightarrow{j_2} \mathcal{F}'' \to 0$$

and

$$0 \to \mathcal{G} \xrightarrow{j_1} \mathcal{G}' \xrightarrow{j_2} \mathcal{G}'' \to 0$$

are two short exact sequences in $\text{Coh}(X)$, we say that the short exact sequence

$$0 \to \mathcal{F} \oplus \mathcal{G} \xrightarrow{j_1 \oplus j_2} \mathcal{F}' \oplus \mathcal{G}' \xrightarrow{j_1 \oplus j_2} \mathcal{F}'' \oplus \mathcal{G}'' \to 0$$

is their direct sum.

Theorem 2. Every short exact sequence in $\text{Coh}(\mathbb{P}^1)$ is a direct sum of short exact sequences of the form

1. $0 \to \mathcal{T}_{x,m} \to \mathcal{T}_{x,n} \to \mathcal{T}_{x,n-m} \to 0$ as in Remark 5
2. $0 \to O(n) \to O(m) \to \mathcal{T} \to 0$ as in Remark 6

Proof. Let

$$0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$$

be a short exact sequence in $\text{Coh}(\mathbb{P}^1)$. \mathcal{F} can be uniquely written as a sum of indecomposable factors $O(k), \mathcal{T}_{0,m}, \mathcal{T}_{\infty,m}$ and we proceed by induction on the number r of these. If $r = 1$, then $\mathcal{F} = O(k)$ or $\mathcal{F} = \mathcal{T}_{x,m}$ and the statement is clearly true. Suppose now the theorem holds for $r \leq p, p \geq 1$, and \mathcal{F} has $p + 1$ indecomposable factors. Write $\mathcal{F} = I \oplus \mathcal{H}$ with I indecomposable. By Remark 4, I maps into an indecomposable factor \mathcal{J} of \mathcal{F}', and is moreover the only factor of \mathcal{F} to map into \mathcal{J}. Writing $\mathcal{F}' = \mathcal{J} \oplus \mathcal{K}$, it follows that 10 is a direct sum of

$$0 \to I \to \mathcal{J} \to \mathcal{J}/I \to 0$$

and

$$0 \to \mathcal{H} \to \mathcal{K} \to \mathcal{K}/\mathcal{H} \to 0$$

and the result follows from the inductive hypothesis. □

Corollary 2. Let \mathcal{F}, \mathcal{G} be coherent sheaves on \mathbb{P}^1. Then
(1) $|\text{Hom}(\mathcal{F}, \mathcal{G})| < \infty$
(2) The number of extensions of \mathcal{F} by \mathcal{G} is finite.

Denote by $\text{Iso}(\text{Coh}(\mathbb{P}^1))$ the set of isomorphism classes of coherent sheaves on \mathbb{P}^1. Define the Grothendieck group $K_0(\mathbb{P}^1)$ of $\text{Coh}(\mathbb{P}^1)$ by

$$K_0(\mathbb{P}^1) := \mathbb{Z}[\text{Iso}(\text{Coh}(\mathbb{P}^1))]/\sim$$

where \sim is the subgroup generated by $[\mathcal{F}] + [\mathcal{F}'] - [\mathcal{F}'']$ for short exact sequences. Define a homomorphism of abelian groups

$$\Psi : \mathbb{Z}[\text{Iso}(\text{Coh}(\mathbb{P}^1))] \to \mathbb{Z} \oplus \mathbb{Z}$$
on generators by

$$(11) \quad \Psi([O(k)]) = (1, k)
(12) \quad \Psi([\mathcal{F}_{x,n}]) = (0, n)$$

Since Ψ is additive on every short exact sequence in Theorem 2, it follows that Ψ descends to $K_0(\mathbb{P}^1)$, and it’s easy to see that it is an isomorphism. We have thus shown:

Theorem 3. $K_0(\mathbb{P}^1) \cong \mathbb{Z} \oplus \mathbb{Z}$

We call the first factor rank and the second degree in analogy with the case of \mathbb{P}^1 over a field.

4. **Hall algebras**

In this section, we introduce the Hall algebra $\mathbb{H}(\mathbb{P}^1)$ of the category $\text{Coh}(\mathbb{P}^1)$. For more on Hall algebras see [14]. As a vector space:

$$(13) \quad \mathbb{H}(\mathbb{P}^1) := \{ f : \text{Iso}(\text{Coh}(\mathbb{P}^1)) \to \mathbb{C} \mid \#\text{supp}(f) < \infty \}.$$ We equip $\mathbb{H}(\mathbb{P}^1)$ with the convolution product

$$(14) \quad f * g(\mathcal{F}) = \sum_{\mathcal{F}' \subset \mathcal{F}} f(\mathcal{F}/\mathcal{F}') g(\mathcal{F}'),$$

where the sum is over all coherent sub-sheaves \mathcal{F}' of the isomorphism class \mathcal{F} (in what follows, it is conceptually helpful to fix a representative of each isomorphism class). Note that Corollary 2 and the finiteness of the support of f, g ensures that the sum in 14 is finite.

Lemma 6. The product $*$ is associative.

Proof. Suppose $f, g, h \in \mathbb{H}(\mathbb{P}^1)$. Then

$$\begin{align*}
(f * (g * h))(\mathcal{F}) &= \sum_{\mathcal{F}' \subset \mathcal{F}} f(\mathcal{F}/\mathcal{F}')(g * h)(\mathcal{F}') \\
&= \sum_{\mathcal{F}' \subset \mathcal{F}} f(\mathcal{F}/\mathcal{F}')(\sum_{\mathcal{F}'' \subset \mathcal{F}'} g(\mathcal{F}' / \mathcal{F}'') h(\mathcal{F}'')) \\
&= \sum_{\mathcal{F}'' \subset \mathcal{F} \cap \mathcal{F}'} f(\mathcal{F} / \mathcal{F}') g(\mathcal{F}' / \mathcal{F}'') h(\mathcal{F}'')
\end{align*}$$
whereas
\[
((f \star g) \star h)(\mathcal{F}) = \sum_{\mathcal{F}' \subset \mathcal{F}} (f \star g)(\mathcal{F} / \mathcal{F}'') h(\mathcal{F}'')
\]
\[
= \sum_{\mathcal{F}' \subset \mathcal{F}} \left(\sum_{\mathcal{K} \subset \mathcal{F} / \mathcal{F}''} f((\mathcal{F} / \mathcal{F}'') / \mathcal{K}) \cdot g(\mathcal{K}) \right) h(\mathcal{F}'')
\]
\[
= \sum_{\mathcal{F}' \subset \mathcal{F}} f(\mathcal{F} / \mathcal{F}') \cdot g(\mathcal{F}' / \mathcal{F}'') h(\mathcal{F}''),
\]
where in the last step we have used the fact that there is an inclusion-preserving bijection between sub-sheaves \(\mathcal{K} \subset \mathcal{F} / \mathcal{F}'' \) and sub-sheaves \(\mathcal{F}' \subset \mathcal{F} \) containing \(\mathcal{F}'' \), under which \(\mathcal{F}' / \mathcal{F}'' \cong \mathcal{K} \). This bijection is compatible with taking quotients in the sense that \((\mathcal{F} / \mathcal{F}'') / \mathcal{K} \cong \mathcal{F} / \mathcal{F}' \).

We may also equip \(\mathcal{H}(\mathbb{P}^1) \) with a coproduct
\[
\Delta : \mathcal{H}(\mathbb{P}^1) \to \mathcal{H}(\mathbb{P}^1) \otimes \mathcal{H}(\mathbb{P}^1)
\]
given by
\[
\Delta(f)(\mathcal{F}, \mathcal{F}') := f(\mathcal{F} \oplus \mathcal{F}')
\]
\(\Delta \) is clearly co-commutative.

Lemma 7. The following holds in \(\mathcal{H}(\mathbb{P}^1) \):

1. \(\Delta \) is co-associative: \((\Delta \otimes \text{Id}) \circ \Delta = (\text{Id} \otimes \Delta) \circ \Delta \)
2. \(\Delta \) is compatible with \(\star \): \(\Delta(f \star g) = \Delta(f) \star \Delta(g) \).

Proof. The proof of both parts is the same as the proof of the corresponding statements for the Hall algebra of the category of quiver representations over \(\mathbb{F}_1 \), given in [16]. □

We may equip \(\mathcal{H}(\mathbb{P}^1) \) with a grading by \(K^+_0(\mathbb{P}^1) \) - the effective cone inside \(K_0(\mathbb{P}^1) \), (which by Theorem 3 is isomorphic to \(\mathbb{N} \times \mathbb{N} \)) as follows. \(\mathcal{H}(\mathbb{P}^1) \) is spanned by \(\delta \)-functions \(\delta_\mathcal{F} \) supported on individual isomorphism classes, and we define
\[
\deg(\delta_\mathcal{F}) = \overline{\mathcal{F}} \in K_0(\mathbb{P}^1)
\]
where \(\overline{\mathcal{F}} \) denotes the class of \(\mathcal{F} \) in the Grothendieck group. With this grading, \(\mathcal{H}(\mathbb{P}^1) \) becomes a graded, connected, co-commutative Hopf algebra. By the Milnor-Moore Theorem, \(\mathcal{H}(\mathbb{P}^1) \) is isomorphic to \(\mathfrak{U}(\mathfrak{q}) \) - the universal enveloping algebra of \(\mathfrak{q} \), where the latter is the Lie algebra of its primitive elements. The definition of the co-product 16 implies that \(\mathfrak{q} \) is spanned by \(\delta_\mathcal{F} \) for isomorphism classes \(\mathcal{F} \) of indecomposable coherent sheaves, which by corollary 1 are \(\mathcal{O}(k), \mathcal{T}_{0,n}, \mathcal{T}_{\infty,m}, \) for \(k \in \mathbb{Z}, n, m \in \mathbb{N} \).

5. The structure of \(\mathcal{H}(\mathbb{P}^1) \)

In this section we compute the structure of the Hopf algebra \(\mathcal{H}(\mathbb{P}^1) \). We will use the shorthand notation \([\mathcal{F}]\) for \(\delta_\mathcal{F} \) - the delta-function supported on the isomorphism class of \(\mathcal{F} \). The following theorem follows from Lemma 5 and Theorem 2:
Theorem 4. The following identities hold in $\mathcal{H}(\mathbb{P}^1)$:

\begin{align*}
[O(n)] \cdot [O(m)] &= [O(n) \oplus O(m)] \\
[T_{x,n}] \cdot [O(m)] &= [O(n + m)] + [T_{x,n} \oplus O(m)] \\
[O(m)] \cdot [T_{x,n}] &= [T_{x,n} \oplus O(m)] \\
[T_{x,n}] \cdot [T_{x,m}] &= [T_{x,n} \oplus T_{x,m}] \text{ for } x = 0, \infty
\end{align*}

From the previous theorem we deduce the following commutation relations:

\begin{align*}
[[O(n)], [O(m)]] &= 0 \\
[[T_{x,n}], [O(m)]] &= [O(m + n)] \\
[[T_{x,n}], [T_{x',m}]] &= 0
\end{align*}

Let $L_{\mathfrak{gl}_2} := \mathfrak{gl}_2 \otimes \mathbb{C}[t, t^{-1}]$, and $L_{\mathfrak{gl}_2}^+ = (\mathfrak{h} \otimes t\mathbb{C}[t]) \oplus (e \otimes \mathbb{C}[t, t^{-1}])$ where

$\mathfrak{h} := \text{span} \left\{ h_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, h_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ and $e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Define

$\rho : L_{\mathfrak{gl}_2}^+ \to \mathcal{H}(\mathbb{P}^1)$

by setting $\rho(e \otimes t^k) = [O(k)], \rho(h_1 \otimes t^n) = [T_{0,n}], \text{ and } \rho(h_2 \otimes t^m) = -[T_{0,m}]$. The following proposition now follows from the commutation relations 22, 23, 24:

Theorem 5. ρ is an isomorphism of Lie algebras. Consequently, $\mathcal{H}(\mathbb{P}^1) \simeq U(L_{\mathfrak{gl}_2}^+)$.

The sub-algebra $\widehat{\mathcal{H}}(\mathbb{P}^1)$ of $\mathcal{H}(\mathbb{P}^1)$ generated by $[O(k)], [T_{0,n}] + [T_{\infty,n}]$ is analogous to the sub-algebra of the Ringel-Hall algebra studied by Kapranov in [10]. It is easily seen to be isomorphic to $U(L_{\mathfrak{sl}_2}^+)$, with $L_{\mathfrak{sl}_2}^+ = (\mathfrak{h} \otimes t\mathbb{C}[t]) \oplus (e \otimes \mathbb{C}[t, t^{-1}])$, where

$\mathfrak{h} = \mathbb{C} \cdot \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

12
ON THE HALL ALGEBRA OF COHERENT SHEAVES ON \mathbb{P}^1 OVER \mathbb{F}_1

MATT SZCZESNY

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOSTON UNIVERSITY, BOSTON MA, USA
E-mail address: szczesny@math.bu.edu