PRE-LIE ALGEBRAS AND INCIDENCE CATEGORIES OF COLORED ROOTED TREES

MATT SZCZESNY

ABSTRACT. The incidence category $\mathcal{C}_{\mathcal{F}}$ of a family \mathcal{F} of colored posets closed under disjoint unions and the operation of taking convex sub-posets was introduced by the author in [12], where the Ringel-Hall algebra $H_{\mathcal{F}}$ of $\mathcal{C}_{\mathcal{F}}$ was also defined. We show that if the Hasse diagrams underlying \mathcal{F} are rooted trees, then the subspace $\mathfrak{n}_{\mathcal{F}}$ of primitive elements of $H_{\mathcal{F}}$ carries a pre-Lie structure, defined over \mathbb{Z} , and with positive structure constants. We give several examples of $\mathfrak{n}_{\mathcal{F}}$, including the nilpotent subalgebras of \mathfrak{sl}_n , $L\mathfrak{gl}_n$, and several others.

1. INTRODUCTION

A left pre-Lie algebra is a k-vector space A endowed with a binary bilinear operation \triangleright satisfying the identity

$$(1.1) (a \triangleright b) \triangleright c - a \triangleright (b \triangleright c) = (b \triangleright a) \triangleright c - b \triangleright (a \triangleright c)$$

It follows easily from 1.1 that anti-symmetrizing \triangleright yields a Lie bracket

$$[a,b] = a \triangleright b - b \triangleright a$$

on A. However, not every Lie algebra arises from a pre-Lie algebra. Pre-Lie algebras first appeared in the works of E.B. Vinberg [13] and M. Gerstenhaber [3], and have since found applications in several areas. One prominent example is perturbative quantum field theory [4], where insertion of Feynman graphs into each other equips them with a pre-Lie structure which controls the combinatorics of the renormalization procedure.

In this paper, we show that pre-Lie algebras arise naturally from *incidence categories* introduced by that author in [12]. An incidence category is built from a collection \mathcal{F} of colored posets, which is closed under the operations of disjoint union and convex subposet - we will denote it by $\mathcal{C}_{\mathcal{F}}$. The objects of $\mathcal{C}_{\mathcal{F}}$ are the posets in \mathcal{F} , and for $P_1, P_2 \in \mathcal{F}$

$$\operatorname{Hom}(P_1, P_2) := \{ (I_1, I_2, f) | I_j \text{ is an order ideal in } P_j, f : P_1 \setminus I_1 \to I_2 \text{ an isomorphism } \}$$

Here, the poset I_1 should be viewed as the kernel of the morphism, and I_2 as the image. All morphisms in $\mathcal{C}_{\mathcal{F}}$ have kernels and cokernels, and so the notion of exact sequence makes sense. In [12], the Ringel-Hall algebra $H_{\mathcal{C}_{\mathcal{F}}}$ of $\mathcal{C}_{\mathcal{F}}$ was defined.

The author is supported by an NSA grant.

 $H_{\mathcal{C}_{\mathcal{F}}}$ is the \mathbb{Q} -vector space of finitely supported functions on isomorphism classes of $\mathcal{C}_{\mathcal{F}}$:

$$H_{\mathcal{C}_{\mathcal{F}}} := \{ f : \operatorname{Iso}(\mathcal{C}_{\mathcal{F}}) \to \mathbb{Q} | | supp(f) | < \infty \}$$

with product given by convolution:

(1.2)
$$f \star g(M) = \sum_{A \subset M} f(A)g(M/A).$$

 $H_{\mathcal{C}_{\mathcal{F}}}$ possesses a co-commutative co-product given by

(1.3)
$$\Delta(f)(M,N) = f(M \oplus N)$$

(where $M \oplus N$ denotes the disjoint union of M and N) as well as an antipode, making it a Hopf algebra. $H_{\mathcal{C}_{\mathcal{F}}}$ is graded, connected, and co-commutative, and so by the Milnor-Moore theorem isomorphic to $U(\mathfrak{n}_{\mathcal{F}})$, where $\mathfrak{n}_{\mathcal{F}}$ is the Lie algebra of its primitive elements. It follows from 1.3 that

$$\mathfrak{n}_{\mathcal{F}} = \operatorname{span}\{\delta_P | P \in \mathcal{F}, P \text{ connected }\}$$

We show that if \mathcal{F} consists of posets whose Hasse diagrams are rooted trees, then $\mathfrak{n}_{\mathcal{F}}$ carries a pre-Lie structure \triangleright , with

$$\delta_{P_1} \rhd \delta_{P_2} := \delta_{P_1} \star \delta_{P_2} - \delta_{P_1 \oplus P_2}.$$

A more concrete description of \triangleright is the following: $\delta_{P_1} \triangleright \delta_{P_2}$ is a sum of deltafunctions supported on connected posets $P \in \mathcal{F}$ whose Hasse diagram is obtained by grafting the root of P_1 onto a vertex of P_2 . It follows from the definition of \triangleright that the structure constants are non-negative integers.

The paper is organized as follows. Section 2 recalls the definition of pre-Lie algebra and introduces the universal example, namely the pre-Lie algebra of colored rooted trees. In section 3 we recall the construction of the incidence category $C_{\mathcal{F}}$ as well as its main properties. The Ringel-Hall algebra of $C_{\mathcal{F}}$ is introduced in section 4. In section 5 we define the pre-Lie structure \triangleright on $\mathfrak{n}_{\mathcal{F}}$ and verify that it satisfies the identity 1.1. Finally, section 6 is devoted to examples - among these are pre-Lie structures on nilpotent Lie subalgebras of \mathfrak{sl}_n and $L\mathfrak{gl}_n$.

Acknowledgements: The author is very grateful to Pavel Etingof for valuable discussions and suggestions.

2. Pre-Lie Algebras

In this section, we recall the definition and some examples of (left) pre-Lie algebras. Let k be a field.

Definition 1. A *left pre-Lie algebra* is a k-vector space A endowed with a binary bilinear operation \triangleright satisfying the left pre-Lie identity

$$(2.1) (a \triangleright b) \triangleright c - a \triangleright (b \triangleright c) = (b \triangleright a) \triangleright c - b \triangleright (a \triangleright c)$$

for $a, b, c \in A$.

One checks easily that antisymmetrizing the operation \triangleright

$$[a,b] = a \triangleright b - b \triangleright a$$

gives A the structure of a Lie algebra.

Example 1. Any associative k-algebra A is a pre-Lie algebra with the pre-Lie structure given by

$$a \triangleright b := ab,$$

where the right hand side refers to the associative multiplication in A.

Example 2. One of the most important examples of pre-Lie algebras is given by colored rooted trees. Recall that a *tree* is a graph with no cycles. We denote by E(t), V(t) the edge and vertex sets of t respectively. Let S be a finite set. By a *rooted tree colored by* S we mean a tree with a distinguished vertex $r(t) \in V(t)$ called the *root*, and an assignment of an element of S to each $v \in V(t)$. We adopt the convention that rooted trees are always drawn with the root on top. For example, if $S = \{a, b\}$, then the following are rooted trees colored by S:

• a • b • a • a • b • b • b • a

Let \mathbb{T}_S denote the set of rooted trees whose vertices are colored by S. Given $t \in \mathbb{T}_S$, and $e \in E(t)$, removing e disconnects t into two colored rooted trees: $R_e(t)$ containing r(t) and $P_e(t)$, whose root is the end of e. Let \mathcal{T}_S be the k-vector space spanned by \mathbb{T}_S . We have

$$\mathcal{T}_S = \oplus_{n=0}^{\infty} \mathcal{T}_S[n]$$

where $\mathcal{T}_S[n]$ is the subspace of \mathcal{T}_S spanned by trees with *n* vertices. For colored rooted trees $t_1, t_2 \in \mathbb{T}_S$, let

$$t_1 \rhd t_2 := \sum_{s \in \mathbb{T}_S} n(t_1, t_2, s) s$$

where

$$n(t_1, t_2, s) = \#\{e \in E(s) | P_e(s) = t_1, R_e(s) = t_2\}.$$

For example, we have

It is well-known (see for instance [2]) that \triangleright defines a pre-Lie structure on \mathcal{T}_S . The following theorem is proven in [2]

Theorem 1. \mathcal{T}_S is the free pre-Lie algebra on |S| generators.

Remark 1. In what follows, unless stated otherwise, $k = \mathbb{Q}$.

3. Incidence categories

3.1. Recollections on posets. We begin by recalling some basic notions and terminology pertaining to posets (partially ordered sets) following [10, 11].

(1) An *interval* is a poset having unique minimal and maximal elements. For x, y in a poset P, we denote by [x, y] the interval

$$[x, y] := \{ z \in P : x \le z \le y \}$$

If P is an interval, we will often denote by 0_P and 1_P the minimal and maximal elements.

- (2) An order ideal in a poset P is a subset $L \subset P$ such that whenever $y \in L$ and $x \leq y$ in P, then $x \in L$.
- (3) A sub-poset Q of P is *convex* if, whenever $x \leq y$ in Q and $z \in P$ satisfies $x \leq z \leq y$, then $z \in Q$. Equivalently, Q is convex if $Q = L \setminus I$ for order ideals $I \subset L$ in P.
- (4) Given two posets P_1, P_2 , their disjoint union is naturally a poset, which we denote by $P_1 + P_2$. In $P_1 + P_2$, $x \leq y$ if both lie in either P_1 or P_2 , and $x \leq y$ there.
- (5) A poset which is not the union of two non-empty posets is said to be *connected*.
- (6) The cartesian product $P_1 \times P_2$ is a poset where $(x, y) \leq (x', y')$ iff $x \leq x'$ and $y \leq y'$.
- (7) A distributive lattice is a poset P equipped with two operations \land , \lor that satisfy the following properties:
 - (a) \land , \lor are commutative and associative
 - (b) \land, \lor are idempotent i.e. $x \land x = x, x \lor x = x$
 - (c) $x \land (x \lor y) = x = x \lor (x \land y)$
 - (d) $x \land y = x \iff x \lor y = y \iff x \le y$
 - (e) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$
 - (f) $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- (8) For a poset P, denote by J_P the poset of order ideals of P, ordered by inclusion. J_P forms a distributive lattice with $I_1 \vee I_2 := I_1 \cup I_2$ and $I_1 \wedge I_2 := I_1 \cap I_2$ for $I_1, I_2 \in J_P$. If P_1, P_2 are posets, we have $J_{P_1+P_2} = J_{P_1} \times J_{P_2}$, and if $I, L \in J_P$, and $I \subset L$, then [I, L] is naturally isomorphic to the lattice of order ideals $J_{L \setminus I}$.

Remark 2. Suppose that the Hasse diagram of a poset P is a rooted tree - that is, P has a unique maximal element r(P), and the Hasse diagram contains no cycles. It is then easy to see that order ideals $I \subset P$ correspond to *admissible cuts* of P, where the latter is a collection of edges $C \subset E(P)$, having the property that at most one edge of C is encountered along any path from root to leaf. For instance, the dotted edges of the poset T below yield an admissible cut:

Each admissible cut $C \subset E(P)$ divides the tree into a rooted connected tree $R_C(P)$ containing r(P), and a rooted forest (a disjoint union of rooted trees) $P_C(P)$. The notation is clearly an extension of that used in example 2. In the last example, we have

$$R_C(T) = \underbrace{b}_{a} \qquad P_C(T) = \underbrace{b}_{a} \qquad b$$

3.2. From posets to categories. Let \mathcal{F} be a family of colored posets which is closed under the formation of disjoint unions and the operation of taking convex subposets, and let $\mathcal{P}(\mathcal{F}) = \{J_P : P \in \mathcal{F}\}$ be the corresponding family of distributive lattices of order ideals. For each pair $P_1, P_2 \in \mathcal{F}$, let $\mathcal{M}(P_1, P_2)$ denote the set of colored poset isomorphisms $P_1 \to P_2$. It follows that $\mathcal{M}(P, P)$ forms a group, which we denote $\operatorname{Aut}_{\mathcal{M}}(P)$.

3.2.1. The category $C_{\mathcal{F}}$. We proceed to define a category $C_{\mathcal{F}}$, called the *incidence* category of \mathcal{F} as follows. Let

$$Ob(\mathcal{C}_{\mathcal{F}}) := \mathcal{F} = \{P \in \mathcal{F}\}\$$

and

$$\operatorname{Hom}(P_1, P_2) := \{(I_1, I_2, f) : I_i \in J_{P_i}, f \in \operatorname{M}(P_1 \setminus I_1, I_2)\} \ i = 1, 2$$

We need to define the composition of morphisms

 $\operatorname{Hom}(P_1, P_2) \times \operatorname{Hom}(P_2, P_3) \to \operatorname{Hom}(P_1, P_3)$

Suppose that $(I_1, I_2, f) \in \text{Hom}(P_1, P_2)$ and $(I'_2, I'_3, g) \in \text{Hom}(P_2, P_3)$. Their composition is the morphism (K_1, K_3, h) defined as follows.

- We have $I_2 \wedge I'_2 \subset I_2$, and since $f : P_1 \setminus I_1 \to I_2$ is an isomorphism, $f^{-1}(I_2 \wedge I'_2)$ is an order ideal of $P_1 \setminus I_1$. Since in J_{P_1} , $[I_1, P] \simeq J_{P_1 \setminus I_1}$, we have that $f^{-1}(I_2 \wedge I'_2)$ corresponds to an order ideal $K_1 \in J_{P_1}$ such that $I_1 \subset K_1$.
- We have $I'_2 \subset I_2 \vee I'_2$, and since $[I'_2, P_2] \simeq J_{P_2 \setminus I'_2}$, $I_2 \vee I'_2$ corresponds to an order ideal $L_2 \in J_{P_2 \setminus I'_2}$. Since $g : P_2 \setminus I'_2 \to I'_3$ is an isomorphism, $g(L_2) \subset J_{I'_3}$, and since $J_{I'_3} \subset J_{P_3}$, $g(L_2)$ corresponds to an order ideal $K_3 \in J_{P_3}$ contained in I'_3 .
- The isomorphism $f: P_1 \setminus I_1 \to I_2$ restricts to an isomorphism $\bar{f}: P_1 \setminus K_1 \to I_2 \setminus I_2 \wedge I_2' = I_2 \setminus I_2'$, and the isomorphism $g: P_2 \setminus I_2'$ restricts to an isomorphism $\bar{g}: I_2 \vee I_2' \setminus I_2' = I_2 \setminus I_2' \to K_3$. Thus, $g \circ f: P_1 \setminus K_1 \to K_3$ is an isomorphism and $g \circ f \in M(P_1 \setminus K_1, K_3)$ by the property (4) above.

As shown in [12], the composition of morphisms is associative.

Remark 3.

- We refer to I_2 as the *image* of the morphism $(I_1, I_2, f) : P_1 \to P_2$.
- We denote by $\operatorname{Iso}(\mathcal{C}_{\mathcal{F}})$ the collection of isomorphism classes of objects in $\mathcal{C}_{\mathcal{F}}$, and by [P] the isomorphism class of $P \in \mathcal{C}_{\mathcal{F}}$.

3.3. Properties of the categories $C_{\mathcal{F}}$. We now enumerate some of the properties of the categories $C_{\mathcal{F}}$.

- (1) The empty poset \emptyset is an initial, terminal, and therefore null object. We will sometimes denote it by \emptyset .
- (2) We can equip $\mathcal{C}_{\mathcal{F}}$ with a symmetric monoidal structure by defining

$$P_1 \oplus P_2 := P_1 + P_2$$

- (3) The indecomposable objects of $C_{\mathcal{F}}$ are the *P* with *P* a connected poset in \mathcal{F} .
- (4) The simple objects of $\mathcal{C}_{\mathcal{F}}$ are the *P* where *P* is a one-element poset.
- (5) Every morphism

(3.1)
$$(I_1, I_2, f) : P_1 \to P_2$$

has a kernel
 $(\emptyset, I_1, id) : I_1 \to P_1$

(6) Similarly, every morphism 3.1 possesses a cokernel

$$(I_2, P_2 \setminus I_2, id) : P_2 \to P_2 \setminus I_2$$

We will use the notation P_2/P_1 for $coker((I_1, I_2, f))$.

Note: Properties 5 and 6 imply that the notion of exact sequence makes sense in $C_{\mathcal{F}}$.

(7) All monomorphisms are of the form

$$(\emptyset, I, f) : Q \to P$$

where $I \in J_P$, and $f : Q \to I \in M(Q, I)$. Monomorphisms $Q \to P$ with a fixed image I form a torsor over $Aut_M(I)$. All epimorphisms are of the form

$$(I, \emptyset, g) : P \to Q$$

 $\mathbf{6}$

where $I \in J_P$ and $g: P \setminus I \to Q \in M(P \setminus I, Q)$. Epimorphisms with fixed kernel I form a torsor over $Aut_M(P \setminus I)$

(8) Sequences of the form

$$(3.2) \qquad \qquad \emptyset \stackrel{(\emptyset,\emptyset,id)}{\to} I \stackrel{(\emptyset,I,id)}{\longrightarrow} P \stackrel{(I,\emptyset,id)}{\longrightarrow} P \backslash I \stackrel{(P \backslash I,\emptyset,id)}{\to} \emptyset$$

with $I \in J_P$ are short exact, and all other short exact sequences with P in the middle arise by composing with isomorphisms $I \to I'$ and $P \setminus I \to Q$ on the left and right.

- (9) Given an object P and a subobject $I, I \in J_P$, the isomorphism $J_{P\setminus I} \simeq [I, P]$ translates into the statement that there is a bijection between subobjects of P/I and order ideals $J \in J_P$ such that $I \subset J \subset P$. The bijection is compatible with quotients, in the sense that $(P/I)/(J/I) \simeq J/I$.
- (10) Since the posets in \mathcal{F} are finite, $\operatorname{Hom}(P_1, P_2)$ is a finite set.
- (11) We may define Yoneda $\operatorname{Ext}^{n}(P_{1}, P_{2})$ as the equivalence class of *n*-step exact sequences with P_{1}, P_{2} on the right and left respectively. $\operatorname{Ext}^{n}(P_{1}, P_{2})$ is a finite set. Concatenation of exact sequences makes

$$\mathbb{E}xt^* := \bigcup_{A,B \in I(\mathcal{C}_{\mathcal{F}}),n} \operatorname{Ext}^n(A,B)$$

into a monoid.

(12) We may define the Grothendieck group of $\mathcal{C}_{\mathcal{F}}, K_0(\mathcal{C}_{\mathcal{F}})$, as

$$K(\mathcal{C}_{\mathcal{F}}) = \bigoplus_{A \in \mathcal{C}_{\mathcal{F}}} \mathbb{Z}[A] / \sim$$

where \sim is generated by A + B - C for short exact sequences

 $\emptyset \to A \to C \to B \to \emptyset$

We denote by k(A) the class of an object in $K_0(\mathcal{C}_{\mathcal{F}})$.

4. Ringel-Hall Algebras

For an introduction to Ringel-Hall algebras in the context of abelian categories, see [8]. We define the Ringel-Hall algebra of $C_{\mathcal{F}}$, denoted $H_{\mathcal{C}_{\mathcal{F}}}$, to be the \mathbb{Q} -vector space of finitely supported functions on isomorphism classes of $C_{\mathcal{F}}$. I.e.

$$\mathbf{H}_{\mathcal{C}_{\mathcal{F}}} := \{ f : \mathrm{Iso}(\mathcal{C}_{\mathcal{F}}) \to \mathbb{Q} | | supp(f) | < \infty \}$$

As a \mathbb{Q} -vector space it is spanned by the delta functions $\delta_A, A \in \operatorname{Iso}(\mathcal{C}_{\mathcal{F}})$. The algebra structure on $\operatorname{H}_{\mathcal{C}_{\mathcal{F}}}$ is given by the convolution product:

(4.1)
$$f \star g(M) = \sum_{A \subset M} f(A)g(M/A)$$

for $M \in \operatorname{Iso}(\mathcal{C}_{\mathcal{F}})$. In what follows, it will be conceptually useful to choose a representative in each isomorphism class. For $M, N, Q \in \operatorname{Iso}(\mathcal{C}_{\mathcal{F}})$, let $F_{M,N}^Q$ be the number of exact sequences

$$\emptyset \to M \xrightarrow{i} Q \xrightarrow{\pi} N \to \emptyset$$

where (i, π) and (i', π') are considered equivalent iff i = i' and $\pi = \pi'$ (this makes sense, since we have fixed a representative in each isomorphism class). It follows from the definition 4.1 that

$$\delta_M \star \delta_N = \sum_{Q \in \operatorname{Iso}(\mathcal{C}_{\mathcal{F}})} \frac{F_{M,N}^Q}{|\operatorname{Aut}(M)||\operatorname{Aut}(N)|} \delta_Q,$$

from which it is apparent that $H_{\mathcal{C}_{\mathcal{F}}}$ encodes the structure of extensions in $\mathcal{C}_{\mathcal{F}}$.

 $\mathrm{H}_{\mathcal{C}_{\mathcal{F}}}$ possesses a co-commutative co-product given by

(4.2)
$$\Delta(f)(M,N) = f(M \oplus N)$$

as well as a natural $K_0^+(\mathcal{C}_{\mathcal{F}})$ -grading in which δ_A has degree $k(A) \in K_0^+(\mathcal{C}_{\mathcal{F}})$. If \mathcal{F} is colored by the set S, it is easy to see that $K_0^+(\mathcal{C}_{\mathcal{F}}) \simeq \mathbb{N}^{|S|}$.

The subobjects of $P \in \mathcal{C}_{\mathcal{F}}$ are exactly $I \in J_P$, and the product 4.1 becomes

$$f \star g([P]) = \sum_{I \in J_P} f([I])g([P \setminus I]).$$

It is shown in [8] that the product is associative, the co-product co-associative and co-commutative, and that the two are compatible, making $H_{\mathcal{C}_{\mathcal{F}}}$ into a cocommutative bialgebra. Recall that a bialgebra A over a field k is connected if it possesses a $\mathbb{Z}_{\geq 0}$ -grading such that $A_0 = k$. In addition to the $K_0^+(\mathcal{C}_{\mathcal{F}})$ -grading, $H_{\mathcal{C}_{\mathcal{F}}}$ possesses a grading by the order of the poset - i.e. we may assign $\deg(\delta_P) =$ |P|. This gives it the structure of graded connected bialgebra, and hence Hopf algebra. The Milnor-Moore theorem implies that $H_{\mathcal{C}_{\mathcal{F}}}$ is the enveloping algebra of the Lie algebra of its primitive elements, which we denote by $\mathfrak{n}_{\mathcal{F}}$ - i.e. $H_{\mathcal{C}_{\mathcal{F}}} \simeq$ $U(\mathfrak{n}_{\mathcal{F}})$. It follows from 4.2 that $f \in \mathfrak{n}_{\mathcal{F}}$ is primitive if it is supported on the isomorphism classes of connected posets. Thus, we have that

$$\mathfrak{n}_{\mathcal{F}} = \operatorname{span}\{\delta_P | P \in \mathcal{F}, P \text{ connected }\}$$

We will use the notation $\mathcal{F}^{conn} \subset \mathcal{F}$ to denote the sub-collection of \mathcal{F} consisting of connected posets. We have thus established the following:

Theorem 2. The Ringel-Hall algebra of the category $C_{\mathcal{F}}$ is a co-commutative graded connected Hopf algebra, isomorphic to $U(\mathfrak{n}_{\mathcal{F}})$, where $\mathfrak{n}_{\mathcal{F}}$ denotes the graded Lie algebra of its primitive elements. $\mathfrak{n}_{\mathcal{F}} = \operatorname{span}\{\delta_P | P \in \mathcal{F}^{conn}\}$.

Remark 4. $H_{\mathcal{C}_{\mathcal{F}}}$ is a special case of an *incidence Hopf algebra* introduced by Schmitt in [10, 9].

5. A Pre-Lie structure on $\mathfrak{n}_{\mathcal{F}}$

We assume now that the collection \mathcal{F} consists of colored posets whose underlying Hasse diagrams are rooted trees. Recall that \mathcal{F} was assumed to be:

- closed under the operation of taking convex sub-posets
- closed under disjoint unions

It is immediate that to produce an \mathcal{F} satisfying these two requirements, one may start with an arbitrary collection \mathcal{F}' of colored posets, and close it with respect to each operation - i.e. adjoin to \mathcal{F}' all convex sub-posets and all disjoint unions of these. If \mathcal{F} arises in this way as the closure of \mathcal{F}' , we will write $\mathcal{F} = \overline{\mathcal{F}'}$.

Example 3. Suppose that \mathcal{F}' consists of a single poset, whose Hasse diagram is an *n*-vertex ladder colored by the set $S = \{1, \dots, n\}$.

Let us adopt the notation $L(a_1, a_2, ..., a_k)$ for a k-vertex ladder Hasse diagram labeled by $a_1, a_2, ..., a_k$ root-to-leaf (\mathcal{F}' thus consisting of L(1, 2, ..., n)). To close \mathcal{F}' with respect to convex subsets, we must adjoin to it L(r, r+1, r+2, ..., r+m), where $1 \leq r \leq r+m \leq n$.

Finally, closing with respect to disjoint unions, we can identify elements of $\mathcal{F} = \overline{\mathcal{F}'}$ with Young diagrams having at most n rows, each of whose columns is labeled by $k, k + 1, \dots, k + m$. For instance

is identified with the poset

$$L(2,3,4,5) + L(1,2,3) + L(3) + L(4).$$

We proceed to equip $\mathbf{n}_{\mathcal{F}}$ with a pre-Lie structure. For $a, b \in \mathcal{F}^{conn}$, we define

(5.1)
$$\delta_a \rhd \delta_b = \delta_a \star \delta_b - \delta_{a \oplus b}$$

and extend the product \triangleright to all of $\mathfrak{n}_{\mathcal{F}}$ by linearity. The subtraction of the term $\delta_{a\oplus b}$ in 5.1 has the effect of removing the delta-function supported on the one split extension of b by a, and so the right-hand side of 5.1 does indeed lie in $\mathfrak{n}_{\mathcal{F}}$. It follows easily that we may re-write the definition 5.1 as:

(5.2)
$$\delta_a \rhd \delta_b = \sum_{t \in \mathcal{F}} n(a, b, t) \delta_t$$

where n(a, b, t) is defined as in example 2.

Theorem 3. Let \mathcal{F} be a collection of colored posets closed with respect to taking convex sub-posets and disjoint unions. If the Hasse diagrams of posets in \mathcal{F} are rooted trees, then \triangleright equips $\mathfrak{n}_{\mathcal{F}}$ with the structure of a pre-Lie algebra.

Proof. A two-sided pre-Lie ideal in a pre-Lie algebra A is a subspace $I \subset A$ such that if $x \in I$, then $a \triangleright x \in I$ and $x \triangleright a \in I \forall a \in A$. One checks easily that the quotient A/I inherits a pre-Lie structure. Let \mathcal{F} be a collection of colored rooted forests colored by S, closed under the operations of disjoint union and convex sub-poset, and $\mathcal{F}^{conn} \subset \mathcal{F}$ the connected ones (i.e. the rooted trees). \mathcal{F}^{conn} is closed under taking convex sub-posets. I claim that $J = \mathcal{T}_S \setminus \mathcal{F}^{conn}$ is a two-sided pre-Lie ideal in \mathcal{T}_S . Let $u \in \mathcal{T}_S$ and $s \in J$. We have

$$\delta_u \rhd \delta_s = \sum_{t \in \mathcal{T}_S} n(u, s, t) \delta_t$$

Suppose that $n(u, s, t) \neq 0$ and $t \in \mathcal{T}_S \setminus J = \mathcal{F}^{conn}$. t has an edge e such that $P_e(t) = u$ and $R_e(t) = s$, and since both are convex sub-posets of the poset $t \in \mathcal{F}^{conn}$, $u, s \in \mathcal{F}^{conn}$, contradicting the fact that $s \in J$. It follows that $\delta_u \triangleright \delta_s \in J$. The same argument shows that $\delta_s \triangleright \delta_u \in J$. The quotient \mathcal{T}_S/J is canonically identified with $\mathfrak{n}_{\mathcal{F}}$ with the bracket 5.2.

We give a second proof, very close to the one for $\mathcal{F} = \mathbb{T}_S$ given in [2].

Proof. We need to verify the identity 2.1. It follows from 5.2 that for $a, b, c \in \mathcal{F}^{conn}$,

$$\begin{split} (\delta_a \rhd \delta_b) \rhd \delta_c &= (\sum_{t \in \mathcal{F}^{conn}} n(a, b, t)t) \rhd c \\ &= \sum_{s, t \in \mathcal{F}^{conn}} n(a, b, t) n(t, c, s)s \\ &\text{and} \end{split}$$

$$\delta_a \rhd (\delta_b \rhd \delta_c) = \sum_{s,t \in \mathcal{F}^{conn}} a \rhd (\sum_{t \in \mathcal{F}^{conn}} n(b,c,t)t)$$
$$= \sum_{s,t \in \mathcal{F}^{conn}} n(b,c,t)n(a,t,s)s$$

Because \mathcal{F} is closed under taking convex sub-posets, $P_e(t) \in \mathcal{F}^{conn}$ and $R_e(t) \in \mathcal{F}^{conn}$, $\forall t \in \mathcal{F}^{conn}$. The sum $\sum_{t \in \mathcal{F}^{conn}} n(a, b, t)n(t, c, s)$ may be identified with the number of pairs of edges $\pi = \{e_1, e_2\} \subset E(s)$, such that the resulting cut is NOT admissible (i.e. both edges lie along a single path from root to leaf in s), and the three connected components when π is removed, are, top-to-bottom, c, b and a. Similarly, the sum $\sum_{t \in \mathcal{F}^{conn}} n(b, c, t)n(a, t, s)$ may identified with the number of pairs $\pi' = \{e_1, e_2\} \subset E(s)$ such that the corresponding cut of s results in three components a, b, c, with $r(s) \in c$, and no element of a greater than an element of b. The coefficient of δ_s in

$$\delta_a \triangleright (\delta_b \triangleright \delta_c) - (\delta_a \triangleright \delta_b) \triangleright \delta_c$$

therefore counts the number of *admissible* two-edge cuts of s such that the connected component containing r(s) is isomorphic to c, and the remaining two to a, b respectively.

Applying the same analysis to the right-hand-side of 2.1 proves the equality.

Remark 5. It follows from 5.2 that $\mathfrak{n}_{\mathcal{F}}$ is defined over \mathbb{Z} , and that the structure constants are non-negative.

6. Examples

In this section, we consider different examples of families \mathcal{F} , and the resulting pre-Lie algebras $\mathfrak{n}_{\mathcal{F}}$. Recall that since $\mathfrak{n}_{\mathcal{F}}$ is graded by \mathbb{N} , the Lie algebra $\mathfrak{n}_{\mathcal{F}}$ is pro-nilpotent (nilpotent if $\mathfrak{n}_{\mathcal{F}}$ is finite-dimensional).

Example 4. Let S be a finite set, and $\mathcal{F} = \overline{\mathcal{T}_S}$, the set of rooted forests colored by S. We then obtain the pre-Lie algebra structure on S-labeled rooted trees described in example 2.

Example 5. Suppose S consists of a single element, and let $\mathcal{F} = \overline{\mathcal{F}'}$, where \mathcal{F}' is the collection of all ladders:

(since there is only one color, we suppress the labeling). Denote by L_n the n-vertex ladder. We have

$$\delta_{L_n} \rhd \delta_{L_m} = \delta_{L_{m+n}}.$$

so the Lie algebra $\mathfrak{n}_{\mathcal{F}}$ is abelian. In the Ringel-Hall algebra $H_{\mathcal{C}_{\mathcal{F}}}$ we have

$$\delta_{L_n} \star \delta_{L_m} = \delta_{L_{m+n}} + \delta_{L_m \oplus L_n}$$

and

$$\Delta(L_m) = L_m \otimes 1 + 1 \otimes L_m$$

It is well-known (see eg. [6]) that the Hopf algebra $H_{\mathcal{C}_{\mathcal{F}}}$ is isomorphic to the Hopf algebra of symmetric functions, with L_m corresponding to the mth power sum.

Example 6. Let $S = \{1, 2, \dots, n\}$, and let $\mathcal{F} = \overline{\mathcal{F}'}$, where \mathcal{F}' consists of singleton vertices colored by S. \mathcal{F} is thus the collection of all finite sets colored by S, with trivial partial order. Denote by $X(m_1, m_2, \dots, m_n)$ the set of $m_1 + m_2 + \dots + m_n$ elements, with m_i colored $i, 1 \leq i \leq n$. $\mathfrak{n}_{\mathcal{F}}$ is therefore spanned by the $\delta_{X(0,\dots,\frac{1}{i},\dots,0)}$. The operation \triangleright is identically 0, so the Lie algebra $\mathfrak{n}_{\mathcal{F}}$ is abelian. In $\mathcal{H}_{\mathcal{C}_{\mathcal{F}}}$ we have

$$\delta_{X(m_1,\cdots,m_n)} \star \delta_{X(m'_1,\cdots,m'_n)} = \left(\prod_i^n \binom{m_i + m'_i}{m_i}\right) \delta_{(m_1+m'_1,\cdots,m_n+m'_n)}$$

Example 7. Let $S = \{1, 2, \dots, n\}$, and let $\mathcal{F} = \overline{\mathcal{F}'}$, where \mathcal{F}' consists of all S-colored ladder trees

 $\begin{array}{c} \bullet 2 \\ \bullet 1 \\ \bullet 1 \\ \vdots \\ \bullet 3 \\ \bullet 2 \end{array}$

Denote by $L(a_1, \dots, a_k)$ the k-vertex ladder whose *i*th vertex counting from the *leaf* is colored a_i . We have

(6.1)
$$\delta_{L(a_1,\cdots,a_n)} \rhd \delta_{L(b_1,\cdots,b_m)} = \delta_{L(a_1,\cdots,a_n,b_1,\cdots,b_m)}$$

Let $\mathbb{Q} < X_1, \cdots, X_s >$ denote the free associative algebra on S viewed as a Lie algebra. There is a linear isomorphism

$$\rho: \mathfrak{n}_{\mathcal{F}} \to \mathbb{Q} < X_1, \cdots, X_s >$$
$$\rho(L(a_1, \cdots, a_k)) = X_{a_1} X_{a_2} \cdots X_{a_k}$$

It follows from 6.1 that ρ is a Lie algebra isomorphism.

Example 8. Consider the collection \mathcal{F} from example 3, where $\mathcal{F} = \overline{L(1, 2, \dots, n)}'$. Here $\mathfrak{n}_{\mathcal{F}} = \operatorname{span}\{\delta_{L(k,\dots,k+m)}\}, 1 \leq k \leq k+m \leq n$. We have

$$\delta_{L(p,\dots,p+r)} \rhd \delta_{L(k,\dots,k+m)} = \begin{cases} \delta_{L(k,\dots,p+r)} & \text{if } k+m+1=p\\ 0 & \text{otherwise} \end{cases}$$

so that in the Lie algebra $\mathfrak{n}_{\mathcal{F}}$,

(6.2)
$$[\delta_{L(p,\dots,p+r)}, \delta_{L(k,\dots,k+m)}] = \begin{cases} \delta_{L(k,\dots,p+r)} & \text{if } k+m+1=p \\ 0 & \text{otherwise} \end{cases}$$

Let $E_{i,j}$ denote the $(n + 1) \times (n + 1)$ matrix with a 1 in entry (i, j) and zeros everywhere else. Then the commutation relations 6.2 imply that the map

$$\phi : \mathbf{n}_{\mathcal{F}} \to \operatorname{Mat}_{n+1}$$
$$\phi(\delta_{L(k,\cdots,k+m)}) = -E_{k,k+m+1}$$

is an isomorphism of $\mathfrak{n}_{\mathcal{F}}$ onto the Lie algebra of upper-triangular $(n+1) \times (n+1)$ matrices.

Example 9. Let $S = \{1, 2\}$, and let $\mathcal{F} = \overline{\mathcal{F}'}$, where \mathcal{F}' consists of all S-colored ladders where the colors alternate.

Let us denote by L(i, n), $i \in S, n \ge 1$ the alternating ladder with n vertices, whose root is colored i. Then $\mathfrak{n}_{\mathcal{F}} = \operatorname{span}\{L(i, n)\}, i \in S, n \ge 1$. We have

$$\delta_{L(i,n)} \rhd \delta_{L(i,m)} = \begin{cases} \delta_{L(i,n+m)} & \text{if } m \equiv 0 \mod 2, i \in S \\ 0 & \text{otherwise} \end{cases}$$
$$\delta_{L(i,n)} \rhd \delta_{L(j,m)} = \begin{cases} \delta_{L(j,n+m)} & \text{if } m \equiv 1 \mod 2, i \neq j \in S \\ 0 & \text{otherwise} \end{cases}$$

It follows that

(6.3)
$$[\delta_{L(i,2k)}, \delta_{L(j,2l)}] = 0$$
$$[\delta_{L(i,2k)}, \delta_{L(j,2l+1)}] = \begin{cases} -\delta_{L(j,2(k+l)+1)} & \text{if } i = j \\ \delta_{L(j,2(k+l)+1)} & \text{if } i \neq j \end{cases}$$
$$[\delta_{L(i,2k+1)}, \delta_{L(j,2l+1)}] = \delta_{L(j,2(k+l+1))} - \delta_{L(i,2(k+l+1))}$$

Recall that $\mathfrak{gl}_2 = \operatorname{Mat}_2 = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, where

$$\mathfrak{n}_{-} = \operatorname{span}\{f\}, \mathfrak{n}_{+} = \operatorname{span}\{e\}, \mathfrak{h} = \operatorname{span}\{h_{1}, h_{2}\}$$

and

$$f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad h_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad h_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

Let $L\mathfrak{gl}_2 = \mathfrak{gl}_2 \otimes \mathbb{Q}[t, t^{-1}]$ be the loop algebra of \mathfrak{gl}_2 , with bracket

$$[X \otimes t^m, Y \otimes t^n] = [X, Y] \otimes t^{n+m}$$

 $L\mathfrak{gl}_2$ also has a triangular decomposition $L\mathfrak{gl}_2 = L\mathfrak{gl}_2^+ \oplus \mathfrak{h} \oplus L\mathfrak{gl}_2^-$, where

$$L\mathfrak{gl}_2^+ = \mathfrak{n}_+ \oplus \mathfrak{gl}_2 \otimes t\mathbb{Q}[t] \qquad L\mathfrak{gl}_2^- = \mathfrak{n}_- \oplus \mathfrak{gl}_2 \otimes t^{-1}\mathbb{Q}[t^{-1}]$$

Let

$$\phi : \mathfrak{n}_{\mathcal{F}} \to L\mathfrak{gl}_{2}^{+}$$

$$\phi(\delta_{L(1,2k+1)}) = e \otimes t^{k}$$

$$\phi(\delta_{L(2,2k+1)}) = f \otimes t^{k+1}$$

$$\phi(\delta_{L(1,2k)}) = -h_{1} \otimes t^{k}$$

$$\phi(\delta_{L(2,2k)}) = -h_{2} \otimes t^{k}$$

It follows from 6.3 that ϕ is an isomorphism. It follows that $U(L\mathfrak{gl}_2^+)$ has an integral basis which may be identified with Young diagrams whose columns are colored by alternating strings of 1's and 2's.

Example 10. A straightforward generalization of the previous example, with $S = \{1, \dots, n\}$ and \mathcal{F}' consisting of ladders periodically colored by $1, \dots, n$ yields $\mathfrak{n}_{\mathcal{F}} \simeq L\mathfrak{gl}_n^+$.

14

Example 11. Let $S = \{1, 2\}$, and let $\mathcal{F} = \overline{\mathcal{F}'}$, where \mathcal{F}' is the set of all ladders colored by a sequence of 1's followed by a sequence of 2's.

Denote by L(i, j) the ladder with i 1's followed by j 2's. We have

$$\begin{split} \delta_{L(i,j)} &\rhd \delta_{L(m,n)} = 0 \text{ if } ij > 0 \text{ and } mn > 0 \\ \delta_{L(i,0)} &\rhd \delta_{L(m,n)} = \begin{cases} \delta_{L(i+m,0)} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases} \\ \delta_{L(0,j)} &\rhd \delta_{L(m,n)} = \delta_{L(m,n+j)} \\ \delta_{L(i,j)} &\rhd \delta_{L(m,0)} = \delta_{L(i+m,j)} \\ \delta_{L(i,j)} &\rhd \delta_{L(0,n)} = \begin{cases} \delta_{L(0,j+n)} & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases} \end{split}$$

so that we obtain the following non-zero commutation relations (i.e. all other commutators are 0):

$$\begin{aligned} [\delta_{L(i,0)}, \delta_{L(0,n)}] &= -\delta_{L(i,n)} \\ [\delta_{L(i,0)}, \delta_{L(m,n)}] &= -\delta_{L(m+i,n)} \text{ if } n > 0 \\ [\delta_{L(0,j)}, \delta_{L(m,n)}] &= \delta_{L(m,n+j)} \text{ if } m > 0 \end{aligned}$$

Example 12. Let $S = \{1, 2, \dots, n\}$, and let $\mathcal{F} = \overline{\mathcal{F}'}$, where \mathcal{F}' consists of all *S*-colored corollas (rooted trees where all leaves are connected directly to the root)

Closing \mathcal{F}' with respect to convex sub-posets means adjoining singleton colored trees. Denote by X(i) the singleton tree colored by $1 \leq i \leq n$, and by $Y(i, a_1, \dots, a_n)$ the corolla whose root is colored *i* and which has $a_1 + a_2 \dots + a_n$

leaves, with a_1 colored 1, a_2 colored 2 etc. In $\mathfrak{n}_{\mathcal{F}}$ we have

$$\delta_{X(i)} \rhd \delta_{X(j)} = \delta_{Y(j,0,\cdots,\frac{1}{i},\cdots,0)}$$
$$\delta_{X(i)} \rhd \delta_{Y(j,a_1,\cdots,a_n)} = \delta_{Y(j,a_1,\cdots,a_i+1,\cdots,a_n)}$$
$$\delta_{Y(j,a_1,\cdots,a_n)} \rhd \delta_{X(i)} = 0$$
$$\delta_{Y(j,a_1,\cdots,a_n)} \rhd \delta_{Y(j,b_1,\cdots,b_n)} = 0$$

which leads to the following commutation relations:

$$\begin{bmatrix} \delta_{X(i)}, \delta_{X(j)} \end{bmatrix} = \delta_{Y(j,0,\cdots,\frac{1}{i},\cdots,0)} - \delta_{Y(i,0,\cdots,\frac{1}{j},\cdots,0)}$$
$$\begin{bmatrix} \delta_{X(i)}, \delta_{Y(j,a_1,\cdots,a_n)} \end{bmatrix} = \delta_{Y(j,a_1,\cdots,a_i+1,\cdots,a_n)}$$
$$\begin{bmatrix} \delta_{Y(j,a_1,\cdots,a_n)}, \delta_{Y(j,b_1,\cdots,b_n)} \end{bmatrix} = 0$$

References

- [1] Cartier, P. A primer of Hopf algebras. Frontiers in number theory, physics, and geometry. II, 537–615, Springer, Berlin, 2007.
- [2] Chapoton, F.; Livernet, M. Pre-Lie algebras and the rooted trees operad. Internat. Math. Res. Notices 2001, no. 8, 395–408.
- [3] Gerstenhaber, M. The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267288.
- [4] Kreimer, D. On the Hopf algebra structure of perturbative quantum field theory. Adv. Theor. Math. Phys. 2 303-334 (1998).
- [5] Kremnizer K. and Szczesny M. Feynman graphs, rooted trees, and Ringel-Hall algebras. Comm. Math. Phys. 289 (2009), no. 2 561–577.
- [6] Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp.
- [7] Rota, G-C. On the Foundations of Combinatorial Theory I: Theory of Mbius Functions", Zeitschrift fr Wahrscheinlichkeitstheorie und Verwandte Gebiete 2: 340368, (1964).
- [8] Schiffmann, O. Lectures on Hall algebras. Preprint math.RT/0611617.
- [9] Schmitt, W. R. Antipodes and Incidence Coalgebras. Journal of Comb. Theory. A 46 (1987), 264-290.
- [10] Schmitt, W. R. Incidence Hopf algebras. J. Pure Appl. Algebra 96 (1994), no. 3, 299–330.
- [11] Stanley, R. Enumerative combinatorics Vol. 1. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 1997.
- [12] Szczesny, M. Inicidence categories. J. Pure and Appl. Algebra, in press.
- [13] Vinberg, E.B. The theory of homogeneous convex cones, Transl. Moscow Math. Soc. 12 (1963), 340403.

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOSTON UNIVERSITY, BOSTON MA, USA

E-mail address: szczesny@math.bu.edu