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PROTO-EXACT CATEGORIES OF MATROIDS, HALL ALGEBRAS, AND

K-THEORY

CHRISTOPHER EPPOLITO, JAIUNG JUN, AND MATT SZCZESNY

ABSTRACT. This paper examines the category Mat• of pointed matroids

and strong maps from the point of view of Hall algebras. We show that

Mat• has the structure of a finitary proto-exact category - a non-additive

generalization of exact category due to Dyckerhoff-Kapranov. We define

the algebraic K-theory K∗(Mat•) of Mat• via the Waldhausen construc-

tion, and show that it is non-trivial, by exhibiting injections

πs
n(S) →֒ Kn(Mat•)

from the stable homotopy groups of spheres for all n. Finally, we show

that the Hall algebra of Mat• is a Hopf algebra dual to Schmitt’s matroid-

minor Hopf algebra.

1. INTRODUCTION

In this paper we examine the category of pointed matroids and strong maps from

the perspective of Hall algebras, which have traditionally been studied in representation

theory. This perspective sheds new light on certain combinatorial Hopf algebras built

from matroids, and opens the door to defining algebraic K-theory of matroids. The rest

of this introduction is devoted to introducing the main actors.

1.1 Hall algebras of Abelian and exact categories. The study of Hall algebras is by now

a well-established area with several applications in representation theory and algebraic

geometry (see [21] for a very nice overview). We briefly recall the generic features of the

most basic version of this construction. Given an abelian category C, let

FLi(C) := {A0 ⊆ A1 ⊆ · · · ⊆ Ai| Ak ∈ Ob(C)}

denote the stack parametrizing isomorphism classes of flags of objects in C of length i + 1

(viewed here simply as a set). Thus

FL0(C) = Iso(C),
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the moduli stack of isomorphism classes of objects of C, and

FL1(C) = {A0 ⊆ A1| A0, A1 ∈ Ob(C)}

is the usual Hecke correspondence. We have maps

(1) πi : FL1(C)→ Iso(C), i = 1, 2, 3,

where

π1(A0 ⊆ A1) = A0,

π2(A0 ⊆ A1) = A1,

π3(A0 ⊆ A1) = A1/A0.

We may then attempt to define the Hall algebra of C as the space of Q-valued functions

on Iso(C) with finite support, i.e.

HC = Qc[Iso(C)]

with the convolution product defined for f , g ∈ HC

(2) f ⋆ g := π2∗(π
∗
3( f )π∗1(g)),

where π∗i denotes the usual pullback of functions and πi∗ denotes integration along

the fiber. To make this work, one has to impose certain finiteness conditions on C.

The simplest, and most restrictive such condition is that C is finitary, which means that

Hom(M, M′) and Ext1(M, M′) are finite sets for any pair of objects M, M′ ∈ C.

HC is spanned by δ-functions δ[M], [M] ∈ Iso(C) supported on individual isomor-

phism classes, and the product (2) can be explicitly written

(3) δ[M] ⋆ δ[N] = ∑
R∈Iso(C)

PR
M,NδR

where

PR
M,N := #|{L ⊆ R, L ≃ N, R/L ≃ M}|

The number

PR
M,N|Aut(M)||Aut(N)|

counts the isomorphism classes of short exact sequences of the form

(4) 0→ N → R→ M→ 0,

where Aut(M) is the automorphism group of M. Thus, product in HC encodes the struc-

ture of extensions in C.

Important examples of finitary categories are C = Rep(Q, Fq) - the category of rep-

resentations of a quiver Q over a finite field Fq, and C = Coh(X/Fq) - the category of
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coherent sheaves on a smooth projective variety X over Fq. In these examples, the struc-

ture constants of HC depend on the parameter q, and HC recovers (parts of) quantum

groups and their generalizations.

The basic recipe above extends more generally to the case where C is a finitary Quillen

exact category (see [13]). Exact categories can be viewed as a strictly full extension-closed

subcategories of Abelian categories, and can be equivalently described in terms of classes

(M,E) of admissible mono/epi-morphisms. For example, the category of vector bundles

(i.e. locally free sheaves) on a smooth projective curve X/Fq is an exact category, be-

ing an extension-closed full subcategory of Coh(X/Fq), with (M,E) consisting of those

monos/epis which are locally split. It is not Abelian, since the kernel/cokernel of a mor-

phism of locally free sheaves may be a coherent sheaf that is not locally free. In this

example, the stack Iso(C) is the domain of definition of automorphic forms for general

linear groups over the function field Fq(X), and the Hall multiplication encodes the ac-

tion of Hecke operators. Here, the theory makes contact with the Langlands program

over function fields (for more on this, see the beautiful papers [14, 15]).

1.2 Hall algebras in a non-additive setting. A closer examination of the basic construc-

tion of HC outlined above shows that the assumption that C be additive is unnecessary.

All that is needed to make sense of the Hecke correspondence (1) used to define HC is

a category with a well-behaved notion of exact sequences. In the important paper [6],

the notion of proto-exact category is introduced as a non-additive generalization of the

notion of Quillen exact category above, and shown to suffice for the construction of an

associative Hall algebra. As in the additive case, such a category is defined in terms of

a pair (M,E) of admissible mono/epis which are required to satisfy certain properties.

The simplest example of a non-additive proto-exact category is the category Set• of finite

pointed sets, with M all pointed injections, and E those pointed surjections which are

isomorphisms away from the base-point.

Many examples of non-additive proto-exact categories C arise in combinatorics. Here,

Ob(C) typically consist of combinatorial structures equipped with operations of "insert-

ing" and "collapsing" of sub-structures, corresponding to (M,E). Examples of such C

include trees, graphs, posets, semigroup representations in Set•, quiver representations

in Set• etc. (see [17,23–26] ). The product in HC , which counts all extensions between two

objects, thus amounts to enumerating all combinatorial structures that can be assembled

from two others. Here HC is typically (dual to) a combinatorial Hopf algebra in the sense

of [18]. Many combinatorial Hopf algebras arise via this mechanism, including the Hopf

algebra of symmetric functions, the Connes-Kreimer Hopf algebras of rooted trees and

Feynman graphs, and many others.
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1.3 The Waldhausen S-construction and K-theory of proto-exact categories. It is a

natural question what advantages, if any, there are to thinking of combinatorial objects

in terms of proto-exact categories and Hall algebras. The answer, as evident in other

forms of categorification, is that certain constructions are only visible at the categorical

level. In [6], the authors associate to a proto-exact category C a simplicial groupoid S•C,

called the Waldhausen S-construction, where SnC is closely related to FLn above. S•C is

shown to have a number of very interesting properties, including the structure of a 2-

Segal space - a form of higher associativity, of which HC is but a shadow. This structure

was also studied in the papers [8–10] from a somewhat different perspective.

As explained in [6], S•C may be used to define the algebraic K-theory of C, by

(5) Kn(C) = πn+1|S•C|

where |S•C| denotes the geometric realization of S•C. These groups appear to contain

interesting homotopy-theoretic information, even for very simple categories like Set•, as

evidenced by the following result:

Theorem 1.1 ([2, 4]). K∗(Set•) ≃ πs
∗(S), where the right hand side denotes the stable

homotopy groups of the sphere spectrum.

1.4 Matroids as a proto-exact category. Matroids are combinatorial structures which

abstract different notions of independence encountered across mathematics. A matroid

M consists of a finite set EM (the ground set) together with a collection of independent sub-

sets I ⊆ 2EM satisfying certain natural properties. The prototypical example is obtained

by taking EM to be a set of vectors in some vector space V, and taking I ⊆ 2EM to be those

subsets which are linearly independent. Matroids and their generalizations have found

a vast array of applications across several areas of mathematics, such as for instance in

tropical geometry, where valuated matroids play the role of linear spaces.

Matroids form a category Mat• with respect to strong maps, which are a generalization

of linear map in this setting, and it is the category Mat• that forms the object of study

in this paper. Other aspects of Mat• have also been studied in [12]. For technical rea-

sons, we prefer to work with pointed matroids, where the ground set EM is pointed by a

distinguished element. We show

Theorem A (§4 and §5). The category Mat• of pointed matroids and strong maps has the struc-

ture of a finitary proto-exact category, with M matroid restrictions and E matroid contractions.

We give two proofs of this theorem, which reduces to verifying the existence of cer-

tain special pushouts/pull-backs in Mat•. The first is written in the "classical" language

of matroids, while the second uses a description of Mat• in terms of embedded semi-

modules over the Boolean semiring B given in [3]. We are hopeful that a description of
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valuated matroids along the lines of [3] can be given, and that our proof should general-

ize to that situation as well.

We proceed to define and study the algebraic K-theory of Mat• via Definition 6.1. Mat•

has an exact forgetful functor to Set• possessing an exact left adjoint sending E ∈ Set• to

the "free pointed matroid on E" . These can be used to relate the K∗(Set•) and K∗(Mat•).

We show:

Theorem B (Theorem 6.3). K0(Mat•) ≃ Z⊕Z

and

Theorem C (Theorem 6.4). There are injective group homomorphisms

πs
n(S) ≃ Kn(Set•) →֒ Kn(Mat•)

for all n ≥ 0.

This shows in particular that Kn(Mat•) is in general non-trivial for n ≥ 0.

As a corollary of Theorem A, we are able to define the Hall algebra HMat• . The product

[M] ⋆ [N] in this algebra enumerates all matroids [L] such that L|S ≃ M and L/S ≃ N for

some subset S ⊆ EL. HMat• turns out to be dual to combinatorial Hopf algebra introduced

by Schmitt in [22], called the matroid-minor Hopf algebra. We obtain the following:

Theorem D (Theorem 7.2). HMat• has the structure of a graded, connected, co-commutative

Hopf algebra, dual to Schmitt’s matroid-minor Hopf algebra.

1.5 Outline of this paper. In section 2 we recall the basics of proto-exact categories and

their Hall algebras following [6]. Basic notions regarding pointed matroids are laid out

in section 3. Sections 4 and 5 contain two proofs of Theorem A - one in classical matroid-

theoretic language and one using the language of B-modules introduced in [3]. In section

6 we define the K-theory of Mat• and prove Theorems B and C. Finally, in section 7.1 we

relate the Hall algebra HMat• to Schmitt’s matroid-minor Hopf algebra, proving Theorem

D.
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2. PROTO-EXACT CATEGORIES AND THEIR HALL ALGEBRAS

In this section, we recall the notion of a proto-exact category E following [6], where we

direct the interested reader for details and proofs. This is a generalization of a Quillen

exact category that allows E to be non-additive, and yet provides enough structure to

define an associative Hall algebra by counting certain distinguished exact sequences in

E . As usual, we denote monomorphisms in E by →֒ and epimorphisms by ։.

A commutative square

(6) A
i

//

j
��

B

j′

��

A′
i′

// B′.

is called biCartesian if it is both Cartesian and co-Cartesian.

Definition 2.1. A proto-exact category is a category E equipped with two classes of mor-

phisms M, E, called admissible monomorphisms and admissible epimorphisms respectively.

The triple (E ,M,E) is required to satisfy the following properties:

(1) The category E has a zero object 0. Any morphism 0 → A is in M, and any

morphism A→ 0 is in E.

(2) The classes M,E are closed under composition and contain all isomorphisms.

(3) A commutative square (6) in E with i, i′ ∈ M and j, j′ ∈ E is Cartesian iff it is

co-Cartesian.

(4) Every diagram in E

A′ �
� i′

// B′ B
j′

oooo

with i′ ∈ M and j′ ∈ E can be completed to a biCartesian square (6) with i ∈ M

and j ∈ E.

(5) Every diagram in E

A′ A
j

oooo � � i
// B

with i ∈ M and j ∈ E can be completed to a biCartesian square (6) with i′ ∈ M

and j′ ∈ E.

A biCartesian square of the form with the horizontal maps are in M and the vertical

maps are in E

A � � //

����

B

����

0 � � // C
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is called an admissible short exact sequence, or, an admissible extension of C by A, and will

also be written as

(7) A →֒ B ։ C

We will denote the object C (unique up to a unique isomorphism) by B/A. A functor

F : C 7→ D between proto-exact categories is exact if it preserves admissible short exact

sequences. Two extensions A →֒ B ։ C and A →֒ B′ ։ C of C by A are called equivalent

if there exists a commutative diagram

A

id
��

� � // B

∼=
��

// // C

id
��

A � � // B′ // // C.

and the set of equivalence classes of such will be denoted by ExtE (C, A). Two admissible

monomorphisms i1 : A →֒ B and i2 : A′ →֒ B in M are isomorphic if there exists an

isomorphism f : A → A′ such that i1 = i2 ◦ f . We call the isomorphism classes in M

admissible subobjects.

Definition 2.2. A proto-exact category E is called finitary if, for every pair of objects A,B,

the sets HomE (A, B) and ExtE (A, B) have finite cardinality.

Example 2.3. (1) Any Quillen exact category is proto-exact, with the same exact struc-

ture. In particular, any Abelian category E is proto-exact with M all monomor-

phisms and E all epimorphisms respectively. The category Rep(Q, Fq) of repre-

sentations of a quiver Q over a finite field Fq, and Coh(X/Fq) - the category of

coherent sheaves on a smooth projective variety over Fq are both finitary Abelian.

(2) The simplest example of a non-additive proto-exact category is the category Set•

whose objects are pointed sets with pointed maps as morphisms. Here M consists

of all pointed injections, and E all pointed surjections p : (S, ∗)→ (T, ∗) such that

p|S\p−1(∗) is injective. The full subcategory Set
f in
• of finite pointed sets is finitary.

2.1 The Hall algebra. Let E be a finitary proto-exact category, and k a field of charac-

teristic zero. Define the Hall algebra HE over k as

HE := { f : Iso(E)→ k| f has finite support },

where Iso(E) denotes the set of isomorphism classes in E . HE is an associative k–algebra

under the convolution product

(8) f • g([B]) := ∑
A⊆B

f ([B/A])g([A]),

where the summation ∑A⊆B is taken over isomorphism classes of admissible sub-objects

i : A →֒ B, i ∈ M, and [A] etc. denotes the isomorphism class of A in E . Note that this
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sum is finite, since E is assumed finitary. HE has a basis consisting of delta-functions δ[B],

[B] ∈ Iso(E), where

δ[B]([A]) =





1 A ≃ B

0 otherwise .

The multiplicative unit of HE is given by δ[0]. The structure constants of this basis are

given by

δ[A] • δ[C] = ∑
[B]∈Iso(E )

gB
A,Cδ[B],

where

gB
A,C = #{D ⊆ B|D ≃ C, B/D ≃ A}.

In other words, gB
A,C counts the number of admissible subobjects D of B isomorphic to C

such that B/D is isomorphic to A. The Grothendieck group of E , denoted K0(E) is defined

as the free group on Iso(E) modulo the relations [B] = [A][C] for every admissible short

exact sequence (7). When E admits split admissible short exact sequences of the form

A →֒ A⊕ B ։ B

K0(E) is Abelian, and has the familiar description

K0(E) = Z[Iso(E)]/ ∼,

where ∼ is generated by the relations [B] = [A] + [C] for all admissible short exact se-

quences (7). We denote by K0(E)+ ⊆ K0(E) the sub-semigroup generated by the effective

classes. HE is naturally graded by K0(E)+, with deg(δ[B]) = [B] ∈ K0(E)+.

Whether HE carries a co-product making it into a bialgebra depends on further prop-

erties of E . For instance, if E is finitary, Abelian, linear over Fq and hereditary, HE carries

the so-called Green’s co-product (see [21]). In this paper, we will be concerned with situa-

tions where E is not additive, and where the following alternative construction applies.

Suppose that E is equipped with finite direct sums, and that the only admissible sub-

objects of A ⊕ B are of the form A′ ⊕ B′, where A′ ⊆ A, B′ ⊆ B. In this case, we may

define

∆ : HE → HE ⊗HE

by

(9) ∆( f )([A], [B]) = f ([A⊕ B]).

∆ is easily seen to be compatible with the associative product • on HE . It is clear from (9)

that ∆ is co-commutative, and that the subspace of primitive elements of HE is spanned

by {δ[B]}, where B is indecomposable (i.e. cannot be written as a non-trivial direct sum of
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sub-objects). By the Milnor-Moore theorem, any graded connected co-commutative bial-

gebra is a Hopf algebra, isomorphic to the enveloping algebra of its primitive elements.

To summarize, we have:

Theorem 2.4. Let E be a finitary proto-exact category E satisfying the condition

C ⊆ A⊕ B⇒ C ≃ A′ ⊕ B′, A′ ⊆ A, B′ ⊆ B.

Then HE has the structure of a K+
0 (E)-graded, connected, co-commutative Hopf algebra

over k with co-product (9). HE ≃ U(δ[B]), where B is indecomposable.

Example 2.5. The category E = Set•, also known as the category of finite dimensional

vector spaces over “the field with one element F1” has direct sums (defined as wedge

sums), and satisfies the conditions of the theorem. In this case HE ≃ k[x], with

∆(x) = x⊗ 1 + 1⊗ x.

3. MATROIDS AND STRONG MAPS

This section provides a short introduction to the basic terminology and results of ma-

troid theory we use in this paper. For more details, the reader is encouraged to see [20].

Matroids are combinatorial abstractions of various properties of linear independence

among finitely many vectors in a vector space. As such, these objects admit a number of

“cryptomorphic” axiomatizations; that is, there are a variety of ways of formulating the

axioms for matroids, any of which can be translated to any other. We present one such

formulation, namely the flats operator. Given a finite set E (the ground set of our matroid),

a function σ : 2E → 2E is a flats operator for a matroid on E when it satisfies the following

axioms:

(F1) For all S ⊆ E we have S ⊆ σS.

(F2) The map σ is idempotent (i.e. σ = σσ).

(F3) For all S ⊆ T ⊆ E we have σS ⊆ σT.

(F4) For all S ⊆ E and all x ∈ E and y ∈ σ(S ∪ {x}) \ σS we have x ∈ σ(S ∪ {y}).

Sets of the form σS for some S ⊆ E are called flats.

Remark 3.1. Note that (F1), (F2), and (F3) are the axioms of a closure operator on E. Thus

a flats operator on E is a closure operator on E satisfying (F4).

Example 3.2. The following are the prototypical examples of flats operators.1

(1) Let E be a finite subset of a vector space V. For all S ⊆ E let σS = 〈S〉 ∩ E where

〈S〉 denotes the the subspace of V spanned by S. Then σ is a flats operator on E.

1Not all matroids arise in this way. For more details, see [20].
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(2) Let Γ be a graph with a finite edge set E. For all S ⊆ E let σS be the set all edges e

for which there is a path in Γ connecting the ends of e and using only edges of S.

Then σ is a flats operator on E.

Remark 3.3. We note the following:

(1) In light of Example 3.2, this structure on E abstracts the notion of “span” in a

vector space.

(2) Given a flats operator σ for a matroid M on E, one can construct F(M), the set of

all flats determined by σ. The set of flats can also be used to axiomatize matroids

“cryptomorphically,” but the details are unimportant for the results of this paper.

We use this fact implicitly below when we define the restriction and contraction.

In what follows, for a matroid M on a finite set E, we let F(M) be the set of all flats of

M.

Definition 3.4. Let M be a matroid on E and S ⊆ E.

(1) The restriction of M to S is the matroid M|S on S with flats

F(M|S) = {A ∩ S | A ∈ F(M)} .

(2) The contraction of M by S is the matroid M/S on E \ S with flats

F(M/S) = {A \ S | S ⊆ A ∈ F(M)} .

Example 3.5. Let M be a matroid on a ground set E and S ⊆ E.

(1) If M is obtained from E ⊆ V for a vector space V as in Example 3.2, then M|S is

obtained likewise from S in 〈S〉. In particular, matroid restriction corresponds to

restriction to a subspace in the context of vector spaces.

(2) If M is obtained from E as the edge set of a graph Γ as in Example 3.2, then M|S

is obtained likewise from the graph Γ|S with only the edges of S.

Example 3.6. Let M be a matroid on a ground set E and S ⊆ E.

(1) If M is obtained from E ⊆ V for a vector space V as in Example 3.2, then M/S

is obtained likewise from E \ S in the vector space V/〈S〉. In particular, matroid

contraction corresponds to the quotient by a subspace in the context of vector

spaces.

(2) If M is obtained from E as the edge set of a graph Γ as in Example 3.2, then M/S

is obtained likewise from the contracted graph Γ/S in which the edges of S are

contracted.

Definition 3.7. The direct sum M1⊕M2 of matroids M1 and M2 is defined as the matroid

on the ground set EM1
⊔ EM2

with flats operator σ1 ⊔ σ2. In other words, the flats of

M1 ⊕M2 are of the form F1 ⊔ F2 where F1 ∈ F(M1) and F2 ∈ F(M2).
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Example 3.8. (1) If M1, M2 are obtained from subsets Ei ⊆ Vi, i = 1, 2 for vector

spaces V1, V2, then M1 ⊕M2 is obtained from E1 ⊔ E2 ⊆ V1 ⊕V2.

(2) If M1, M2 are graphic, corresponding to graphs Γ1, Γ2, then M1⊕M2 is the graphic

matroid of the disjoint union Γ1 ⊔ Γ2.

A loop of a matroid is an element of the ground set which belongs to the flat σ∅.2 A

pointed matroid is a pair (M, ∗M) where M is a matroid and ∗M is a distinguished loop

(a.k.a. the point). We think of the point as a zero element. We will often suppress the

point in our notation and say that M is a pointed matroid with a point ∗M.

Remark 3.9. When dealing with pointed matroids (M, ∗M), we adopt the following con-

ventions to simplify notation, and to ensure that the result of various operations is also

a pointed matroid. Recall that the coproduct of pointed sets (S1, p1), (S2, p2) is S1 ∨ S2 -

their wedge sum, in which the basepoints get identified.

(1) We will denote by ẼM the non-zero elements in the ground set. Thus for a pointed

matroid (M, ∗M) we have EM = ẼM ⊔ {∗M}.

(2) For S ⊆ ẼM, M|S will denote the restriction M|(S ∪ {∗M}). Since ∗M /∈ S, the

definition of M/S needs no modification.

(3) If (M1, ∗M1
), (M2, ∗M2

) are pointed matroids, then M1 ⊕ M2 is defined as the

pointed matroid on the ground set EM1
∨ EM2

with the flats operator σ1 ∨ σ2.

Having the notion that pointed matroids are generalizations of vector spaces, one nat-

urally seeks an appropriate translation of linear maps to this setting.

Definition 3.10. Let M and N be pointed matroids on ground sets EM and EN respec-

tively and having flats FM and FN respectively. A (pointed) strong map of pointed ma-

troids f : M → N is a function f : EM → EN such that f (∗M) = ∗N and for all A ∈ FN

we have f−1 A ∈ FM.

Example 3.11. The following are the prototypical examples of strong maps.3

(1) Let M and N be pointed matroids arising from k-vector spaces VM and VN re-

spectively for some common field k as in Example 3.2 above. Every linear map

L : VM → VN determines a (pointed) strong map M→ N.

(2) Let Γ and Λ be graphs with distinguished loops ∗Γ and ∗Λ, and let (MΓ, ∗Γ) and

(MΛ, ∗Λ) be the pointed matroids arising from Γ and Λ as in Example 3.2 above.

Every graph morphism f : Γ → Λ preserving the points yields a pointed strong

map MΓ → MΛ.

2In a matroid determined by a graph as in Example 3.2.2, this is exactly a loop of the graph.
3Not all strong maps between matroids arise in this way (even if the matroids themselves arise in this

fashion).
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The following is immediate:

Proposition 3.12. Pointed matroids and strong maps together form a category Mat•.

There is a forgetful functor

F : Mat• 7→ Set•

which takes a pointed matroid (M, ∗M) to its underlying pointed ground set (EM, ∗M).

4. Mat• AS A PROTO-EXACT CATEGORY

Our goal in this section is to show that Mat• has the structure of a proto-exact category

in the sense of [6]. We begin by exhibiting the classes of admissible monos/epis.

Definition 4.1. Let M consist of all strong maps in Mat• that can be factored as

N
∼
→ M|S →֒ M,

and E consists of all strong maps in Mat• that can be factored as

M ։ M/S
∼
→ N

for some S ⊆ EM.

Throughout this section, we let E := Mat•. We show that (E ,M,E) as above is a proto-

exact category. We first prove certain basic lemmas which will be used in what follows.

For the notational convenience, for a function f : A→ B and S ⊆ A, we will write f S for

the image f (S) whenever there is no possible confusion. All matroids are assumed to be

pointed unless otherwise stated.

Lemma 4.2. Let M (resp. N) be a pointed matroid on EM (resp. EN). A function f : EM → EN

is an isomorphism in E precisely when f is a pointed bijection satisfying

A ∈ F(M) ⇐⇒ f A ∈ F(N).

Proof. Let f : EM → EN be a set map.

Sufficiency: Suppose f is an isomorphism of pointed matroids M and N. Applying

the forgetful functor F we see that f is necessarily a pointed bijection; moreover, the

underlying map of the inverse map f−1 is the inverse of the underlying map. Thus both

f and f−1 are strong maps; given f A ∈ F(N) we have f−1( f A) = A ∈ F(M), and

similarly given A ∈ F(M) we have ( f−1)−1A = f A ∈ F(N).

Necessity: Suppose f is a pointed bijection with A ∈ F(M) if and only if f A ∈ F(N).

Notice that we need only see f and f−1 are strong maps to conclude. Given F ∈ F(N)

we have F = f ( f−1F), so f−1F ∈ F(M) by our assumption; thus f is a strong map.

Moreover, given F ∈ F(M) we have ( f−1)−1F = f F ∈ F(N); thus f−1 is a strong map,

and f is an isomorphism. �
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Notice that given subsets T ⊆ S ⊆ EM we have the following:

F((M|S)/T) = {(F ∩ S) \ T | T ⊆ F ∈ F(M)} .

Lemma 4.3. Let f : M→ N be an isomorphism in E .

(1) For all ∗M ∈ S ⊆ EM the map f |S : M|S→ N| f S is an isomorphism.

(2) For all S ⊆ EM \ {∗M} the map f |EM\S : M/S→ N/ f S is an isomorphism.

Proof. Let f : M → N be an isomorphism in E . Note that f (∗M) = ∗N , so we need not

worry about contracting or deleting the point as f is a bijection.

Restriction: We have the following string of equivalent statements via Definition 3.4:

A ∈ F(M|S) ⇐⇒ ∃B ∈ F(M) such that A = B ∩ S

⇐⇒ ∃B ∈ F(M) such that f A = f B ∩ f S

⇐⇒ ∃B′ ∈ F(N) such that f A = B′ ∩ f S

⇐⇒ f A ∈ F(N| f S)

Moreover f |S is a pointed bijection. Hence f |S is an isomorphism by Lemma 4.2.

Contraction: Similarly, we have the following equivalent statements via Definition 3.4:

A ∈ F(M/S) ⇐⇒ ∃B ∈ F(M) such that S ⊆ B and A = B \ S

⇐⇒ ∃B ∈ F(M) such that f S ⊆ f B and f A = f B \ f S

⇐⇒ ∃B′ ∈ F(N) such that f S ⊆ B′ and f A = B′ \ f S

⇐⇒ f A ∈ F(N/ f S)

Moreover f |EM\S is a pointed bijection. Hence f |EM\S is an isomorphism by Lemma 4.2.

�

Lemma 4.4. For every matroid M and every T ⊆ S ⊆ EM we have (M|S)/T = (M/T)|S.

Proof. It is a standard exercise that (M \ A)/B = (M/B) \ A. Apply this result with

A = E \ S and B = T. �

Lemma 4.5. Let f : M→ N be a matroid strong map. Then we have the following:

(1) f is a monomorphism in E precisely when f is injective.

(2) f is an epimorphism in E precisely when f is surjective.

Proof. The necessity must hold for both statements simply by noting that every strong

map is also a function on underlying sets, and thus the required properties for monics

and epics must hold by the corresponding properties of their underlying maps.

Assume f : M→ N is monic and consider the pointed matroid U∗1,1 = ({1, ∗}, ∗) with

flats {∗} and {1, ∗}. Trivially every pointed map g : U∗1,1 → M is a strong map. For each
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a ∈ EM let ga : U∗1,1 → M denote the pointed map sending 1 7→ a. Suppose f (a) = f (b)

for some a, b ∈ EM; thus f ga = f gb yields a = ga(1) = gb(1) = b by the assumption that

f is monic. Hence f is injective as desired.

Assume f : M → N is epic and consider the pointed matroid U∗0,1 = ({1, ∗}, ∗) with

the flat {1, ∗}. Trivially every pointed map h : N → U∗0,1 is a strong map. For each a ∈ N

define ha : N → U∗0,1 by x 7→ 1 precisely when x = a. If f is not surjective, then choosing

any a ∈ EN \ f EM we have ha f = h∗ f , and thus h∗ = ha by the assumption that f is epic.

But this implies a = ∗ ∈ f EM, which is absurd. Hence f is surjective as desired. �

Lemma 4.6. Let M be a matroid on EM and S ⊆ EM.

(1) If ∗M ∈ S, then there is a canonical map iS : M|S →֒ M in E .

(2) If ∗M /∈ S, then there is a canonical map cS : M ։ M/S in E .

Proof. Restriction: Suppose ∗M ∈ S and let iS denote the inclusion S →֒ EM. Note that for

all F ∈ F(M) we have i−1
S F = S ∩ F ∈ F(M|S) by Definition 3.4. Hence iS is a strong

map as desired.

Contraction: Suppose ∗M /∈ S and let cS : EM → EM \ S denote the map defined by

cSS = {∗} and cS|EM\S = id. Now for all F ∈ F(M/S), there is a flat A ∈ F(M) with

S ⊆ A and F = A \ S. Thus noting ∗ ∈ F yields c−1
S F = S∪ F = S∪ (A \ S) = A ∈ F(M)

as S ⊆ A. Hence cS is a strong map as desired. �

Now, we prove that (E ,M,E) is a proto-exact category by verifying each property as

below.

Proposition 4.7 (Verifying Property 1). (E ,M,E) is equipped with a zero object.

Proof. The pointed matroid ({∗}, ∗) is the zero object. Indeed, one easily sees that every

map 0 → M can be factored as 0 → M|{∗} →֒ M and hence is in M. Similarly, every

map M→ 0 can be factored as M ։ M/(EM \ {∗M})→ 0 and hence in E. �

Proposition 4.8 (Verifying Property 2). The classes M and E are closed under composition and

contain all isomorphisms.

Proof. To see Property 2, first notice that every isomorphism f : M → N can be factored

as M
f
−→ N|EN →֒ N and M ։ M/∅

f
−→ N; in particular, every isomorphism is a member

of both M and E.

Given two composible members f : M → N and g : N → P of M, factor these as

M
f0
−→ N|S →֒ N and N

g0
−→ P|T →֒ P. Now the composite g f factors as M

f0
−→ N|S →֒

N
g0
−→ P|T →֒ P. Notice by construction that g0S ⊆ T; as g0 is an isomorphism, so

Lemma 4.3 yields that g0|S : N|S → P|g0S is an isomorphism. In particular, we have the

factorization M
f0
−→ N|S

id
−→ N|S

g0 |S
−−→ P|g0S →֒ P; the first three arrows in this diagram
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are isomorphisms. Hence M
g0 |S f
−−→ P|g0S →֒ P is a factorization of g f which shows this

is an admissible monomorphism.

Given two composible members f : M → N and g : N → P of E, factor these as

M → M/S
f0
−→ N and N → N/T

g0
−→ P. Now the composite factors as M → M/S

f0
−→

N → N/T
g0
−→ P. Notice by construction that f0 is an isomorphism, so Lemma 4.3 yields

that M/(S ∪ f−1
0 T)

f0|EM\(S∪ f−1
0 T)

−−−−−−−→ N/T is an isomorphism. In particular we have a fac-

torization M → M/(S ∪ f−1T)
f0|EM\(S∪ f−1

0 T)

−−−−−−−→ N/T
g0
−→ P; the latter two arrows in this

diagram are isomorphisms. Hence M → M/(S ∪ f−1T)
g0 f0|EM\(S∪ f−1

0 T)

−−−−−−−−−→ P is a factoriza-

tion of g f which shows this is an admissible epimorphism. �

To see Properties 3, 4, and 5 we will appeal frequently to the following Lemma:

Lemma 4.9. For all T ⊆ S ⊆ EM with ∗M ∈ S \ T, the following is a biCartesian square in E :

M|S M

(M|S)/T M/T

iS

cT c′T

i′S

Proof. Notice trivially that the above square commutes.

Cartesian: Suppose that we have the following commutative diagram in E :

M|S M

(M|S)/T M/T

N

iS

cT c′T

βi′S

α

Define γ = β|EM\T : M/T → N and notice β = γc′T by construction and the fact that

βis = αcT. Furthermore we have

αcT = βiS = γc′TiS = γi′ScT

which yields α = γi′S after noting trivially that cT|S\T = idS\T.

Let F ∈ F(N) be arbitrary. By assumption we have that β−1F ∈ F(M) and α−1F ∈

F((M|S)/T). Now there is an A ∈ F(M) such that T ⊆ A and α−1F = (A \ T) ∩ S. On

the other hand βiS = αcT yields the following:

S ∩ β−1F = i−1
S β−1F = c−1

T α−1F = T ∪ α−1F = T ∪ ((A \ T) ∩ S)

Thus T ⊆ S ∩ β−1F yields T ⊆ β−1F, and so γ−1F = (β−1F) \ T ∈ F(M/T). Hence

γ is a strong map. Applying the forgetful functor F : E → Set•, note that Fγ is the
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pushout morphism of the corresponding square; γ is thus uniquely determined in E by

uniqueness of the underlying set map Fγ. Hence the square is Cartesian.

CoCartesian: Suppose that we have the following commutative diagram in E :

N

M|S M

(M|S)/T M/T

β

α iS

cT c′T

i′S

One observes that β(EN) ⊆ S. Indeed, assume to the contrary that there is an x ∈ EN \

β−1S; thus β(x) ∈ EM \ S and we have β(x) = c′T β(x) as T ⊆ S. Now this yields

β(x) = i′Sα(x) = α(x) ∈ S, contradicting our initial assumption. Hence β(EN) ⊆ S.

Define γ : EN → S : x 7→ β(x) and note that γ is well-defined by our above argument.

By construction iSγ = β, and i′Sα = c′Tβ = c′TiSγ = i′ScTγ; hence we have α = cTγ by

injectivity of i′S.

Let F ∈ F(M) be arbitrary. Now γ−1(F ∩ S) = β−1(F ∩ S) = β−1F ∈ F(N) as β

is a strong morphism. Hence γ is a strong morphism. Applying the forgetful functor

F : E → Set• , note that Fγ is the pullback morphism of this square; γ is thus uniquely

determined in E . Hence the square is coCartesian. �

We can now complete the proof that E is proto-exact.

Proposition 4.10 (Verifying Property 4). Every diagram P � � i′
// Q N

j′
oooo in E with i′ ∈

M and j′ ∈ E can be completed to a biCartesian square

M
i

//

j
��

N

j′

��

P
i′

// Q

for some M ∈ E , i ∈M, j ∈ E.

Proof. Since i′ ∈ M, there exists S ⊆ EQ such that i′ = isg, where g : P → Q|S is an

isomorphism and iS : Q|S → Q (as in Lemma 4.6). Similarly, since j′ ∈ E, there exists

T ⊆ EN such that j′ = f c′T , where f : N/T → Q is an isomorphism and c′T : N → N/T

(as in Lemma 4.6). We prove that M = N|(j′)−1(S) gives us the desired biCartesian

square along with a canonical choice of i and j.
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Let A := (j′)−1(S). Then one can easily see that T ⊆ A, ∗N ∈ A \ T and hence, from

the above factorizations of i′ and j′, we obtain the following commuting diagram:

N|A N

P (N/T)|A N/T

P Q|S Q

iA

cT c′T

f |−1
A g

id

i′A

f |A f

g iS

Now note that the following square is a commuting square in E , where i = iA and

j = g−1 f |AcT:

N|A N

P Q

i

j j′

i′

Then we have a factorization of i as follows:

N|A
id
−→ N|A

iA−→ N

Using Lemma 4.4, we have a factorization of j:

N|A
cT−→ (N|A)/T

g−1 f |A
−−−→ P.

Moreover g−1 f |A is an isomorphism by Lemma 4.3. Hence i ∈M and j ∈ E.

To see that this square is Cartesian, note that every commuting diagram

N|A N

P Q

M

i

j j′

αi′

β

determines a corresponding commuting diagram

N|A N

(N|A)/T N/T

M

iA

cT c′T

αi′A

βg−1 f |A
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which admits a unique map δ : N/T → M such that the diagram commutes by Lemma

4.9. On the other hand, this implies that γ = δ f−1 is the pushout of the original square

by uniqueness of the pushout in Set•.

To see that this square is coCartesian, note that every commuting diagram

M

N|A N

P Q

α

β i

j j′

i′

determines a corresponding commuting diagram

M

N|A N

(N|A)/T N/T

α

f |−1
A gβ iA

cT c′T

i′A

which admits a unique map γ : M → N|A such that the diagram commutes by Lemma

4.9. On the other hand, this implies that γ is the pullback of the original square by unique-

ness of the pullback in Set•.

In particular, we have shown that every diagram P
i′

→֒ Q
j′

և N with arrows i′ ∈ M

and j′ ∈ E determines a biCartesian square with new arrows P
j
և M

j
→֒ N where which

i ∈M and j ∈ E.

�

Proposition 4.11 (Verifying Property 5). Every diagram P M
j

oooo � � i
// N in E with i ∈

M and j ∈ E can be completed to a biCartesian square

M
i

//

j
��

N

j′

��

P
i′

// Q.

for some Q ∈ E , i′ ∈M, j′ ∈ E.
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Proof. Since i ∈M and j ∈ E, we have factorizations of i and j from which we obtain the

following commuting diagram:

M N|S N

M/T (N|S)/ f T N/ f T

P P

f

cT

iS

c f T c′f T

g

f |EM\T i′S

g f |−1
EM\ f T

id

Now note that the following square is a commuting square in E , where i′ = i′S f |EM\ f Tg−1

and j′ = c′f T:

M N

P N/ f T

i

j j′

i′

We have factorizations N
c′f T
−→ N/ f T

id
−→ N/ f T and P

f |EM\ f Tg−1

−−−−−−→ (N|S)/ f T
i′S−→ N/ f T.

Moreover f |EM\ f Tg−1 is an isomorphism by Lemma 4.3. Hence i′ ∈M and j′ ∈ E.

To see that this square is Cartesian, note that every commuting diagram

M N

P N/ f T

Q

i

j j′

αi′

β

determines a corresponding commuting diagram

N|S N

(N|S)/ f T N/ f T

Q

iS

c f T c′f T

αi′S

βg f |−1
EM\T

which admits a unique map γ : N/T → Q such that the diagram commutes by Lemma

4.9. On the other hand, this implies that γ is the pushout of the original square by unique-

ness of the pushout in Set•.
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To see that this square is coCartesian, note that every commuting diagram

Q

M N

P N/ f T

α

β i

j j′

i′

determines a corresponding commuting diagram

Q

N|S N

(N|S)/ f T N/ f T

α

f |EM\Tg−1β iS

c f T c′f T

i′S

which admits a unique map δ : Q → N|S such that the diagram commutes by Lemma

4.9. On the other hand, this implies that γ = f−1δ is the pullback of the original square

by uniqueness of the pullback in Set•. �

Proposition 4.12 (Verifying Property 3). A commuting square in E with i, i′ ∈ M and j, j′ ∈

E:

M N

P Q

i

j j′

i′

is Cartesian if and only if it is coCartersian.

Proof. Suppose the above square is either Cartesian or coCartesian. By the previous

propositions, both P
j
և M

i
→֒ N and P

i′

→֒ Q
j′

և N can be completed to biCartesian

squares in E having all arrows from M and E. On the other hand, pullback and pushout

objects are unique up to isomorphism. Thus the original square is necessarily biCarte-

sian. Hence Cartesian and coCartesian are equivalent for all such squares. �

Propositions 4.7, 4.8, 4.12, 4.10, and 4.11 thus complete our first proof of Theorem A.

5. Mat• AS A PROTO-EXACT CATEGORY VIA B-MODULES

In this section, we present another proof showing that Mat• is a proto-exact category

by appealing to the recent work [3] of C. Crowley, N. Giansiracusa, and J. Mundinger.

Our motivation of introducing the second proof is to shed some light on generalizing the
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current work to the case of Hopf algebras for matroids over hyperfields introduced by

the authors of the current paper in [7].

5.1 Matroids as B-modules. In [3] the authors give a very useful characterization of

matroids and strong maps in terms of B-modules, where B denotes the Boolean semifield

B = {0, 1} with

1 · 1 = 1, 0 · 1 = 1 · 0 = 0 · 0 = 0 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1.

We proceed to review their construction. For a finite set E, we denote by BE the free B-

module on E, with standard basis {ei}, i ∈ E. The linear dual HomB(B
E, B) is denoted

(BE)∨, and has dual basis {xi}, i ∈ E, with 〈ei, xj〉 = δij.

Remark 5.1. In fact, the notion of free B-modules is rather subtle. For instance, any ‘free

B-module’ of dimension n does not have to be isomorphic to Bn. See, [19, §2] for details.

Nonetheless, in this paper, we restrict ourselves to the case of free B-modules of the form

BE.

From now one, all matrids are assumed to be pointed. Given a matroid M, let LM ⊆

BEM be the B-submodule generated by the support vectors of the cocircuits of M. They

show:

Proposition 5.2 ([3]). Let M be a matroid. Then M is completely determined by the B-module

LM together with its embedding LM →֒ BEM .

For matroids N, M, a map f : EN → EM, induces a B-module map

f∗ : (BEN)∨ → (BEM)∨

f∗(xi) = x f (i).

Taking the transpose (dual) we obtain a B-module map

(10) f∨∗ : BEM → BEN .

Proposition 5.3 ([3]). f : EN → EM defines a strong map if and only if f∨∗ (LM) ⊆ LN.

Definition 5.4. Let BmodEmb denote the category with:

• Objects are embedded sub-modules L ⊆ BE for a finite set E.

• Morphisms from L ⊆ BE to K ⊆ BF are commutative squares

BE // BF

L //
?�

OO

K
?�

OO

Then, one has the following:
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Proposition 5.5 ([3]). There exists a faithful functor

L : (Mat•)
op → BmodEmb

which assigns to a matroid M the embedded sub-module LM ⊆ BEM and to a strong map of

matroids f : N → M the induced map (10).

The functor L is not full, and as the authors point out in [3], a general morphism in

BmodEmb between two objects in the essential image of L may be viewed as a "multi-

valued" strong map. One also obtains the following pleasant characterization of the re-

striction and contraction operations:

Proposition 5.6 ([3]). Let M be a matroid, and S ⊆ EM.

(1)

L(M|S) = πS(LM) ⊆ BS,

where

πS : BEM → BS

is the canonical projection. Under the functor L, the commutative square

BEM
πS

// BS

LM
//

?�

OO

πS(LM)
?�

OO

corresponds to the canonical strong inclusion M ←֓ M|S

(2)

L(M/S) = LM ∩BEM\S ⊆ BEM\S,

where BEM\S denotes the B-submodule of BEM consiting of vectors having 0 in all com-

ponents corresponding to S. Under the functor L, the commutative square

BEM\S
ι

// BEM

LM ∩BEM\S //

?�

OO

LM

?�

OO

corresponds to the canonical strong map M→ M/S.

Theorem 5.7. Mat• has the structure of a proto-exact category

Proof. Mat• is pointed, with ({∗}, ∗) the zero object. We note that L(({∗}, ∗)) = 0 - the

trivial B-module. This verifies property (1) of Definition 2.1. The classes M,E obviously

contain all isomorphisms and are closed under composition, showing (2) of Definition
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2.1. To show the existence of the push-outs and pull-backs (4), (5), it suffices to work in

the category BmodEmb via the embedding L, keeping in mind that it is contravariant.

Consider a diagram in Mat• of the kind considered in (4). Applying L, this becomes

a diagram in BmodEmb of the form

π(LM ∩BEM\T) ⊆ BEM\(T∪S) LM ∩BEM\T ⊆ BEM\T
π

oooo � � i
// LM ⊆ BEM

where S, T ⊆ EM are disjoint, and π denotes the projection induced by the inclusion of

sets EM\(S ∪ T) ⊆ EM\T. The pushout of this diagram in BmodEmb is easily seen to be

π(LM) ⊆ BEM\S LM ⊆ BEM
π

oooo

π(LM ∩BEM\T) ⊆ BEM\(T∪S)
?�

OO

LM ∩BEM\T ⊆ BEM\T
π

oooo

?�

OO

For a matroid M, π(LM) ⊆ BEM\S is isomorphic to L(M|S), which shows that the pull-

back of the diagram (4) exists in Mat•, and that the completing maps lie in M,E as

desired.

Similarly, a diagram in Mat• of the kind (5), becomes after applying L a diagram in

BmodEmb of the form

π(LM) ∩BEM\(T∪S) ⊆ BEM\(T∪S) � � // π(LM) ⊆ BEM\S LM ⊆ BEM
π

oooo

for disjoint S, T ⊆ EM. The pullback of this diagram in BmodEmb is

π(LM) ⊆ BEM\S LM ⊆ BEM
π

oooo

π(LM ∩BEM\T) ⊆ BEM\(T∪S)
?�

OO

LM ∩BEM\T ⊆ BEM\T
π

oooo

?�

OO

This shows that the pushout of the diagram (5) exists in Mat•. Furthermore, comparing

(4), (5) shows that property (3) holds. This completes the proof. �

Remark 5.8. We note the following:

(1) The admissible sub-objects and quotient objects of M ∈ Mat• correspond respec-

tively to matroids M|S and M/S for subsets S ⊆ ẼM.

(2) The indecomposable objects of Mat• are precisely the connected pointed ma-

troids.

(3) The admissible sub-quotients of M ∈ Mat• are precisely the pointed minors of

M.

(4) The forgetful functor F : Mat• 7→ Set• is an exact functor of proto-exact cate-

gories.
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The above proof shows that the biCartesian completions of the diagrams from Defini-

tion (2.1) in Mat• are minors of the matroids in the diagrams. LetM be a collection of

pointed matroids which is closed under taking pointed minors, and let Mat•(M) denote

the full sub-category of Mat• generated by objects inM. We then obtain

Theorem 5.9. Mat•(M) has the structure of proto-exact category. It is a full sub-category

of Mat•.

6. ALGEBRAIC K-THEORY OF MATROIDS

6.1 K-theory of proto-exact categories. We begin by recalling the construction of the

algebraic K-theory of a proto-exact category following [6, 11]. Let C be a proto-exact

category and let Sn = Sn(C) denote the maximal groupoid in the category of diagrams

of the form

(11) 0 � � // A0,1
� � //

����

A0,2
� � //

����

. . . A0,n−1
� � //

����

A0,n

����

0 � � // A1,2
� � //

����

. . . A1,n−1
� � //

����

A1,n

����

0
. . .

...
...

An−2,n−1
� � //

����

An−2,n

����

0 � � // An−1,n

����

0

where all horizontal maps are in M and all vertical maps in E, and all squares are required

to be biCartesian. For every 0 ≤ k ≤ n, there is a functor

∂k : Sn → Sn−1

obtained by omitting in the diagram (11) the objects in the kth row and kth column and

forming the composite of the remaining morphisms. Similarly, for every 0 ≤ k ≤ n, there

is a functor

σk : Sn → Sn+1

given by replacing the kth row by two rows connected via identity maps and replacing

the kth column by two columns connected via identity maps. S∗(C) together with the

∂∗, σ∗ forms a simplicial object in the category of groupoids.
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Definition 6.1. The K-theory of C is defined by

(12) Kn(C) = πn+1|S•C|,

where |S•C| denotes the geometric realization of S•C.

Remark 6.2. One may also develop K-theory of proto-exact categories via a version of

Quillen’s Q-construction. It is shown in [11] that this approach leads to isomorphic K-

groups. In particular, Theorem 1.1, whose original proof used the Q-construction, re-

mains valid if the K-theory of Set• is defined as in Definition 6.1.

The Grothendieck group K0(C) can be described explicitly as the free group on sym-

bols [A], A ∈ Iso(C), modulo the relations [B] = [A][C] for each admissible short exact

sequence

A →֒ B ։ C.

When C admits direct sums for which

A →֒ A⊕ B ։ B and B →֒ A⊕ B ։ A

are both admissible, which is the case for C = Mat•, K0(C) is Abelian, and can be de-

scribed as the free Abelian group on [A] ∈ Iso(C) modulo the relations [B] = [A] + [C].

K-theory is functorial under exact functors, meaning that an exact functor between proto-

exact categories F : C 7→ D induces group homomorphisms

F∗ : Kn(C) 7→ Kn(D)

compatible with composition.

6.2 K-theory of Mat•. We begin by calculating the Grothendieck group of Mat•. Given

a non-zero pointed matroid M and e ∈ ẼM, we have an admissible short exact sequence

M|e →֒ M ։ M/e

Iterating this procedure shows that the class of any M ∈ Mat• can be expressed as a

sum of pointed matroids with one-element ground sets. There are two non-isomorphic

such matroids, denoted a, b, where rk(a) = 1 and rk(b) = 0 (i.e. b is a "non-zero pointed

loop"). They span K0(Mat•) and are easily seen to be independent, since rank and ground

set cardinality is additive in admissible short exact sequences. We have thus proved the

following:

Theorem 6.3. There is an isomorphism

K0(Mat•)→ Z⊕Z

determined by

M→ (rk(M), |EM | − rk(M))
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for each pointed matroid M.

The forgetful functor F : Mat• → Set• sending a pointed matroid to its ground set

has a left adjoint (see [12]) G : Set• → Mat• sending a pointed set E to the "free pointed

matroid on E". More precisely, G(E) is the pointed matroid whose flats consist of all

subsets of E containing the basepoint. We have F ◦G = I, which implies the following:

Theorem 6.4. There are injective group homomorphisms

πs
n(S) ≃ Kn(Set•) →֒ Kn(Mat•)

for all n ≥ 0.

This shows in particular that Kn(Mat•) is in general non-trivial for n > 0, and contains

interesting information of a homotopy-theoretic nature.

7. HMat• AND THE MATROID-MINOR HOPF ALGEBRA

In this section, we relate the Hall algebra of E = Mat• ( and more generally of the

categories Mat•(M)) to the Matroid-Minor Hopf algebras introduced by W. R. Schmitt

in [22]. We begin by reviewing the latter, adapting to the case of pointed matroids.

7.1 The Matroid-Minor Hopf algebra. LetM be a collection of pointed matroids which

is closed under taking pointed minors and direct sums and Miso be the set of isomor-

phism classes of pointed matroids inM. Let [M] be the isomorphism class of a pointed

matroid M inM. Miso is equipped with a natural commutative monoid structure, via

the pointed direct sum, as follows:

[M1] · [M2] := [M1 ⊕M2]

and the identity [({∗}, ∗)], the equivalence class of the zero pointed matroid. Let k[Miso]

be the monoid algebra ofMiso over a field k.

In [22] Schmitt constructs a comultiplication and counit:

• (Coproduct)

∆ : k[Miso]→ k[Miso]⊗k k[Miso], [M] 7→ ∑
S⊆ẼM

[M|S]⊗ [M/S].

• (Counit)

ε : k[Miso]→ k, [M] 7→

{
1 if EM = ∅

0 if EM 6= ∅,

k[Miso] carries a natural grading, where deg(M, ∗M) = #ẼM. With the above maps

and grading, k[Miso] becomes a graded connected bialgebra and hence, from the result
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of M. Takeuchi [27], k[Miso] has a unique Hopf algebra structure with a unique antipode

S given by:

(13) S = ∑
i∈N

(−1)imi−1 ◦ π⊗i ◦ ∆i−1,

where m−1 is a canonical injection from k to k[Miso], ∆−1 := ε, and π : k[Miso]→ k[Miso]

is the projection map defined by

π|k[Miso ]n

{
id if n ≥ 1

0 if n = 0,

and extended linearly to k[Miso].

Remark 7.1. The requirement that M be closed under direct sums is only needed to

define the algebra structure. The coalgebra structure requires only that M be closed

under taking minors. IfM1 ⊆M2, then k[M1] is a Hopf subalgebra of k[M2].

The dual Hopf algebra of k[Miso], denoted k[Miso]∗, is described explicitly in [1, 16].

It is shown that k[Miso]∗ is isomorphic to { f :Miso → k}, with the product given by the

convolution:

(14) f ⋄ g([M]) = ∑
S⊆ẼM

f ([M|S])g([M/S])

and coproduct

∆( f )([M], [N]) := f ([M ⊕ N])

Comparing this with the Hopf structure of the Hall algebra HMat•(M) of Section 2.1, we

see that the coproducts agree, and the algebra structures are opposite of each other; i.e.

• = ⋄op. However, every enveloping algebra possesses an algebra anti-automorphism

which fixes the coproduct. We thus obtain:

Theorem 7.2. Let M be a collection of pointed matroids closed under taking pointed

minors and direct sums. Then HMat•M ≃ k[Miso]∗, where k[Miso]∗ denotes Schmitt’s

matroid-minor Hopf algebra attached to the collection M. HMat•M ≃ U(δ[M]), [M] ∈

Miso
ind, whereMiso

ind denotes the isomorphism classes of connected pointed matroids

inMiso.
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