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Abstract. We study ideals in Hall algebras of monoid representations on pointed
sets corresponding to certain conditions on the representations. These conditions
include the property that the monoid act via partial permutations, that the
representation possess a compatible grading, and conditions on the support of the
module. Quotients by these ideals lead to combinatorial Hopf algebras which can
be interpreted as Hall algebras of certain sub-categories of modules. In the case of
the free commutative monoid on n generators, we obtain a co-commutative Hopf
algebra structure on n-dimensional skew shapes, whose underlying associative
product amounts to a "stacking" operation on the skew shapes. The primitive
elements of this Hopf algebra correspond to connected skew shapes, and form a
graded Lie algebra by anti-symmetrizing the associative product. We interpret
this Hopf algebra as the Hall algebra of a certain category of coherent torsion
sheaves on An

/F1
supported at the origin, where F1 denotes the field of one

element. This Hopf algebra may be viewed as an n-dimensional generalization
of the Hopf algebra of symmetric functions, which corresponds to the case n = 1.

1. Introduction

This paper introduces a Lie algebra structure skn on n-dimensional connected
skew shapes. The enveloping algebra U(skn) is constructed as the Hall algebra
of a sub-category of torsion sheaves on An

/F1
supported at the origin, where

F1 denotes the "field of one element". The connected skew shapes correspond
to the indecomposable objects of this category. In the introduction below we
explain how the Hall algebra construction, applied in non-additive contexts such
as that of algebraic geometry over F1 produces combinatorial Hopf algebras
of a representation theoretic nature which can be viewed as degenerations of
quantum-group like objects over Fq.
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1.1. Hall algebras of Abelian categories. The study of Hall algebras is by now
a well-established area with several applications in representation theory and
algebraic geometry (see [24] for a very nice overview). We briefly recall the
generic features of the most basic version of this construction. Given an abelian
category C, let

Fli(C) := {A0 ⊂ A1 ⊂ · · · ⊂ Ai| Ak ∈ Ob(C)}

denote the stack parametrizing flags of objects in C of length i + 1 (viewed here
simply as a set). Thus

Fl0(C) = Iso(C),

the moduli stack of isomorphism classes of objects of C, and

Fl1(C) = {A0 ⊂ A1| A0, A1 ∈ Ob(C)}

is the usual Hecke correspondence. We have maps

(1) πi : Fl1(C)→ Fl0(C), i = 1, 2, 3

where

π1(A0 ⊂ A1) = A0

π2(A0 ⊂ A1) = A1

π3(A0 ⊂ A1) = A1/A0

We may then attempt to define the Hall algebra of C as the space of Q-valued
functions on Fl0(C) with finite support, i.e.

HC = Qc[Fl0(C)]

with the convolution product defined for f , g ∈ HC

f ? g := π2∗(π
∗

3( f )π∗1(g)),

whereπ∗i denotes the usual pullback of functions andπi∗ denotes integration along
the fiber. To make this work, one has to impose certain finiteness conditions on
C. The simplest, and most restrictive such condition is that C is finitary, which
means that Hom(M, M′) and Ext1(M, M′) are finite sets for any pair of objects
M, M′ ∈ C. Important examples of categories C having these properties are
C = Rep(Q, Fq) - the category of representations of a quiver Q over a finite field
Fq, and C = Coh(X/Fq) - the category of coherent sheaves on a smooth projective
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variety X over Fq. In these examples, the structure constants of HC depend on the
parameter q, and HC recovers (parts of) quantum groups and their higher-loop
generalizations. The basic recipe for constructing HC sketched here has a number
of far-reaching generalizations that extend well beyond the case of C finitary (see
[24]).

The case when C = Coh(X/Fq) is especially rich, and reasonably explicit results
about the structure of HC are only available when dim(X) = 1. In this special case,
the stacks Fli(C) are naturally the domains of definition of automorphic forms for
the function field Fq(X), and so "live in" the Hall algebra HC. Here, the theory
makes contact with the Langlands program over function fields (for more on this,
see the beautiful papers [1, 2, 13, 14]). When dim(X) ≥ 2, the detailed structure of
HC remains quite mysterious, and the technical problems are considerable.

1.2. Hall algebras in a non-additive setting. A closer examination of the basic
construction of HC outlined above shows that the assumption that C be Abelian
is unnecessary. All that is needed to make sense of the Hecke correspondence
(1) used to define HC is a category with a reasonably well-behaved notions of
kernels/co-kernels and exact sequences. For instance, the paper [9] describes a
class of "proto-exact" categories, which need not be additive, and for which the
basic setup above can be made to work. Working in a non-additive context is
sometimes given the catch-all slogan of "working over F1", where F1 stands for
the mythical "field of one element". The terminology and notation stem from
the observation that functions enumerating various "linear" objects over Fq often
have a limit q→ 1 which enumerates some analogous combinatorial objects. This
is best illustrated with the example of the Grassmannian, where the number of
Fq-points is given by a q-binomial coefficient:

# Gr(k, n)/Fq =
[n]q!

[n− k]q![k]q!

where

[n]q! = [n]q[n− 1]q . . . [2]q

and

[n]q = 1 + q + q2 + . . .+ qn−1
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In the limit q→ 1 this reduces to the binomial coefficient (n
k), counting k-element

subsets of an n-element set. This suggests that a vector space over F1 should be a
(pointed) set, with cardinality replacing dimension.

Many examples of non-additive categories C where HC can be constructed
thus come from combinatorics. Here, Ob(C) typically consist of combinatorial
structures equipped an operation of "collapsing" a sub-structure, which
corresponds to forming a quotient in C. Examples of such C include trees,
graphs, posets, matroids, semigroup representations on pointed sets, quiver
representations in pointed sets etc. (see [18, 26–29] ). The product in HC, which
counts all extensions between two objects, thus amounts to enumerating all
combinatorial structures that can be assembled from the two. In this case, HC
is (dual to) a combinatorial Hopf algebra in the sense of [19]. Many combinatorial
Hopf algebras arise via this mechanism.

1.3. Hall algebras over F1 as degenerations of Hall algebras over Fq. One may
ask how the q → 1 limit behaves at the level of Hall algebras. Let us illustrate
this via an example. Given a Dynkin quiver Q, we may consider both the Abelian
category Rep(Q, Fq) and the non-additive category Rep(Q, F1). The latter is
defined by replacing ordinary vector spaces at each vertex by pointed sets (i.e.
"vector spaces over F1" - see [28] for details). The Lie algebra gQ with Dynkin
diagram (the underlying unoriented graph) Q has a triangular decomposition

gQ = nQ,− ⊕ h⊕ nQ,+.

By a celebrated result of Ringel and Green, one obtains that

HRep(Q,Fq) ' U√
q(nQ,+),

where the right hand side denotes the quantized enveloping algebra of nQ,+. On
the other hand, the author has shown that

HRep(Q,F1) ' U(nQ,+)/I

where on the right hand side we now have a quotient of the ordinary enveloping
algebra by a certain ideal I, which in type A is trivial. This suggests the following
(unfortunately, at this stage, very vague) principle: given a finitary abelian
category Cq linear over Fq and C1 a candidate for its "limit over F1", HC1 is a
(possibly degenerate) limit of HCq .
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This principle is borne out in another, more geometric example, when Cq =

Coh(P1
/Fq

). A result of Kapranov and Baumann-Kassel shows that in this case,
there is an embedding

Ψ : U√
q(Lsl

+
2 )→ HCq ,

where Lsl+2 denotes a non-standard Borel of the loop algebra of sl2. The category
C1 = Coh(P1

/F1
) is constructed using a theory of schemes over F1 and coherent

sheaves on them developed by Deitmar and others (see [4, 6, 7]). In this simplest
version of algebraic geometry over F1, schemes are glued out of prime spectra
of commutative monoids rather than rings, and coherent sheaves are defined as
sheaves of set-theoretic modules over the monoid structure sheaf. In [27], the
author shows that

HC1 ' U(Lgl+2 ⊕ κ)

where Lgl+2 denotes a Borel in the loop algebra of gl2 and κ is a certain
abelian cyclotomic factor. Moreover, this calculation is much easier than the
corresponding one over Fq.

When dim(X) ≥ 2 and X possesses a model over F1, one might then hope
to use the Hall algebra of C1 = Coh(X/F1) to learn something about the more
complicated Hall algebra of Coh(X/Fq). Naively, we may hope that the latter is a
q-deformation of the former. This paper begins this program by focussing on the
simplest piece of the category C1, that of torsion sheaves supported at a point. We
recall that when Y/Fq is a smooth curve and y ∈ Y is a closed point, the category
Tory ⊂ Coh(Y) of coherent sheaves supported at y is closed under extensions,
and yields a Hopf sub-algebra of HCoh(Y) isomorphic to the Hopf algebra Λ of
symmetric functions (see [24]). It is shown in [27] that this result holds over
F1 as well, provided one restricts to a certain sub-category of sheaves which in
this paper are called "type α", and which in [27] are called "normal". From this
perspective, this paper deals with the n-dimensional generalization of the Hopf
algebra of symmetric functions.

The monoid scheme An
/F1

has a single closed point - the origin, and coherent
sheaves supported there form a sub-category Tor0 ⊂ Coh(An

/F1
) closed under

extensions. Such sheaves correspond to pointed sets (M, 0M) with a nilpotent
action of the free commutative monoid A = F1〈x1, · · · , xn〉 on n generators
x1, · · · , xn, and form a category A-mod0 for which we may define a Hall algebra
H0,A. We consider a sub-category A-modα,gr

0 ⊂ A-mod of A-modules supported at
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0, which are furthermore of type α and admit a Zn-grading. The type α condition
is imposed to recover the Hopf algebra of symmetric functions when n = 1, and
the grading, which is automatic in the case n = 1 is imposed to dispose of certain
pathological examples. We show

Theorem (5.4.2). The indecomposable objects of A-modα,gr
0 correspond bijectively

to n-dimensional connected skew shapes.

Here by a skew shape we mean a finite sub-poset of Zn under the partial order
where (x1, · · · , xn) ≤ (y1, · · · , yn) iff xi ≤ yi for i = 1, · · · , n, considered up to
translation. Each skew shape determines a F1〈x1, · · · , xn〉-module where xi acts
by moving 1 box in the positive ith direction. For example, when n = 2, the skew
shape

•

•

determines a F1〈x1, x2〉-module on two generators (indicated by black dots), where
x1 moves one box to the right, and x2 one box up, until the edge of the diagram is
reached, and 0 beyond that.

We may now define the Hall algebra SKn of A-modα,gr
0 by counting admissible

short exact sequences in this category. This is a quotient of H0,A above. Paraphrased,
our main result says:

Theorem (6.0.1). The Hall algebra SKn of A-modα,gr
0 is isomorphic to the

enveloping algebra U(skn) of a graded Lie algebra skn. skn has a basis
corresponding to connected n-dimensional skew shapes. Furthermore, skn and
SKn carries an action of the symmetric group Sn by Lie (resp. Hopf) algebra
automorphisms.

The associative product in SKn corresponds to a "stacking" operation on skew
shapes.

1.4. Future directions. By a result of Deitmar, It is known that every smooth
proper toric variety X/Z has a model over F1 ([7]) I.e. there exists a monoid
scheme X′/F1

such that
X ' X′ ⊗F1 C
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The approach taken here to compute the Hall algebra of normal point sheaves may
be extended to construct the full Hall algebra of normal coherent sheaves on X
purely in terms of the combinatorics of the fan of X and n-dimensional partitions.
For instance, a coherent sheaf on A3 which is type α, graded, and supported on
the union of the coordinate axes may be visualized in terms of a 3-D asymptotic
partition like:

This Hall algebra is once again a co-commutative Hopf algebra, and contains
several copies of the Hopf algebra SKn above, one for each closed point of X′/F1
(here n = dim(X)), as well as larger Hopf subalgebras corresponding to various
co-dimension subvarieties of X′/F1. This theme will be taken up in future papers
[30, 31].

1.5. Outline. This paper is structured as follows:

(1) In Section 2 we recall basic properties of the category A-mod of
(set-theoretic) finite modules over a monoid A. We discuss what is meant
by exact sequences in this non-additive category, normal morphisms, as
well as additional conditions which lead to sub-categories of A-mod - type
α, graded, and modules with prescribed support.

(2) In Section 3 we briefly sketch the theory of schemes over F1 via monoid
schemes as introduced by Deitmar. This is done to allow a geometric
interpretation of our Hall algebra in terms of coherent sheaves on An

/F1
supported at the origin.
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(3) In Section 4 we recall the construction of the Hall algebra HA of A-mod,
defined by counting admissible short exact sequences. We show that
imposing one or several of the the conditions discussed in 2 (type α,
admitting a grading, prescribed support), yields Hopf ideals in HA. HA

and its various quotients by these ideals are isomorphic to enveloping
algebras of Lie algebras with basis the corresponding indecomposable
modules.

(4) In Section 5, we explain the bijection between n-dimensional skew shapes
and type α modules over F1〈x1, · · · , xn〉 supported at 0 and admitting a
Zn-grading.

(5) In Section 6 we make explicit the Lie and Hopf structures on skew shapes
which emerge from the Hall algebra construction.

(6) In Section 7 we outline structure of the Hopf duals of the Hall algebras
introduced previously.

Acknowledgements: The author gratefully acknowledges the support of a
Simons Foundation Collaboration Grant during the writing of this paper.

2. Monoids and their modules

A monoid A will be an associative semigroup with identity 1A and zero 0A (i.e.
the absorbing element). We require

1A · a = a · 1A = a 0A · a = a · 0A = 0A ∀a ∈ A

Monoid homomorphisms are required to respect the multiplication as well as the
special elements 1A, 0A.

Example 1. Let F1 = {0, 1}with

0 · 1 = 1 · 0 = 0 · 0 = 0 and 1 · 1 = 1.

We call F1 the field with one element.

Example 2. Let

F1〈x1, · · · , xn〉 := {xe1
1 xe2

2 · · · x
en
n |(e1, e2, · · · , en) ∈ Zn

≥0} ∪ {0},

the set of monomials in x1, · · · , xn, with usual multiplication of monomials. We
will often write elements of F1〈x1, · · · , xn〉 in multiindex notation as xe, e ∈ Zn

≥0, in



THE HOPF ALGEBRA OF SKEW SHAPES, TORSION SHEAVES ON An
/F1

, AND IDEALS IN HALL ALGEBRAS OF MONOID REPRESENTATIONS9

which case the multiplication is written as

xe
· x f = xe+ f .

We identify x0 with 1.

F1 and F1〈x1, · · · , xn〉 are both commutative monoids.

Definition 2.0.1. Let A be a monoid. An A–module is a pointed set (M, 0M) (with
0M ∈ M denoting the basepoint), equipped with an action of A. More explicitly,
an A–module structure on (M, 0M) is given by a map

A×M→M

(a, m)→ a ·m

satisfying

(a · b) ·m = a · (b ·m), 1 ·m = m, 0 ·m = 0M, a · 0M = 0M, ∀a, b,∈ A, m ∈M

A morphism of A–modules is given by a pointed map f : M → N compatible
with the action of A, i.e. f (a ·m) = a · f (m). The A–module M is said to be finite if
M is a finite set, in which case we define its dimension to be dim(M) = |M| − 1 (we
do not count the basepoint, since it is the analogue of 0). We say that N ⊂ M is
an A–submodule if it is a (necessarily pointed) subset of M preserved by the action
of A. A always posses the trivial module {0}, which will be referred to as the zero
module.

Note: This structure is called an A-act in [17] and an A-set in [5].

We denote by A-mod the category of finite A–modules. It is the F1 analogue
of the category of a finite-dimensional representations of an algebra. Note that
for M ∈ A-mod, EndA-mod(M) := HomA-mod(M, M) is a monoid (in general
non-commutative). An F1–module is simply a pointed set, and will be referred to
as a vector space over F1. Thus, an A–module structure on M ∈ F1-mod amounts
to a monoid homomorphism A→ EndF1-mod(M).

Given a morphism f : M→ N in A-mod, we define the image of f to be

Im( f ) := {n ∈ N|∃m ∈M, f (m) = n}.
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For M ∈ A-mod and an A–submodule N ⊂ M, the quotient of M by N, denoted
M/N is the A–module

M/N := M\N ∪ {0},

i.e. the pointed set obtained by identifying all elements of N with the base-point,
equipped with the induced A–action.

We recall some properties of A-mod, following [5, 17, 29], where we refer the
reader for details:

(1) For M, N ∈ A-mod, |HomA-mod(M, N)| < ∞

(2) The trivial A–module 0 is an initial, terminal, and hence zero object of
A-mod.

(3) Every morphism f : M→ N in CA has a kernel Ker( f ) := f−1(0N).
(4) Every morphism f : M→ N in CA has a cokernel Coker( f ) := M/Im( f ).
(5) The co-product of a finite collection {Mi}, i ∈ I in A-mod exists, and is given

by the wedge product ∨
i∈I

Mi =
∐

Mi/ ∼

where ∼ is the equivalence relation identifying the basepoints. We will
denote the co-product of {Mi} by

⊕i∈IMi

(6) The product of a finite collection {Mi}, i ∈ I in A-mod exists, and is given
by the Cartesian product

∏
Mi, equipped with the diagonal A–action. It

is clearly associative. it is however not compatible with the coproduct in
the sense that M× (N ⊕ L) ;M×N ⊕M× L.

(7) The category A-mod possesses a reduced version M∧N of the Cartesian
product M×N, called the smash product. M∧N := M×N/M∨N, where
M and N are identified with the A–submodules {(m, 0N)} and {(0M, n)} of
M×N respectively. The smash product inherits the associativity from the
Cartesian product, and is compatible with the co-product - i.e.

M∧ (N ⊕ L) 'M∧N ⊕M∧ L.

(8) A-mod possesses small limits and co-limits.
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(9) If A is commutative, A-mod acquires a monoidal structure called the tensor
product, denoted M⊗A N, and defined by

M⊗A N := M×N/ ∼⊗

where ∼⊗ is the equivalence relation generated by (a ·m, n) ∼⊗ (m, a · n)
for all a ∈ A, m ∈ M, n ∈ N. Note that (0M, n) = (0 · 0M, n) ∼⊗ (0M, 0 · n) =
(0M, 0N), and likewise (m, 0N) ∼⊗ (0M, 0N). This allows us to rewrite
the tensor product as M ⊗A N = M ∧ N/ ∼⊗′ , where ∼⊗′ denotes the
equivalence relation induced on M∧N by ∼⊗. We have

M⊗A N ' N ⊗A M,

(M⊗A N) ⊗A L 'M⊗A (N ⊗A L),

M⊗A (L⊕N) ' (M⊗A L) ⊕ (M⊗A N).

(10) Given M in A-mod and N ⊂ M, there is an inclusion-preserving
correspondence between flags N ⊂ L ⊂ M in A-mod and A–submodules
of M/N given by sending L to L/N. The inverse correspondence is given
by sending K ⊂ M/N to π−1(K), where π : M → M/N is the canonical
projection. This correspondence has the property that if N ⊂ L ⊂ L′ ⊂ M,
then (L′/N)/(L/N) ' L′/L.

These properties suggest that A-mod has many of the properties of an abelian
category, without being additive. It is an example of a quasi-exact and belian
category in the sense of Deitmar [8] and a proto-exact category in the sense of
Dyckerhof-Kapranov [9]. Let Iso(A-mod) denote the set of isomorphism classes
in A-mod, and by M the isomorphism class of M ∈ A-mod.

Definition 2.0.2. (1) We say that M ∈ A-mod is indecomposable if it cannot be
written as M = N ⊕ L for non-zero N, L ∈ A-mod.

(2) We say M ∈ A-mod is irreducible or simple if it contains no proper
sub-modules (i.e those different from 0 and M).

It is clear that every irreducible module is indecomposable. We have the
following analogue of the Krull-Schmidt theorem ([29]):

Proposition 2.0.1. Every M ∈ A-mod can be uniquely decomposed (up to reordering)
as a direct sum of indecomposable A–modules.
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Remark 2.0.3. Suppose M = ⊕k
i=1Mi is the decomposition of an A–module into

indecomposables, and N ⊂ M is a submodule. It then immediately follows that
N = ⊕(N ∩Mi).

Given a ring R, denote by R[A] the semigroup ring of A with coefficients in R.
We obtain a base-change functor:

(2) ⊗F1 R : A-mod→ R[A] −mod

to the category of R[A]–modules defined by setting

M⊗F1 R :=
⊕

m∈M,m,0M

R ·m

i.e. the free R–module on the non-zero elements of M, with the R[A]–action
induced from the A–action on M.

2.1. Exact Sequences. A diagram M1
f
→M2

g
→M3 in A-mod is said to be exact at

M2 if Ker(g) = Im( f ). A sequence of the form

0→M1 →M2 →M3 → 0

is a short exact sequence if it is exact at M1, M2 and M3.

One key respect in which A-mod differs from an abelian category is he fact
that given a morphism f : M → N, the induced morphism M/Ker( f ) → Im( f )
need not be an isomorphism. This defect also manifests itself in the fact that the
base change functor ⊗F1R : A-mod → R[A] −mod fails to be exact (i.e. the base
change of a short exact sequence is in general no longer short exact). A-mod does
however contain a (non-full) subcategory which is well-behaved in this sense,
and which we proceed to describe.

Definition 2.1.1. A morphism f : M → N is normal if every fibre of f contains at
most one element, except for the fibre f−1(0N) of the basepoint 0N ∈ N.

It is straightforward to verify that this condition is equivalent to the requirement
that the canonical morphism M/Ker( f )→ Im( f ) be an isomorphism, and that the
composition of normal morphisms is normal.

Definition 2.1.2. Let A-modn denote the subcategory of A-mod with the same
objects as A-mod, but whose morphisms are restricted to the normal morphisms
of A-mod. A short exact sequence in A-modn is called admissible.
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Remark 2.1.3. In contrast to A-mod, A-modn is typically neither (small) complete
nor co-complete. However, ⊗F1R is exact on A-modn for any ring R, in the
sense that this functor takes admissible short exact sequences in A-mod to short
exact sequences in the Abelian category R[A] −mod. Note that Iso(A-mod) =

Iso(A-modn), since all isomorphisms are normal.

The following simple result is proved in [29]:

Proposition 2.1.1. Let A be a monoid and A-modn as above.

Suppose A is finitely generated. For M, N ∈ A-modn, there are finitely many admissible
short exact sequences

(3) 0→M
f
→ L

g
→ N→ 0

up to isomorphism.

Definition 2.1.4. Let A be a monoid. The Grothendieck Group of A is

K0(A) := Z[M]/J, M ∈ Iso(A-modn),

where J is the subgroup generated by L −M −N for all admissible short exact
sequences (3).

2.2. Modules of type α and graded modules.

2.2.1. Modules of type α. Given a monoid A and M ∈ A-mod, we may for each
a ∈ A consider the morphism

φa : M→M

φa(m) = a ·m

in F1-mod (note that φa is not a morphism in A-mod unless A is commutative).

Definition 2.2.1. We say that M is of type α if ∀a ∈ A, the morphism φa : M→ M
is a normal morphism in F1-mod.

Equivalently, if M is type α, then

a ·m1 = a ·m2 ⇐⇒ m1 = m2 OR a ·m1 = a ·m2 = 0

for a ∈ A, m1, m2 ∈M.
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Example 3. Let A = F1〈t〉. An A-module is simply a vector space M over F1 with
an endomorphism t ∈ EndF1-mod(M). M is thus type α as an A–module iff t is a
normal morphism, i.e. if t|M\t−1(0m) is injective. Thus, if M = {0, a, b, c}, and the
action of t is defined by

t(a) = 0, t(b) = a, t(c) = b,

then M is type α. If however, we define the action of t by

t(a) = b = t(b), t(c) = 0,

then M is not of type α.

Remark 2.2.2. Let M be A-module, and a ∈ A, and φa as above. Let M ⊗F1 Z be
the Z[A]-module obtained via base change. The action of φa on M extends to an
endomorphism φZ

a of M ⊗F1 Z which can be represented as a square dim(M) ×

dim(M) matrix, having all entries either 0 or 1, and such that each column has at
most one 1. The condition that M is type α implies that each row also contains
at most one 1 (i.e. that φa is a partial permutation matrix). Note that we always
have the inclusion

Ker(φa) ⊗F1 Z ⊂ Ker(φZ
a ) ∀a ∈ A .

M being type α is equivalent to the requirement that it be an isomorphism ∀a ∈ A.

The proof of the following proposition is straightforward:

Proposition 2.2.1. Let A be monoid.

(1) If M is an A-module of type α and N ⊂M is a submodule, then both N and M/N
are type α.

(2) If M1, M2 are A-modules of type α, then so are M1 ⊕M2 and M1 ∧M2.
(3) If A is commutative, and M1, M2 are A-modules of type α, then so is M1 ⊗A M2.

Remark 2.2.3. In general, an extension of type α modules need not be type α.
Consider the F1〈t〉-module M = {0, a, b, c, d}, with t acting by

t(a) = t(b) = c, t(c) = d, t(d) = 0,

and the sub-module N = {0, a, c, d}. Then the short exact sequence

0→ N→M→M/N→ 0

is admissible (i.e. all morphisms are normal), and N, M/N are type α, but M is
not.
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Definition 2.2.4. Let A-modαn denote the full subcategory of A-modn consisting
of type α A-modules and normal morphisms.

We thus have a chain of sub-categories

A-modαn ⊂ A-modn ⊂ A-mod

2.2.2. Graded modules and modules admitting a grading. Let Γ is a commutative
monoid written additively, and A a Γ-graded monoid. By this we mean that A
can be written as

(4) A =
⊕
γ∈Γ

Aγ

as F1 vector spaces, with 1A, 0A ∈ A0, and Aγ ·Aδ ⊂ Aγ+δ.

Definition 2.2.5. A graded A-module is an A-module M with a decomposition

(5) M =
⊕
γ∈Γ

Mγ

such that 0 ∈M0 and Aγ ·Mδ ⊂Mγ+δ.

We note that a sub-module of a graded module is automatically homogenous.
The following lemma is obvious:

Lemma 2.2.6. Let A be a Γ-graded monoid.

(1) If M is a graded A-module and N ⊂ M is a submodule, then both N and M/N
inherit a canonical grading.

(2) If M1, M2 are graded A-modules, then so are M1 ⊕M2 and M1 ∧M2.
(3) If A is commutative, and M1, M2 are graded, then M1 ⊗A M2 carries a canonical

grading with deg(m1 ⊗m2) = deg(m1) + deg(m2).

Given a graded A-module M and ρ ∈ Γ, we denote by M[ρ] the graded module
with M[ρ]γ := Mγ+ρ. We say that a module M admits a grading if it has the structure
(5) for some grading. We denote by A-modgr

n the full sub-category of A-modn of
modules admitting a grading. We do not a priori require the morphisms to be
compatible with these. By 2.2.6, every morphism in A-modgr

n has a kernel and
co-kernel. We have a chain of inclusions

A-modgr
n ⊂ A-modn ⊂ A-mod .
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3. Schemes and coherent sheaves over F1

In this section, we briefly review the notions of monoid schemes and coherent
sheaves on them. These form the simplest version of a theory of "algebraic
geometry over F1", which allows for a geometric interpretation of the main results
of the paper. In the interest of brevity, we do not aim for this section to be
self-contained, and refer the interested reader to [4, 6, 23] for details.

Just as an ordinary scheme is obtained by gluing prime spectra of commutative
rings, a monoid scheme is obtained by gluing prime spectra of commutative
monoids. Given a commutative monoid A, an ideal of A is a subset a ⊂ A such
that a ·A ⊂ a. A proper ideal p ⊂ A is prime if xy ∈ p implies either x ∈ p or y ∈ p.
One defines the topological space MSpec A to be the set

MSpec A := {p|p ⊂ A is a prime ideal },

with the closed sets of the form

V(a) := {p|a ⊂ p, p prime },

for ideals a ∈ A, together with the empty set.

Given a multiplicatively closed subset S ⊂ A, the localization of A by S, denoted
S−1 A, is defined to be the monoid consisting of symbols { as |a ∈ A, s ∈ S}, with the
equivalence relation

a
s
=

a′

s′
⇐⇒ ∃ s′′ ∈ S such that as′s′′ = a′ss′′,

and multiplication is given by a
s ×

a′
s′ =

aa′
ss′ .

For f ∈ A, let S f denote the multiplicatively closed subset {1, f , f 2, f 3, · · · , }. We
denote by A f the localization S−1

f A, and by D( f ) the open set MSpec A \V( f ) '
MSpec A f , where V( f ) := {p ∈ MSpec A | f ∈ p}. The open sets D( f ) cover
MSpec A. MSpec A is equipped with a structure sheaf of monoids OA, satisfying
the property Γ(D( f ),OA) = A f . Its stalk at p ∈ MSpec A is Ap := S−1

p A, where
Sp = A\p. Just as in the classical setting, the category of affine monoid schemes
is equivalent to the opposite of the category of commutative monoids. From
here, one can proceed to construct general monoid schemes by gluing the affines
(MSpec A,OA).
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One develops the theory of quasicoherent sheaves on monoid schemes just as in
the classical case, and obtains an equivalence between the category of A-modules
and the category of quasicoherent sheaves on MSpec A. An A-module M gives
rise to a quasicoherent sheaf M̃ on MSpec A whose space of sections over a basic
open affine D( f ) is

M̃(D( f )) := M f

(where M f is defined in the obvious way), and all quasicoherent sheaves arise
this way. For an element m ∈M, define

AnnA(m) := {a ∈ A |a ·m = 0M}.

Obviously, 0A ⊂ AnnA(m) ∀m ∈M. Define

AnnA(M) =
⋂

m∈M

AnnA(m).

AnnA(M) is an ideal in A, and when M is finitely generated defines the
scheme-theoretic support of M, i.e.:

Supp(M) = {p ∈MSpec A |Mp , 0} = V(AnnA(M)).

We will need the following result, which is proved the same way as for
commutative rings and their modules

Lemma 3.0.1. Suppose that A is a commutative monoid, and that

0→M→L→N→ 0

is an admissible exact sequence. Then Supp(L) = Supp(M)∪ Supp(N)

This shows that A-modules with support contained in a closed subset Z ⊂
MSpec A are closed under admissible extensions.

4. The Hall algebra of A-modn and its quotients

Let A be a finitely generated monoid. We begin this section by reviewing the
construction of the Hall algebra HA of the category A-modn following [29]. We
then discuss Hopf ideals in HA corresponding to the conditions introduced in
Section 2.2 and prescribed support in Section 3. For more on Hall algebras in the
classical setting of Abelian categories, we refer the reader to [24].
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As a vector space:

HA := { f : Iso(A-modn)→ Q | # supp( f ) < ∞}.

We equip HA with the convolution product

f ? g(M) =
∑

N⊂M

f (M/N)g(N),

where the sum is over all A sub-modules N of M (in what follows, it is conceptually
helpful to fix a representative of each isomorphism class). Note that Lemma 2.1.1
and the finiteness of the support of f , g ensures that the sum in (4) is finite, and
that f ? g is again finitely supported.

HA is spanned by δ-functions δM ∈ HA supported on individual isomorphism
classes, and so it is useful to make explicit the multiplication of two such elements.
We have

(6) δM ? δN =
∑

R∈Iso(A-modn)

PR
M,NδR

where
PR

M,N := #|{L ⊂ R, L ' N, R/L 'M}|

The product
PR

M,N|Aut(M)||Aut(N)|

counts the isomorphism classes of admissible short exact sequences of the form

(7) 0→ N→ R→M→ 0,

where Aut(M) is the automorphism group of M.

HA is equipped with a coproduct

∆ : HA → HA ⊗HA

given by

(8) ∆( f )(M, N) := f (M⊕N).

which is clearly co-commutative, as well as a natural grading by Z≥0

corresponding to the dimension of M ∈ A-modn, i.e. if dim(M) = n, then
deg(δM) = n.

Remark 4.0.1. HA also carries a grading by K0(A-modn) with deg(δM) = [M] ∈

K0(A-modn)
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The following theorem is proved in [29]:

Theorem 4.0.2. (HA,?, ∆) is a graded, connected, co-commutative bialgebra. It is called
the Hall algebra of A–modules.

By the Milnor-Moore theorem, HA is a Hopf algebra isomorphic to U(nA) -
the universal enveloping algebra of nA, where the latter is the Lie algebra of its
primitive elements. The definition of the co-product implies that nA is spanned
by δM for isomorphism classes M of indecomposable A–modules, with bracket

[δM, δN] = δM ? δN − δN ? δM.

4.1. Ideals and quotients of Hall algebras. The product (6) in HA counts all
admissible A-module extensions of M by N. We now proceed to define Hopf
ideals in HA yielding quotients which may be interpreted as Hall algebras of
certain sub-categories of A-modn.

4.1.1. Hα
A. Let

J
α = span{δM|M is not of type α} ⊂ HA .

Theorem 4.1.1. Jα
⊂ HA is a Hopf ideal.

Proof. Jα is a graded subspace contained in the augmentation ideal of HA. By the
Milnor-Moore theorem, It suffices to show thatJα is a bialgebra ideal, since then
HA /Jα will again be a graded, connected, co-commutative bialgebra. It follows
from part (1) of Proposition 2.2.1 thatJα is two-sided ideal for the product ?. To
show that it is a co-ideal, it suffices to show that if M is not of type α, then

(9) ∆(δM) ⊂ HA ⊗J
α +Jα

⊗HA.

From the definition of the co-product (8), ∆(δM) is a linear combination of terms
of the form δM′ ⊗ δM′′ where M = M′ ⊕M′′. It follows from part (2) of Proposition
2.2.1 that δM′ ∈ J

α or δM′′ ∈ J
α. �

Definition 4.1.2. The Hall algebra of A–modules of type α is the Hopf algebra

Hα
A := HA /Jα.

It is immediate that Hα
A ' U(nαA), where the Lie algebra

nαA = span{δM|M is indecomposable of type α},
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and where

(10) δM ? δN =
∑

R∈Iso(A-modαn)

PR
M,NδR

4.1.2. Hgr
A . Suppose that A is a Γ-graded monoid as in Section 2.2.2. Let

J
gr = span{δM|M does not admit a grading} ⊂ HA

Theorem 4.1.3. J gr
⊂ HA is a Hopf ideal.

Proof. The proof is identical to that of Theorem 4.1.1 except Lemma 2.2.6 is used
rather than Proposition 2.2.1 �

Definition 4.1.4. The Hall algebra of modules admitting a grading is the Hopf algebra

Hgr
A := HA /J gr.

We have an isomorphism Hgr
A ' U(n

gr
A ) where the Lie algebra

n
gr
A = span{δM|M is indecomposable and admits a grading },

and where

(11) δM ? δN =
∑

R∈Iso(A-modgr
n )

PR
M,NδR

Remark 4.1.5. If A is a graded monoid, we may combine the two previous
constructions, as Jα +J gr is also a Hopf ideal, to obtain the quotient

Hα,gr
A := HA /(Jα +J gr)

We then have the following diagram of Hopf algebras

(12)

HA Hα
A

Hgr
A Hα,gr

A
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4.2. Hall algebras of modules with prescribed support. Suppose now that A is a
finitely generated commutative monoid, and let Z ⊂MSpec A be a closed subset.
By Lemma 3.0.1, the A-modules with support contained in Z form a sub-category
A-modZ,n ⊂ A-modn closed under extensions. Likewise, we obtain a sub-category
A-modαZ,n ⊂ A-modαn by restricting to modules of type α with support in Z. Let

(13) HZ,A := span{δM ∈ HA | supp(M) ⊂ Z}

(14) Hα
Z,A := span{δM ∈ Hα

A | supp(M) ⊂ Z}

If A is graded, we can also form

(15) Hgr
Z,A := span{δM ∈ Hgr

A | supp(M) ⊂ Z}

as well as Hα,gr
Z,A etc. The following is immediate:

Proposition 4.2.1. Let A be a finitely generated commutative monoid, and Z ⊂MSpec A
a closed subset. Then HZ,A, Hα

Z,A, Hgr
Z,A, Hα,gr

Z,A defined as in 13, 14, 15 form graded,
connected, co-commutative Hopf subalgebras of HA, Hα

A, Hgr
Z,A, Hα,gr

A respectively.

Example 4. Let A = F1〈t〉. An A-module M may be described in terms of a
directed graph with an edge from m to t ·m if t ·m , 0. The possible directed
graphs arising this way from indecomposable A–modules were classified in [29].
These are either rooted trees (Figure 1), or a cycle with rooted trees attached
(Figure 2). We will refer to these as type 1 and 2 respectively. If M is of type 1,
then AnnA(M) = (t) (these modules are nilpotent), so the corresponding coherent
sheaf is supported at the origin, whereas if M is of type 2, AnnA(M) = 0, so the
support is A1

/F1
.

(1) The indecomposable modules of type α are those whose graphs have the
property that every vertex has at most one incoming edge. These are the
vertical ladders (type 1), and the directed polygons (type 2).

(2) If we give A the grading where t has degree 1, only type 1 modules admit
a grading.

As shown in [28,29] the corresponding Hall algebras can be described as follows

(1) We have that H0,A = Hgr
A = Hgr

0,A. This Hopf algebra is dual to the
Connes-Kreimer Hopf algebra of rooted forests.



22 MATT SZCZESNY

(2) H∗A, the Hopf dual of the full Hall algebra, is an extension of the
Connes-Kreimer algebra by cycles of type 2.

(3) Hα
0,A = Hα,gr

A = Hα,gr
0,A is the Hopf algebra of symmetric functions, with the

n-vertex ladder corresponding to the n-th power sum.

Figure 1 Figure 2

5. Skew shapes and torsion sheaves onAn
/F1

In this section, we will be exclusively focussed on the monoid F1〈x1, · · · , xn〉. It
is naturally graded by Zn

≥0, with deg(xi) = ei, where ei denotes the ith standard
basis vector in Zn. We have

An
/F1

= MSpec F1〈x1, · · · , xn〉.

5.1. n-dimensional skew shapes. We begin by introducing a natural partial order
on Zn, where for

x = (x1, · · · , xn) ∈ Zn and y = (y1, · · · , yn) ∈ Zn,

x ≤ y ⇐⇒ xi ≤ yi for i = 1, · · · , n.

Definition 5.1.1. An n-dimensional skew shape is a finite convex sub-poset S ⊂ Zn.
S is connected iff the corresponding poset is. We consider two skew shapes S, S′

to be equivalent iff S′ is a translation of S, i.e. if there exists a ∈ Zn such that
S′ = a + S.

The condition that S is connected is easily seen to be equivalent to the condition
that any two elements of S can be connected via a lattice path lying in S. The
name skew shape is motivated by the fact that for n = 2, a connected skew shape
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in the above sense corresponds (non-uniquely) to a difference λ\µ of two Young
diagrams in French notation.

Example 5. Let n = 2, and

S ⊂ Z2 = {(1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (0, 2)}

(up to translation by a ∈ Z2). Then S corresponds to the connected skew Young
diagram

5.2. Skew shapes as modules. Let S ⊂ Zn be a skew shape. We may attach to S
a F1〈x1, · · · , xn〉-module MS with underlying set

MS = St {0},

and action of F1〈x1, · · · , xn〉 defined by

xe
· s =

s + e, if s + e ∈ S

0 otherwise

e ∈ Zn
≥0, s ∈ S.

It is clear that MS is a F1〈x1, · · · , xn〉-module of type α, and that mk
·MS = 0 for k

sufficiently large, where m = (x1, · · · , xn) is the maximal ideal.

Example 6. Let S as in Example 5. x1 (resp. x2) act on the F1〈x1, x2〉-module MS

by moving one box to the right (resp. one box up) until reaching the edge of the
diagram, and 0 beyond that. A minimal set of generators for MS is indicated by
the black dots:

•

•

The proof of the following lemma is straightforward:

Lemma 5.2.1. Let S ⊂ Zn be a skew shape, and MS the corresponding
F1〈x1, · · · , xn〉-module. Then the following hold:

(1) Supp MS = 0 ⊂An.
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(2) MS admits a grading, unique up to translation by Zn.
(3) MS is indecomposable iff S is connected.
(4) The decomposition of S into connected components

S = S1 t S2 · · · t Sk

corresponds to the decomposition of MS into indecomposable factors

MS = MS1 ⊕MS2 ⊕ · · · ⊕MSk .

(5) The minimal elements of S form a unique minimal set of generators for MS.
(6) MS is cyclic (i.e. generated by a single element) iff S corresponds to an ordinary

n-dimensional Young diagram.
(7) If T ⊂ S is a sub-poset, then MT is a sub-module of MS iff S\T is an order ideal.
(8) If MT ⊂ MS is a sub-module corresponding to the sub-poset T ⊂ S, then the

quotient MS/MT 'MS\T.

Remark 5.2.2. It follows from part (6) of Lemma 5.2.1 that sub-modules of MS

correspond to (not necessarily connected) skew shapes aligned along the outer
edge of S.

Remark 5.2.3. Cyclic F1〈x1, · · · , xn〉-modules can be thought of as the Hilbert
Scheme of points on An/F1, and correspond to ordinary n-dimensional Young
diagrams. This is consistent with the fact that these parametrize the torus
fixed-points of (C∗)n on the Hilbert scheme of points on An/C, which correspond
to monomial ideals in C[x1, · · · , xn].

Example 7. Let S be the skew shape below, with T ⊂ S corresponding to the
sub-shape whose boxes contain t’s.

t
t
t t

t

We have
MT = ⊕ ⊕

and
MS/MT = ⊕
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5.3. Tableaux and filtrations. When n = 2, standard and semi-standard skew
tableaux may be interpreted as filtrations on F1〈x1, x2〉-modules.

Definition 5.3.1. let S be a skew shape with m boxes.

(1) A standard tableau with shape S is a filling of S with 1, 2, · · · , m such that the
entries are strictly increasing left to right in each row and bottom to top in
each column.

(2) A semistandard tableau with shape S is a filling of S with positive integers
such that the entries are weakly increasing left to right in each row and
strictly increasing bottom to top in each column.

For s ∈ S, we denote by f (s) ∈ Z the integer assigned to that box, and refer to
a tableau by the pair (S, f ). Let S≥k = {s ∈ S| f (s) ≥ k}. When S is standard or
semi-standard, each S≥k is easily seen to be a skew sub-shape corresponding to a
sub-module MS≥k ⊂MS. We have a (necessarily finite) filtration

· · ·MS≥r ⊂MS≥r−1 ⊂MS≥r−2 ⊂ · · ·

The requirement that (S, f ) be standard is easily seen to be equivalent to the
requirement that

MSr/MSr−1 '

whereas semi-standard (S, f ) correspond to filtrations with

MS≥r−1/MS≥r ' ⊕ ⊕ · · ·

i.e. the associated graded consists of direct sums of modules with underlying
shapes horizontal strips. Geometrically, these correspond to coherent sheaves
supported on the x1-axis in A2

/F1
.

5.4. Type α modules admitting a Zn grading are connected skew shapes. In
this section we show that indecomposable type α modules over F1〈x1, · · · , xn〉

admitting a Zn grading and supported at 0 ⊂ An
/F1

arise from connected skew
shapes. We begin with a lemma:

Lemma 5.4.1. Let M be a finite F1〈x1, · · · , xn〉-module supported at 0 ⊂An
/F1

. Then M
has a finite filtration

M ⊃ m ·M ⊃ m2
·M ⊃ · · · ⊃ mr

·M = 0M

where r ≤ dim(M).
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Proof. The hypothesis implies that the radical of Ann(M) is m. Since m is finitely
generated, we have that ms

⊂ Ann(M) for some s ∈ N, which implies that
ms
·M = 0M for sufficiently large s. The bound on r follows from the fact that the

filtration is strictly decreasing. �

Theorem 5.4.2. Let M be a finite, Zn-graded, indecomposable, type α

F1〈x1, · · · , xn〉-module such that Supp M = 0. Then M ' MS for a connected skew
shape S ⊂ Zn.

Proof. We proceed by induction on d = dim(M). The result is obvious for d = 0, 1.
Suppose now that it holds for d < p = dim(M). Write the decomposition into
graded components as

M =
⊕
d∈Zn

Md.

By Lemma 5.4.1, we can find v ∈ M such that m · v = 0. This implies that v
generates a one-dimensional F1〈x1, · · · , xn〉-submodule 〈v〉 of M. Denote by

π : M→M/〈v〉

the quotient map, and let

(16) M/〈v〉 = M1 ⊕M2 ⊕ · · · ⊕Mk

be the decomposition of M/〈v〉 into non-zero indecomposable
F1〈x1, · · · , xn〉-modules. For each i, let M̃i = π−1(Mi). We have M = ∪iM̃i,
M̃i ∩ M̃ j = {0, v} for i , j, and M̃i/〈v〉 = Mi. π yields a bijection between Mi and
the subset σ(Mi) := M̃i\{v} ⊂ M. By part (1) of Lemma 2.2.6, each Mi is graded
and satisfies condition α, so by the induction hypothesis, Mi ' MSi , i = 1, · · · , k
for connected skew shapes Si ⊂ Zn.

We make the following two observations:

(1) v ∈ m · σ(Mi) for each i. If not, and say v < m · σ(M1), then σ(M1) is
a proper direct summand of M, contradicting the hypothesis that M is
indecomposable.

(2) By property α, there is at most one vi ∈ Mdeg(v)−ei
such that xi · vi = v, and

since M is graded, the vi’s are pairwise distinct.

These observations combined show that k ≤ n, and that each M̃i contains a
non-empty set {vi, j1 , · · · , vi, jr} of elements such that x jp · vi, jp = v.
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We consider the case n = 2. There are two possibilities.

(1) M/〈v〉 is indecomposable (i.e. k = 1). Let S = S1 t deg(v) ⊂ Z2. There are
three possibilities:
(a) deg(v) − e1 ∈ S but deg(v) − e2 < S. This means that deg(v) is located

on the right end of the bottom row of S.
(b) deg(v) − e2 ∈ S but deg(v) − e1 < S. This means that deg(v) is located

at the top of the leftmost column of S.
(c) deg(v) − e1 ∈ S and deg(v) − e2 ∈ S. This means that deg(v) is located

at outer boundary of S with boxes immediately to the left and below
deg(v). Since S1 was assumed to be a connected skew shape, deg(v) −
e1 − e2 ∈ S as well.

In all three cases, S is a connected skew shape, and it is clear that M 'MS.
(2) M/〈v〉 ' M1 ⊕M2 (i.e. k = 2). Let S = S1 t S2 t deg(v). We may assume,

after switching the labels M1 and M2 if necessary, that there exist v1 ∈

MS1 , v2 ∈ MS2 (necessarily unique) such that x1 · v1 = v, x2 · v2 = v. This
means that deg(v) − e1 ∈ S1, deg(v) − e2 ∈ S2. deg(v) is therefore located at
the right end of the bottom row of S1 and the top of the leftmost column
of S2. S is therefore a connected skew shape (since S1, S2 are assumed
connected skew), and M 'MS.

The case of general n can be dealt with using the same approach.

�

5.5. Action of Sn. Sn - the symmetric group on n letters, acts by automorphisms
on A = F1〈x1, · · · , xn〉 by σ · xi = xσ(i), σ ∈ Sn. It is easily seen to be the full
automorphism group of A, or equivalently, of An

/F1
. This action induces an

action on the categories A-modn, A-modαn, and A-modgr
n sending a module M to

the module Mσ with the same underlying pointed set, and where A acts on Mσ by

(17) a ·m := σ(a) ·m, m ∈Mσ

This action preserves the property of a module being indecomposable, and so by
Theorem 5.4.2, induces an action on skew shapes, which is easily seen to coincide
with the "classical" action. For n = 2, this amounts to transposition of the skew
shape.
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Example 8. Let n = 2, and σ = (1 2) ∈ S2 the only non-identity element. If

S =

then
Sσ =

6. Hopf and Lie structures on skew shapes

Let A = F1〈x1, · · · , xn〉, and

Z = 0 = V((x1, · · · , xn)) ⊂An
/F1

= MSpec F1〈x1, · · · , xn〉

the origin. By Proposition 4.2.1, the Hall algebra Hα,gr
0,A has the structure of a

graded connected co-commutative Hopf algebra, which we denote by SKn. By
the Milnor-Moore theorem,

SKn ' U(skn)

where the Lie algebra

skn = span{δM|M type α, indecomposable, admits a grading, Supp M = 0}.

By Theorem 5.4.2, skn has a basis which can be identified with the set of connected
n-dimensional skew shapes. The Sn action on skew shapes 17 is easily seen to
induce an action on SKn by Hopf algebra automorphisms. We thus have

Theorem 6.0.1. The Hall algebra SKn = Hα,gr
0,A is isomorphic to the enveloping algebra

U(skn). The Lie algebra skn may be identified with

skn = {δMS |S a connected n− dimensional skew shape}

with Lie bracket
[δMS

, δMT
] = δMS

? δMT
− δMT

? δMS

The symmetric group Sn acts on SKn (resp. skn) by Hopf (resp. Lie) algebra
automorphisms.

We recall from Section 4 that the product in SKn is

(18) δMS
? δMT

=
∑

R a skew shape

PR
S,TδMR
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where
PR

S,T := #|{ML ⊂MR, ML 'MT, MR/ML 'MS}|

Note that the skew shapes R being summed over need not be connected. In
fact, when S and T are connected, the product (18) will contain precisely one
disconnected skew shape St T corresponding to the split extension MS ⊕MT.

Example 9. Let n = 2. By abuse of notation, we identify the skew shape S with
the delta-function δMS

∈ S2. Let

S = T =

We have
S? T = s

s s t t
+ t t

s
s s

+ s
s s

⊕ t t

T ? S = s
s s
t t

+ s
s s

t t

+ t t s
s s

+ s
s s

⊕ t t

and
[S, T] = s

s s t t
+ t t

s
s s

− s
s s
t t

− s
s s

t t

− t t s
s s

where for each skew shape we have indicated which boxes correspond to S and
T.

As the above example shows, for connected skew shapes S, T, the product S?T
in the Hall algebra involves all ways of "stacking" the shape T onto that of S to
achieve a skew shape, as well as one disconnected shape (which may be drawn
in a number of ways).

Remark 6.0.2. it is easy to see that the structure constants of the Lie algebra skn in
the basis of skew shapes are all −1, 0, or 1.

7. Hopf algebra duals of Hall algebras

In this section A will denote an arbitrary finitely generated monoid. The
Hall algebras constructed in this paper are all isomorphic to enveloping
algebras, where the combinatorially interesting information resides in the product.
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Dualizing, we obtain commutative (but in general not co-commutative) Hopf
algebras whose co-product now records the interesting combinatorics. The
underlying associative algebra of these duals is always a polynomial ring on
a collection of indecomposable A-modules. We begin with the dual of HA.

Let H∗A = Q[xM], where M runs over the distinct isomorphism classes of
indecomposable A-modules. As an associative algebra, H∗A is therefore a
polynomial ring. We adopt the convention that if M ∈ A-mod is written in
terms of indecomposable modules as M = M1 ⊕M2 · · · ⊕Mk, then

xM := xM1
· xM2

· · · xMk−1
· xMk

Let

∆ : H∗A → H∗A ⊗H∗A
be defined on xM, M indecomposable, by

(19) ∆(xM) =
∑

N⊂M

xM/N ⊗ xN

and extended by the requirement that it be an algebra morphism (i.e.
multiplicative). Let

〈, 〉 : H∗A ⊗HA → Q

denote the pairing defined by

〈xM, δN〉 =

0 M ; N

1 M ' N

One can readily verify that H∗A with its commutative product and the co-product
∆ is a graded connected commutative bialgebra, hence a Hopf algebra, and that
〈, 〉 is a Hopf pairing.

If A is graded, we may dualize the diagram (12) to obtain:

(20)

H∗A (Hα
A)
∗

(Hgr
A )∗ (Hα,gr

A )∗
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Each of the Hopf duals here may be given a description analogous to H∗A.
For instance, (Hα

A)∗ = Q[xM], where M runs over the isomorphism classes of
indecomposable type α modules. The formula (19) remains the same. When A is
commutative, and Z ⊂ MSpec A is a closed subset, we may incorporate support
conditions in the obvious way.
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