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ABSTRACT. Let CRF S denote the category of S-colored rooted forests, and HCRFS

denote its Ringel-Hall algebra as introduced in [6]. We construct a homomorphism

from a K+
0 (CRF S)–graded version of the Hopf algebra of noncommutative symmetric

functions to HCRFS
. Dualizing, we obtain a homomorphism from the Connes-Kreimer

Hopf algebra to a K+
0 (CRF S)–graded version of the algebra of quasisymmetric func-

tions. This homomorphism is a refinement of one considered by W. Zhao in [9].

1. INTRODUCTION

In [6] categories LRF ,LFG of labeled rooted forests and labeled Feynman graphs
where constructed, and were shown to possess many features in common with those
of finitary abelian categories. In particular, one can define the Ringel-Hall algebras
HLRF , HLFG of the categories LRF ,LFG . If C is one of these categories, HC is the al-
gebra of functions on isomorphism classes of C, equipped with the convolution prod-
uct

(1.1) f ⋆ g(M) = ∑
A⊂M

f (A)g(M/A)

and the coproduct

(1.2) ∆( f )(M, N) := f (M ⊕ N)

where M ⊕ N denotes disjoint union of forests/graphs. Together, the structures 1.1
and 1.2 assemble to form a co-commutative Hopf algebra, which was in [6] shown to
be dual to the corresponding Connes-Kreimer Hopf algebra ([5], [2]). In [6], we also
defined the Grothendieck groups K0(C) for C = LRF ,LFG (which is not trivial, since
C is not abelian), and showed that HC is naturally graded by K+

0 (C) - the effective cone
inside K0(C).

From the point of view of Ringel-Hall algebras of finitary abelian categories, the
characteristic functions of classes in K+

0 are interesting. If A is such a category, and

α ∈ K+
0 (A), we may consider κα - the characteristic function of the locus of objects of

class α inside Iso(A) (for a precise definition, see [4]). It is shown there that the κα

satisfy

(1.3) ∆(κα) = ∑
α1+α2=α

α1 ,α2∈K+
0 (A)

κα1
⊗κα2

In this note, we show that these identities hold also when A is replaced by the category
CRF of colored rooted forests. If S is a set, and CRF S denotes the category of rooted
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forests colored by S, we show that K0(CRF S) = Z|S|, and if α ∈ K+
0 (CRF S), we may

define

κα := ∑
{A∈Iso(CRF S),

[A]=α}

δA

i.e. the sum of delta functions supported on isomorphism classes with K-class α. We
show that the κα satisfy the identity 1.3.

As an application, we construct a homomorphism to HCRF S
from a K+

0 (CRF S)–
graded version of the Hopf algebra of non-commutative symmetric functions (see
[3]). More precisely, let NCCRF S

denote the free associative algebra on generators

Xα ,α ∈ K+
0 (CRF S), to which we assign degree α. We may equip it with a coproduct

determined by the requirement

∆(Xα) = ∑
α1+α2=α

α1 ,α2∈K+
0 (CRF S)

Xα1
⊗ Xα2

with which it becomes a connected graded bialgebra, and hence a Hopf algebra. We
may now define a homomorphism

ρ : NCCRF S
→ HCRF S

ρ(Xα) = κα

This is a refinement of a homomorphism originally considered in [9]. Taking the trans-
pose of ρ, we obtain a homomorphism from the Connes-Kreimer Hopf algebra to a
K+

0 (CRF S)–graded version of the Hopf algebra of quasisymmetric functions.

Acknowledgements: I would like to thank Dirk Kreimer for many valuable conversa-
tions.

2. RECOLLECTIONS ON CRF S

We briefly recall the definition and necessary properties of the category CRF S, and
calculate its Grothendieck group. For details and proofs, see [6]. While [6] treats the
case of uncolored trees, the extension of the results to the colored case is immediate.
Please note that the notion of labeling in [6] and coloring used here are distinct.

2.1. The category CRF S. We begin by reviewing some notions related to rooted trees.
Let S be a set. For a tree T, denote by V(T), E(T) the vertex and edge sets of T respec-
tively.

Definition 2.1. (1) A rooted tree colored by S is a tree T, with a distinguished vertex
r(T) ∈ V(T) called the root, and an map l : V(T) → S. An isomorphism
between two trees T1, T2 labeled by S is a pair of bijections fv : V(T1) ≃ V(T2),
fe : E(T1) ≃ E(T2) which preserve roots, colors, and all incidences - we often
refer to this data simply by f . Denote by RT(S) the set of all rooted trees labeled
by S.
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(2) A rooted forest colored S is either empty, or an ordered set F = {T1, · · · , Tn}
where Ti ∈ RT(S). F1 = {T1, · · · , Tn} and F2 = {T′

1, · · · , T′
m} are isomorphic

if m = n and there is a permutation σ ∈ Sn, together with isomorphisms
fi : Ti ≃ T′

σ(i).

(3) An admissible cut of a labeled colored tree T is a subset C(T) ⊂ E(T) such that
at most one member of C(T) is encountered along any path joining a leaf to the
root. Removing the edges in an admissible cut divides T into a colored rooted
forest PC(T) and a colored rooted tree RC(T), where the latter is the component
containing the root. The empty and full cuts Cnull, C f ull, where

(PCnull
(T), RCnull

(T)) = (∅, T) and (PC f ull
(T), RC f ull

(T)) = (T, ∅)

respectively, are considered admissible.
(4) An admissible cut on a colored forest F = {T1, · · · , Tk} is a collection of cuts

C = {C1, · · · , Ck}, with Ci an admissible cut on Ti. Let

RC(F) := {RC1
(T1), · · · , RCk

(Tk)}

PC(F) := PC1
(T1) ∪ PC2

(T2) ∪ · · · ∪ PCk
(Tk)

Example 2.1. Consider the labeled rooted forest consisting of a single tree T colored by S =
{a, b} with root drawn at the top.

T := a

b
=

b a

a

b
=

a

and the cut edges are indicated with ”=”, then

PC(T) = b

b a

b and RC(T) = a

a

a

We are now ready to define the category CRF S, of rooted forests colored by S.

Definition 2.2. The category CRF S is defined as follows:

•
Ob(CRF S) = { rooted forests F colored by S }

•

Hom(F1, F2) :={(C1, C2, f )|Ci is an admissible cut of Fi,

f : RC1
(F1) ∼= PC2

(F2)} Fi ∈ Ob(CRF S).

Note: For F ∈ CRF S, (Cnull, C f ull, id) : F → F is the identity morphism in
Hom(F, F). We denote by Iso(CRF S) the set of isomorphism classes of objects
in CRF S.
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Example: if

F1:= a

b
-

b

b

a b

a
-

F2:= a

a
=

b
=

a b

then we have a morphism (C1, C2, f ) where Ci are as indicated in the diagram, and f
is uniquely determined by the cuts.

For the definition of composition of morphisms and a proof why it is associative,
please see [6]. The category CRF S has several nice properties:

(1) The empty forest ∅ is a null object in CRF S.
(2) Disjoint union of forests equips CRF S with a symmetric monoidal structure.

We denote by F1 ⊕ F2 the disjoint union of the rooted forests F1 and F2 labeled
by S, and refer to this as the direct sum.

(3) Every morphism possesses a kernel and a cokernel.
(4) For every admissible cut C on a forest F, we have the short exact sequence

(2.1) ∅ → PC(F)
(Cnull,C,id)
−→ F

(C,C f ull ,id)
−→ RC(F) → ∅

The second property above allows us to define the Grothendieck group of CRF S as

K0(CRF S) := Z[Iso(CRF S]/ ∼

i.e. the free abelian group generated by isomorphism classes of objects modulo the
relation ∼, where ∼ is generated by differences B − A − C for short exact sequences

∅ → A → B → C → ∅.

We denote by [A] the class of A ∈ CRF S in K0(CRF S).

Lemma 2.1. K0(CRF S) ≃ Z⊕|S|

Proof. For a rooted forest, let v(F, s) denote the number of vertices in F of color s ∈ S.
Let ZS denote the free abelian group on the set S, with generators es, s ∈ S. Let

Ψ : Z[Iso(CRF S)] → ZS

Ψ(F) = ∑
s∈S

v(F, s)es

The subgroup generated by the relations ∼ like in the kernel of Ψ, so we get a well-
defined group homomorphism

Ψ : K0(CRF S) → ZS

Now, let

Φ : ZS → K0(CRF S)

Φ(∑
s

ases) = ∑
s∈S

as[•s]
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where •s denotes the Forest with one vertex colored s. We see that Ψ and Φ are inverse
to each other, and so the result follows.

�

We denote by K+
0 (CRF S) ≃ N|S| the cone of effective classes in K0(CRF S).

3. RINGEL-HALL ALGEBRAS

We recall the definition of the Ringel-Hall algebra of CRF S following [6]. For an
introduction to Ringel-Hall algebras in the context of abelian categories, see [8]. We
define the Ringel-Hall algebra of CRF S, denoted HCRF S

, to be the Q–vector space of
finitely supported functions on isomorphism classes of CRF S. I.e.

HCRF S
:= { f : Iso(CRF S) → Q||supp( f )| < ∞}

As a Q–vector space it is spanned by the delta functions δA , A ∈ Iso(CRF S). The
algebra structure on HCRF S

is given by the convolution product:

f ⋆ g(M) = ∑
A⊂M

f (A)g(M/A)

HCRF S
possesses a co-commuative co-product given by

(3.1) ∆( f )(M, N) = f (M ⊕ N)

as well as a natural K+
0 (CRF S)–grading in which δA has degree [A] ∈ K+

0 (CRF S).
The algebra and co-algebra structures are sompatible, and HCRF S

is in fact a Hopf
algebra (see [6]). It follows from 3.1 that

(3.2) ∆(δA) = ∑
{A′,A′′|A′⊕A′′≃A}

δA′ ⊗ δA′′

where the sum is taken over all distinct ways of writing A as A′ ⊕ A′′ .

4. K+
0 (CRF S)–GRADED NONCOMMUTATIVE SYMMETRIC FUNCTIONS AND

HOMOMORPHISMS

Let NCCRF S
denote the free associative algebra on K+

0 (CRF S), i.e. the free algebra

generated by variables Xα ,α ∈ K+
0 (CRF S). We give it the structure of a Hopf algebra

through the coproduct

(4.1) ∆(Xγ) = ∑
{α+β=γ

α,β∈K+
0 (CRFS)}

Xα ⊗ Xβ

and equip it with a K+
0 (CRF S)–grading by assigning Xα degreeα. Forα ∈ K+

0 (CRF S),
let

κα = ∑
A∈Iso(C),[A]=α

δA

This is a K+
0 (CRF S)–graded version of the Hopf algebra of non-commutative sym-

metric functions (see [3]).
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Example 4.1. Suppose that S = {a, b}. We then have K0(CRF S) ≃ Z2, and may identify
the pair (i, j) ∈ K+

0 (CRF S) as the class representing forests possessing i vertices colored ”a”
and j colored ”b”. We have for instance

κ(1,1) = δ a
b

+ δ b
a

+ δ

a

⊕

b

Theorem 1. The map ρ : NCCRF S
→ HCRF S

determined by ρ(Xα) = κα is a Hopf algebra
homomorphism.

Proof. Since NCCRF S
is free as an algebra, we only need to check that the κα are com-

patible with the coproducts 4.1, i.e. that

(4.2) ∆(κγ) = ∑
α+β=γ

α,β∈K+
0 (CRF S)

κα ⊗κβ

We have

∆(κγ) = ∑
{A∈Iso(C)|[A]=γ}

∆(δA)

= ∑
{A∈Iso(CRF S)|[A]=γ}

∑
{A′,A′′|A′⊕A′′≃A}

δA′ ⊗ δA′′

the result now follows by observing that the term δA′ ⊗ δA′′ occurs exactly once in
κ[A′] ⊗κ[A′′], which is an element of the right-hand side of 4.2, since [A′] + [A′′] = γ.

�

4.1. Connection to work of W. Zhao. Let NC denote the ”usual” Hopf algebra of non-
commutative symmetric functions. I.e. NC is the free algebra on generators Yn , n ∈ N,
with coproduct defined by

∆(Yn) = ∑
i+ j=n

Yi ⊗ Yj

(we adopt the convention that Y0 = 1). Suppose that the labeling set S is a subset of
N. We then have group homomorphism

V : K0(CRF S) → N

V(∑ ases) := ∑ ass

which simply amounts to adding up the labels in a given forest. We can now define
an algebra homomorphism

JS : NC → NCCRF S

JS(Yn) := ∑
{α∈K+

0 (CRF S)|
V(α)=n}

Xα

Lemma 4.1. JS is a Hopf algebra homomorphism
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Proof. We only need to check the compatibility of the coproduct. We have

∆(JS(Yn)) = ∑
{α∈K+

0 (CRF S)|
V(α)=n}

∆(Xα)

= ∑
{α∈K+

0 (CRF S)|
V(α)=n}

∑
γ1+γ2=α

Xγ1
⊗ Xγ2

= ∑
{γ,γ′|V(γ)+V(γ′)=n

Xγ ⊗ Xγ′

= JS(∆(Yn))

�

Composing ρ and JS, we obtain a Hopf algebra homomorphism

ρ ◦ JS : NC → HCRF S

ρ ◦ JS(Yn) = ∑
A∈Iso(CRFS),

V([A])=n

δA

which was considered in [9].

5. THE TRANSPOSE OF ρ

The graded dual of the Hopf algebra NCCRF S
is a K+

0 (C)–graded version of the
Hopf algebra of quasi-symmetric functions (see [1]), which we proceed to describe. Let
QSymCRF S

denote the Q–vector space spanned by the symbols Z(α1,α2, · · · ,αk), k ∈

N,αi ∈ K+
0 (CRF S). We make QSymCRF S

into a co-algebra via the coproduct

∆(Z(α1, · · · ,αk)) = 1 ⊗ Z(α1, · · · ,αk)

+
k−1

∑
i=1

Z(α1, · · · ,αi) ⊗ Z(αi+1, · · · ,αk) + Z(α1, · · · ,αk) ⊗ 1

The algebra structure on QSymCRF S
is given by the quasi-shuffle product, as follows.

Given Z(α1, · · · ,αk) and Z(β1, · · · , βl), their product is determined by:

(1) Inserting zeros into the sequences α1, · · · ,αk and β1, · · · , βl to obtain two se-
quences ν1, · · · , νp and µ1, · · · , µp of the same length, subject to the condition
that for no i do we have νi = µi = 0.

(2) For each such pair ν1, · · · .νp, and µ1, · · · , µp, writing Z(ν1 + µ1, · · · , νp + µp)
(3) Summing over all possible such pairs of sequences {ν1, · · · , νp}, {µ1, · · · , µp}.

Example 5.1. We have

Z(α1)Z(β1, β2) = Z(α1 + β1, β2) + Z(β1,α1 + β2) + Z(β1, β2,α1)

+ Z(β1,α1, β2) + Z(α1, β1, β2)
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One checks readily that the two structures are compatible, and that they respect the
K+

0 (CRF S)–grading determined by

deg(Z(α1 , · · · ,αk)) = α1 + · · · +αk.

The pairing
<, >: QSymCRF S

×NCCRF S
→ Q

determined by

< Z(α1, · · · ,αn), Xβ1
· · · Xβm >:= δm,nδα1 ,β1

· · · δαnδβm

makes QSymCRF S
and NCCRF S

into a dual pair of K+
0 (CRF S)–graded Hopf algebras.

I.e.

< a ⊗ b, ∆(v) > =< ab, v >

< ∆(a), v ⊗ w > =< a, vw >

This implies that QSymCRF S
is isomorphic to the graded dual of NCCRF S

.

Passing to graded duals, and taking the transpose of the homomorphism ρ, we
obtain a Hopf algebra homomorphism

ρt : H∗
CRF S

→ QSymCRF S

As shown in [6], H∗
CRF S

is isomorphic to the Connes-Kreimer Hopf algebra on colored
trees (see [5]).

We proceed to describe ρt. Let {WA , A ∈ Iso(CRF S)} be the basis of H∗
CRF S

dual

to the basis {δA} of HCRF S
.

Theorem 2.

ρt(WA) = ∑
k

∑
V1⊂···⊂Vk=A

Z([V1], [V2/V1], · · · , [Vk/Vk−1])

where the inner sum is over distinct k–step flags

V1 ⊂ V2 ⊂ · · · ⊂ Vk = A, Vi ∈ Iso(CRF S).

Proof. We have
ρt(WA)(Xα1

· · · Xαk
) = N(A;α1, · · · ,αk)

where N(A;α1, · · · ,αk) is the coefficient of δA in the product κα1
κα2

· · ·καk
. It follows

from the definition of the multiplication in the Ringel-Hall algebra that this is exactly
the number of flags

V1 ⊂ V2 · · · ⊂ Vk

where [V1] = α1, [V2/V1] = α2, · · · , [Vk/Vk−1] = αk. �

Example 5.2. Let S = {a, b} as in example 4.1. Using the notation introduced there, we have

ρt













W a

b a













= Z((2, 1)) + Z((0, 1), (2, 0)) + Z((1, 0), (1, 1))

+ Z((1, 1), (1, 0)) + Z((1, 0), (0, 1), (1, 0)) + Z((0, 1), (1, 0), (1, 0))
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