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DISCRETE TORSION, ORBIFOLD ELLIPTIC GENERA, AND THE

CHIRAL DE RHAM COMPLEX

ANATOLY LIBGOBER AND MATTHEW SZCZESNY

Abstract. Given a compact complex algebraic variety with an effective action of a
finite group G, and a class α ∈ H2(G, U(1)), we introduce an orbifold elliptic genus
with discrete torsion α, denoted Ellαorb(X, G, q, y). We give an interpretation of this
genus in terms of the chiral de Rham complex attached to the orbifold [X/G]. If X
is Calabi-Yau and G preserves the volume form, Ellαorb(X, G, q, y) is a weak Jacobi
form. We also obtain a formula for the generating function of the elliptic genera of
symmetric products with discrete torsion.

1. Introduction

The two-variable elliptic genus (see for example [Kri]) of a compact complex manifold
X is a generating function

(1.1) Ell(X, y, q) =
∑

m,l

c(m, l)qmyl

which captures important topological information about X. For appropriate values of y
and q, Ell(X, y, q) specializes to the L, Â, and χy genera respectively. Mathematically,
the elliptic genus can be defined as follows. For a holomorphic vector bundle V on X
and a formal variable t, let

Symt V = 1 + tV + t2 Sym2 V + t3 Sym3 V + · ∈ K0(X)[[t]]

and

ΛtV = 1 + tV + t2Λ2V + t3Λ3V + · ∈ K0(X)[[t]]

Let TX , T ∗
X denote the holomorphic tangent and cotangent bundles respectively, and

(1.2) Ell(X, q, y) = y−
dimX

2 ⊗n≥1 (Λ−yqn−1T ∗
X ⊗ Λ−y−1qnTX ⊗ SqnT ∗

X ⊗ SqnTX)

viewed as an element of K0(X)[[q]][[y±
1
2 ]]. Then

Ell(X, q, y) = χ(Ell(X, q, y)).

In physics, Ell(X, q, y) is part of the partition function of a two-dimensional conformal
field theory with target X.

In this paper, we will say that X is Calabi-Yau if KX is trivial - this is of course
weaker than the usual mathematical Calabi-Yau condition, but agrees with the Physics
terminology. When X is Calabi-Yau, Ell(X, q, y) has nice modular properties. Let H
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2 ANATOLY LIBGOBER AND MATTHEW SZCZESNY

denote the upper half plane. A weak Jacobi form of weight k ∈ Z and index r ∈ 1
2Z is

a holomorphic function on H × C satisfying the transformation property

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke2πi rcz2

cτ+d φ(τ, z),

(
a b
c d

)
∈ SL(2, Z)

φ(τ, z + mτ + n) = (−1)2r(m+n)e−2πir(m2τ+2mz)φ(τ, z), (m,n) ∈ Z
2

that in addition has a Fourier expansion
∑

l,m cm,lylqm with nonnegative m (see [EZ]),

where q = e2πiτ , y = e2πiz. It is shown in [BL, Gri] that if X is Calabi-Yau then
Ell(X, q, y) is a weak Jacobi form of weight 0 and index dim(X)/2.

In [BL1], the authors introduced a notion of orbifold elliptic genus Ell(X,G, q, y)
attached to the global quotient orbifold [X/G], where X is a smooth compact com-
plex manifold, and G ∈ Aut(X) is a finite group (see also [DLiM] for general reduced
orbifolds). A mathematical definition of this genus is given in section 2.1. Roughly,
Ell(X,G, q, y) is obtained by adding the contributions of Euler characteristics of bun-
dles analogous to 1.2 over the various fixed-point sets Xg, g ∈ G of the G–action on X.
Furthermore, for each g ∈ G, the contribution takes into account the eigenvalues of g on
TX|Xg . It is also shown in [BL1] that if X is Calabi-Yau, and G preserves the volume
form, then Ell(X,G, q, y) is a weak Jacobi form of weight 0 and index dim(X)/2.

It was observed in [BL] that the ordinary elliptic genus Ell(X, y, q) can be interpreted
in terms of an object called the chiral de Rham complex, denoted Ωch

X . The latter is a
sheaf of vertex superalgebras attached to any smooth complex manifold X, introduced
in [MSV] (for a brief discussion of vertex algebras, see section 3.1). The sheaf Ωch

X has
an increasing filtration F •Ωch

X , and also a compatible bigrading by two operators L0, J0.
One can therefore describe the associated graded sheaf grFΩch

X in terms of the bigraded
components. One finds that Supertrace(qL0yJ0,Ωch

X ) is the sheaf 1.2 above. It follows
from this observation that

Ell(X, y, q) = Supertrace(qL0yJ0−dim(X)/2,H∗(X,Ωch
X ))

It is believed that H∗(X,Ωch
X ) captures some of the information of the two-dimensional

quantum field theory on X mentioned above. Ωch
X also carries a differential QBRST ∈

End(Ωch
X ), Q2

BRST = 0 (which is why it is called a complex). The ”de Rham” part of
the name comes from the fact that the complex (Ωch

X , QBRST ) is quasiisomorphic to the
holomorphic de Rham complex (ΩdR, ∂).

In [FS], the construction of Ωch
X was extended to orbifolds (another construction of

the chiral de Rham complex for orbifolds was obtained independently by A. Vaintrob).

For each g ∈ G, one introduces sheaves Ωch,g
X supported on Xg, which are modules over

Ωch
X . Each Ωch,g

X carries a canonical C(g)–equivariant structure, where C(g) denotes the

centralizer of g in G. The sheaves Ωch,g
X allow one to interpret some of the ”stringy”

geometric invariants of the orbifold [X/G]. In particular, it is shown in [FS] that

(1.3) Ell(X,G, q, y) = Supertrace(qL0yJ0−dim(X)/2,
⊕

[g]

H∗(X,Ωch,g
X )C(g))
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and

(1.4)
⊕

[g]

H
∗(Ωch,g

X , QBRST )C(g) ∼=
⊕

[g]

H∗
dR(Xg/C(g), C)

where [g] denotes a set of representatives for the conjugacy classes in G. The object on
the right in 1.4, with an appropriate grading and ring structure is called the Chen-Ruan
cohomology of [X/G] (see [CR]). The isomorphism 1.4 is an isomorphism of graded
vector-spaces.

We now come to discrete torsion. This term was introduced in the physics literature
to refer to the discovery (see [Va1, Va2]) that an orbifold quantum field theory on [X/G]
could be ”twisted” by a cocycle α ∈ H2(G,U(1)). In terms of Physics, the path integral
can be written as a sum of contributions from sectors parametrized by commuting pairs
of elements (g, h) in G×G, and the contribution from the (g, h)–sector is multiplied by
the phase δ(g, h) = α(g, h)/α(h, g). This modification produces a consistent physical
theory and leads to α–twisted invariants of the orbifold [X/G]. For a mathematical
discussion of various aspects of discrete torsion see [AF, R, Ka]. In this paper, we build
on the results in [BL1, FS] to give a mathematical treatment of orbifold elliptic genera
with discrete torsion Ellα(X,G, q, y). One way to define this object along the lines of
[BL1] is to multiply each contribution in the sum 2.3 by the appropriate phase δ(g, h).
From the point of view of the chiral de Rham complex, this definition can be cast in a
manner somewhat closer to the original physics approach as follows. Recall that in 1.3
one uses the C(g)–equivariant structure on Ωch,g

X to project on the C(g)–invariant part

of H∗(X,Ωch,g
X ). A cocycle α ∈ H2(G,U(1)) induces characters αg : C(g) &→ U(1) by

αg(h) = δ(g, h). The character αg allows us to twist the C(g) equivariant structure, and
taking invariants with respect to this twisted structure projects on a different subspace.
We can therefore define

(1.5) Ellα(X,G, q, y) = Supertrace(qL0yJ0−dim(X)/2,
⊕

[g]

H∗(X,Ωch,g
X )C(g)α)

where C(g)α indicates that the twisted action is being used. We show that if X is
Calabi-Yau, Ellα(X,G, q, y) is a Jacobi form of weight 0 and index dim(X)/2. We also
show that there is an isomorphism of graded vector spaces

⊕

[g]

H
∗(Ωch,g

X , QBRST )C(g)α ∼=
⊕

[g]

H∗
dR(Xg/C(g),Lα

g )

where the object on the right denotes the α–twisted Chen-Ruan cohomology of [X/G]
valued in the collection of local systems Lα

g , introduced in [R].
An important example of discrete torsion arises in the case of symmetric products

(see [Di]). SN , the symmetric group on N letters, acts on the hyperplane in RN given
by the equation x1 + · · ·+ xN = 0. This yields an embedding SN ↪→ O(N − 1). Pulling
back the double cover Pin(N − 1) &→ O(N − 1) yields a central extension of SN by
Z/2Z, which we denote ŜN - i.e.

(1.6) 1 &→ Z/2Z &→ ŜN &→ SN &→ 1
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The extension 1.6 is non-split for N ≥ 4, and therefore yields a non-zero class α ∈
H2(SN , Z/2Z), which via the inclusion Z/2Z ↪→ U(1) can be pushed into H2(SN , U(1)).

The orbifold elliptic genera of symmetric products can be arranged into remarkable
generating functions. It was proved in [BL1] following a physics derivation in [DMVV]
that ∑

N∈Z+

pNEllorb(X
N , SN , y, q) =

∏

n,m,$≥0

(1 − pnqmy$)−c(nm,$).

where the c(m, l)’s are as in 1.1. In section 4.2 we obtain a generalization of this formula
with discrete torsion given by α above, which was originally obtained by Dijkgraaf ([Di])
in the physics literature.

Acknowledgements: This project originally began with Lev Borisov. We would
like to thank him for many valuable conversations. During the course of this work the
second author was supported by NSF grant DMS−0401619.

2. Orbifold elliptic genera

2.1. The orbifold elliptic genus. Let X be a complex manifold on which a finite
group G acts effectively via holomorphic transformations. Let Xh will be the fixed
point set of h ∈ G and Xg,h = Xg ∩ Xh(g, h ∈ G). Let

(2.1) TX|Xh = ⊕λ(h)∈Q∩[0,1)Vλ.

where the bundle Vλ on Xh is determined by the requirement that h acts on Vλ via
multiplication by e2πiλ(h). For a connected component of Xh (which by abuse of nota-
tion we also will denote Xh), the fermionic shift is defined as F (h,Xh ⊆ X) =

∑
λ λ(h)

(cf. [Z], [BD]). Let us consider the bundle:

Vh,Xh⊆X := ⊗k≥1

[
(Λ•

yqk−1V
∗
0 ) ⊗ (Λ•

y−1qkV0) ⊗ (Sym•
qkV ∗

0 ) ⊗ (Sym•
qkV0)⊗

(2.2) ⊗
[
⊗λ'=0(Λ

•
yqk−1+λ(h)V

∗
λ )⊗(Λ•

y−1qk−λ(h)Vλ)⊗(Sym•
qk−1+λ(h)V

∗
λ )⊗(Sym•

qk−λ(h)Vλ)
]]

Definition 2.1. The orbifold elliptic genus of a G-manifold X is the function on H×C
given by:

Ellorb(X,G, q, y) := y−dimX/2
∑

[g],Xg

yF (g,Xg⊆X) 1

|C(g)|

∑

h∈C(h)

L(h, Vg,Xg⊆X)

where the summation in the first sum is over all conjugacy classes in G and connected
components Xg of an element g ∈ [g], C(g) is the centralizer of g ∈ G and

L(h, Vg,Xg⊆X) =
∑

i

(−1)itr(h,H i(Vg,Xg⊆X))

is the holomorphic Lefschetz number.

Using the holomorphic Lefschetz fixed-point formula ([AS]) one can rewrite this
definition as follows.
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Theorem 2.1. [BL1] Let TX|Xg,h = ⊕Wλ and let xλ be the collection of Chern roots
of Wλ. Let

Φ(g, h,λ, z, τ, x) =
θ( x

2πi + λ(g) − τλ(h) − z)

θ( x
2πi + λ(g) − τλ(h))

e2πizλ(h).

Then:

(2.3) Ellorb(X,G, z, τ) =
1

|G|

∑

gh=hg

∏

λ(g)=λ(h)=0

xλ
∏

λ

Φ(g, h,λ, z, τ, xλ)[Xg,h].

The orbifold elliptic genus so defined specializes for q = 0 into

Ellorb(X,G, 0, y) = y−dimXχ−y(X,G)

where
χy(X,G) =

∑

{g},Xg

yF (g,Xg⊂X)
∑

p,q

(−1)qdimHp,q(Xg)C(g)

On the other hand χy(X,G) is the value of the orbifold E-function

E(u, v,G) =
∑

{g},Xg

(uv)F (g,Xg⊂X)
∑

p,q

dimHp,q(Xg)C(g)upvq

for u = y, v = −1. In paticular Ellorb(X,G, 0, 1) coinsides with the orbifold Euler
characteristic: eorb(X,G) = 1

|G|

∑
fg=gf e(Xf,g).

2.2. Discrete torsion.

Definition 2.2. Let α ∈ H2(G,U(1)), and define

δ(g, h) =
α(g, h)

α(h, g)

The orbifold elliptic genus with discrete torsion α, written Ellαorb(X,G, q, y), is defined
as
(2.4)

Ellαorb(X,G, q, y) := y−dimX/2
∑

[g],Xg

yF (g,Xg⊆X) 1

|C(g)|

∑

h∈C(h)

δ(g, h)L(h, Vg,Xg⊆X).

As above, using the holomorphic Lefschetz fixed-point formula this can be rewritten as

Ellαorb(X,G; y, q) =
1

|G|

∑

gh=hg

δ(g, h)
∏

λ(g)=λ(h)=0

xλ
∏

λ

Φ(g, h,λ, z, τ, xλ)[Xg,h].

Such twisted elliptic genus has specialization properties similar to the case α = 0.
Using Dolbeault cohomology corresponding to the inner local systems Lα defined by α
(cf. [R]) one can define twisted E-function:

Eα(u, v,G) =
∑

{g},Xg

(uv)F (g,Xg⊂X)
∑

p,q

dimHp,q(Xg, Lα)C(g)upvq

which for u = 1, v = −1 yields:

eα(X,G) =
1

|G|

∑

fg=gf

δ(f, g)e(Xf,g)
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The elliptic genus 2.4 satisfies:

Ellα(0, y,G) = y
dimX

2 Eα(y,−1, G)

We proceed to investigate the modularity properties of this twisted orbifold elliptic
genus.

2.2.1. Jacobi forms. Let H denote the upper half plane. A weak Jacobi form of weight
k ∈ Z and index r ∈ 1

2Z is a function on H × C satisfying the transformation property

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke2πi rcz2

cτ+d φ(τ, z),

(
a b
c d

)
∈ SL(2, Z)

φ(τ, z + mτ + n) = (−1)2r(m+n)e−2πir(m2τ+2mz)φ(τ, z), (m,n) ∈ Z
2

and has a Fourier expansion
∑

l,m cm,lylqm with nonnegative m. Equivalently, we can

say that a Jacobi form is an automorphic form for the Jacobi group ΓJ = SL(2, Z)!Z2

generated by the four transformations:

(z, τ) → (z + 1, τ), (z, τ) → (z + τ, τ), (z, τ) → (z, τ + 1), (z, τ) → (
z

τ
,−

1

τ
).

Theorem 2.2. Let X be a compact complex manifold such that KX is trivial, G a
finite group acting effectively on X, and α ∈ H2(G,U(1)). Let n denote the order of G
in Aut(H0(X,KX )). Then Ellαorb(X,G) is a weak Jacobi form of weight 0 and index
d/2 with respect to subgroup of the Jacobi group ΓJ generated by transformations

(z, τ) → (z + n, τ), (z, τ) → (z + nτ, τ), (z, τ) → (z, τ + 1), (z, τ) → (
z

τ
,−

1

τ
).

In particular, if the action preserves holomorphic volume then Ellorb(X,G) is a weak
Jacobi form of weight 0 and index d/2 for the full Jacobi group.

Proof. We use the notation Ellαorb(X,G, z, τ) rather than Ellα(X,G, q, y) to emphasize
the dependence on τ and z. It is shown in [BL1] that

Φ(g, h,λ, z + 1, τ, x) = −e2πiλ(h) · Φ(g, h,λ, z, τ, x)

which implies that
∏

λ

Φ(g, h,λ, z + n, τ, xλ)[X
g,h] = (−1)dne2nπi

∑
λ(h)

∏

λ

Φ(g, h,λ, z, τ, xλ)[Xg,h]

Now, n
∑

λ(h) ∈ Z by the assumption that hn acts trivially on H0(X,KX ). Thus

Ellαorb(X,G, z + n, τ) = (−1)dnEllαorb(X,G, z, τ).

The following formulas are also obtained in [BL1]:

(2.5) Φ(g, h,λ, z, τ + 1, x) = Φ(gh−1, h,λ, z, τ, x)

(2.6) Φ(g, h,λ, z + nτ, τ, x) = (−1)ne−2πinz−πin2τenx+2πinλ(g) · Φ(g, h,λ, z, τ, x)

(2.7) Φ(g, h,λ,
z

τ
, −

1

τ
,
x

τ
) = e

πiz2

τ
− zx

τ · Φ(h, g−1,λ, z, τ, x).
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Equation 2.5 and δ(g, h) = δ(gh−1, h) imply that

Ellαorb(X,G, z, τ + 1) = Ellαorb(X,G, z, τ).

Equation 2.6 implies that

Ellαorb(X,G, z + nτ, τ) = (−1)dne−2πidnz−πidn2τEllαorb(X,G, z, τ)

In order to see how

(2.8) Ellαorb(X,G, z/τ,−1/τ) = e
πidz2

τ Ellαorb(X,G, z, τ)

follows, we write
∏

λ(g)=λ(h)=0

xλ
∏

λ

Φ(g, h,λ, z, τ, xλ) =
∑

kλ

Q(g, h, z, τ)xλ
kλ

where kλ are multiindices and xλ are the corresponding monomials. We thus obtain,
∏

λ(g)=λ(h)=0

xλ
τ

∏

λ

Φ(g, h,λ,
z

τ
,
−1

τ
,
xλ
τ

) =
∑

kλ

(
1

τ
)deg(kλ)Q(g, h,

z

τ
,
−1

τ
)xλ

kλ

whereas 2.7 implies that
∏

λ(g)=λ(h)=0

xλ
τ

∏

λ

Φ(g, h,λ,
z

τ
,
−1

τ
,
xλ
τ

) = e
πidz2

τ

∏

λ(g)=λ(h)=0

xλ
τ

∏

λ

Φ(h, g−1,λ, z, τ, x)

= τ−dim(Xg,h)
∑

kλ

Q(h, g−1, z, τ)xλ
kλ

Thus for multiindices kλ such that deg(kλ) = dim(Xg,h), we find

Qk(g, h,
z

τ
,
−1

τ
) = Qk(h, g−1, z, τ)

Finally, δ(g, h) = δ(h, g−1) ensures that 2.8 holds. !

3. Discrete torsion and the chiral de Rham complex

Let X be a smooth complex algebraic variety, and G a finite group acting effectively
on X. In this section, we briefly review the construction of the chiral de Rham complex
of an orbifold introduced in [FS]. Another construction of this object was obtained
independently by A. Vaintrob.

3.1. Vertex algebras and twisted modules. In this section we will use the language
of vertex superalgebras, their modules, and twisted modules. For an introduction
to vertex algebras and their modules [FLM, K, FB], and for background on twisted
modules, see [FFR, D, DLM, FS].

We recall that a conformal vertex superalgebra is a Z+–graded super vector space

V =
∞⊕

n=0

Vn,

Vn = V 0
n ⊕ V 1

n



8 ANATOLY LIBGOBER AND MATTHEW SZCZESNY

together with a vacuum vector |0〉 ∈ V 0
0 , an even translation operator T of degree 1, a

conformal vector ω ∈ V 0
2 and an even linear map

Y : V → EndV [[z±1]],

A &→ Y (A, z) =
∑

n∈Z

A(n)z
−n−1.

These data must satisfy certain axioms (see [FLM, K, FB]). In what follows we will
denote the collection of such data simply by V , and the parity of an element A ∈ V
homogeneous with respect to the Z/2Z grading by p(A).

A vector superspace M is called a V –module if it is equipped with an even linear
map

Y M : V → EndM [[z±1]],

A &→ Y M (A, z) =
∑

n∈Z

AM
(n)z

−n−1

such that for any v ∈ M we have AM
(n)v = 0 for large enough n. This operation must

satisfy the following axioms:

• Y M (|0〉, z) = IdM ;
• For any v ∈ M and homogeneous A,B ∈ V there exists an element

fv ∈ M [[z,w]][z−1, w−1, (z − w)−1]

such that the formal power series

Y M (A, z)Y M (B,w)v, (−1)p(A)p(B)Y M (B,w)Y M (A, z)v, and

YM(Y (A, z − w)B,w)v

are expansions of fv in M((z))((w)), M((w))((z)) and M((w))((z−w)), respec-
tively.

The power series Y M (A, z) are called vertex operators. We write the vertex operator
corresponding to ω as

Y M (ω, z) =
∑

n∈Z

LM
n z−n−2,

where LM
n are linear operators on V generating the Virasoro algebra. Following [D],

we call M admissible if LM
0 acts semi-simply with integral eigenvalues.

Now let σV be a conformal automorphism of V , i.e., an even automorphism of the
underlying vector superspace preserving all of the above structures (so in particular
σV (ω) = ω). We will assume that σV has finite order m > 1. A vector space Mσ is
called a σV –twisted V –module (or simply twisted module) if it is equipped with an even
linear map

Y Mσ

: V → EndMσ[[z±
1
m ]],

A &→ Y Mσ

(A, z
1
m ) =

∑

n∈ 1
m

Z

AMσ

(n) z−n−1
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such that for any v ∈ Mσ we have AMσ

(n) v = 0 for large enough n. Please note that

we use the notation Y Mσ
(A, z

1
m ) rather than Y Mσ

(A, z) in the twisted setting. This
operation must satisfy the following axioms (see [FFR, D, DLM, Li, FS]):

• Y Mσ
(|0〉, z

1
m ) = IdMσ ;

• For any v ∈ Mσ and homogeneous A,B ∈ V , there exists an element

fv ∈ Mσ[[z
1
m , w

1
m ]][z−

1
m , w− 1

m , (z − w)−1]

such that the formal power series

Y Mσ

(A, z
1
m )Y Mσ

(B,w
1
m )v, (−1)p(A)p(B)Y Mσ

(B,w
1
m )Y Mσ

(A, z
1
m )v, and

Y Mσ

(Y (A, z − w)B,w
1
m )v

are expansions of fv in Mσ((z
1
m ))((w

1
m )), Mσ((w

1
m ))((z

1
m )) and Mσ((w

1
m ))((z−

w)), respectively.

• If A ∈ V is such that σV (A) = e
2πik

m A, then AMσ

(n) = 0 unless n ∈ k
m + Z.

The series Y Mσ
(A, z) are called twisted vertex operators. In particular, the Fourier

coefficients of the twisted vertex operator

Y Mσ

(ω, z
1
m ) =

∑

n∈Z

LMσ

n z−n−2,

generate an action of the Virasoro algebra on Mσ.

3.2. The chiral de Rham complex of an orbifold. For g ∈ G, let Xg denote the
fixed-point set of g, and denote by

ig : Xg ↪→ X

the inclusion map of Xg into X. The following results were obtained in [FS].

• For each g ∈ G, there exists a sheaf Ωch,g
X supported on Xg. When g = 1, this is

a sheaf of vertex superalgebras, originally introduced in [MSV], and called the
chiral de Rham complex. We denote it simply by Ωch

X . Being a sheaf of vertex
superalgebras means that for each open U ∈ X, Ωch

X (U) is a vertex superalgebra.
• Let g, h ∈ G, and let g′ = hgh−1. There exist isomorphisms of sheaves

(3.1) Rh
g,hgh−1 : Ωch,g

X &→ h∗Ωch,hgh−1

X

satisfying

Rk
g′,g′′ ◦ Rh

g,g′ = Rkh
g,g′′

where k ∈ G and g′′ = khgh−1k−1.
• When g .= 1, Ωch,g

X is a sheaf of g–twisted modules, meaning that for each g–

invariant U , Ωch,g
X (U) is a g–twisted Ωch

X (U)–module. This structure induces a

corresponding twisted module structure on H∗(X,Ωch,g
X ).

• Ωch,g
X carries a bigrading by two operators Lg

0, J
g
0 . This bigrading induces a

bigrading on H∗(X,Ωch,g
X ).
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• Ωch,g
X carries a differential Qg, such that (Qg)2 = 0. Furthermore, there exists

an inclusion of the de Rham complex of Xg

ig∗(ΩdR(Xg, d)) ↪→ (Ωch,g
X , Qg)

which is a quasiisomorphism. This implies in particular that

H(Ωch,g
X , Qg) ∼= H∗

dR(Xg, C)

3.1 implies that C(g), the centralizer of g, acts on (Ωch,g
X , Qg), and therefore on

its hypercohomology. This gives an isomorphism

H(Ωch,g
X , Qg)C(g) ∼= H∗

dR(X, C)C(g) ∼= H∗
dR(Xg/C(g), C)

We therefore have

(3.2)
⊕

[g]

H(Ωch,g
X , Qg)C(g) ∼=

⊕

[g]

H∗
dR(Xg/C(g), C)

The right-hand side is isomorphic as a vector space to the Chen-Ruan orbifold
cohomology of [X/G]. Furthermore, the operators Jg

0 acting on Ωch,g
X , induce

a gradation on the left which coincides with the Chen-Ruan gradation shifted
by the fermionic shift (see [CR, Z]). 3.2 is therefore an isomorphism of graded
vector spaces.

• There exists an increasing exhaustive filtration on Ωch,g
X

(3.3) F 0Ωch,g
X ⊂ F 1Ωch,g

X ⊂ F 2Ωch,g
X ⊂ · · · .

Let Ω
ch,g
X denote the restriction of Ωch,g

X to Xg, which inhertis a filtration from
3.3. The bigrading operators Jg

0 , Lg
0 are compatible with 3.3, and so the asso-

ciated graded grF (Ω
ch,g
X ) can be described in terms of its decomposition into

eigenbundles for Jg
0 , Lg

0. We have:

(3.4) grF (Ω
ch,g
X ) =

⊗

k≥1

(
Λ•

yqk−1V
∗
0 ⊗ Λ•

y−1qkV0 ⊗ Sym•
qk V ∗

0 ⊗ Sym•
qk V0⊗

⊗

λ'=0

(Λ•
yqk−1+λ(g)V

∗
λ ⊗ Λ•

y−1qk−λ(g)Vλ ⊗ Sym•
qk−1+λ(g) V ∗

λ ⊗ Sym•
qk−λ(g) Vλ)



 .

where

TX|Xg =
⊕

Vλ.

If we now form

Horb(X,G) =
⊕

[g]

H∗(X,Ωch,g
X )C(g)

then as shown in [FS]

Ellorb(X,G, q, y) = Supertrace(qL0yJ0−dim(X)/2,Horb(X,G)).
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3.2.1. Adding discrete torsion to the chiral de Rham complex. In this section we show
how to incorporate discrete torsion in the above setup. Suppose that Y is a G–manifold,
and W a G–equivariant sheaf on Y . This means that for each g ∈ G, we are given an
isomorphism

Tg : W &→ g∗W

such that
TgTh = Tgh

Suppose now that χ : G &→ C× is a character of G. Then

T ′
g = χ(g)Tg

is a new G equivariant structure on W .
We apply this observation to the sheaves Ωch,g

X and C(g) rather than G. A class
α ∈ H2(G,U(1)) yields characters

αg : C(g) &→ U(1)

defined by αg(h) = δ(g, h). We can now twist the C(g)–equivariant structure on Ωch,g
X

described above, given by the Rh
g,g′ , to obtain a new C(g)–equivariant structure, denoted

C(g)α.The following theorem is an immediate consequence of the above discussion.

Theorem 3.1. i)

H
∗(Ωch

X , QBRST )C(g)α ∼= H∗
dR(Xg/C(g),Lα

g )

where the right-hand side is the de Rham cohomology of [Xg/C(g)] with values in the
orbifold local system Lα

g described in [R]. Thus we have an isomorphism of graded
vector spaces ⊕

[g]

H
∗(Ωch

X , QBRST )C(g)α ∼= H∗
orb,α([X/G], C)

where the right-hand side is the α–twisted Chen-Ruan cohomology of [X/G] (see [R]).
ii) Let

Hα
orb(X,G) =

⊕

[g]

H∗(X,Ωch,g
X )C(g)

α

Then
Ellαorb(X,G, q, y) = Supertrace(qL0yJ0−dim(X)/2,Hα

orb(X,G))

4. Symmetric products and discrete torsion

4.1. The spin double cover of SN . We begin by reviewing discrete torsion for the
symmetric group following [Di].

Let SN denote the symmetric group on N letters. It is well-known that for N ≥ 4

(4.1) H2(SN , U(1)) ∼= Z2.

which implies that for N ≥ 4, there is a unique non-trivial central extension of the
permutation group

(4.2) 1 → Z2 → ŜN → SN → 1.
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The extension ŜN can be constructed as follows. SN acts on the hyperplane in RN

given by

x1 + · · · xN = 0

preserving the standard inner product. This yields an embedding

SN ↪→ O(N − 1).

Now, O(N − 1) has a double cover Pin(N − 1). Pulling back this central extension to
SN yields ŜN . We call the latter the spin double cover of SN .

In terms of generators and relations, ŜN can be described as follows. It is generated
by elements 1, z, t̂1, · · · , t̂N−1, where z is central, subject to the relations:

z2 = 1,

t̂2i = z,

t̂it̂i+1t̂i = t̂i+1t̂it̂i+1,(4.3)

t̂it̂j = z t̂j t̂i, j > i + 1.

The map ŜN &→ SN amounts to sending t̂i to the transposition ti interchanging the ith
and i + 1st letters, and sending z to 1. We can think of z as being −1.

4.2. Generating functions. Suppose that the elliptic genus of X is given by

(4.4) Ell(X; q, y) =
∑

m,$

c(m, ,)qmy$

As shown in [BL1, DMVV], the generating function of the orbifold elliptic genera of
the symmetric products is

(4.5) Z(p, q, y) =
∑

N≥0

pNEllorb(X
N , SN , q, y) =

∏

n>0, m,$

(1 − pnqmy$)−c(nm,$)

In this section, we obtain a formula for the generating function of elliptic genera of
symmetric products with discrete torsion. Let

(4.6) Zα(p, q, y) =
∑

N≥0

pNEllαorb(X
N , SN , q, y)
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and let

Z++(p, q, y) =
∏

n>0, m,l≥0

(
1 + p2nqm− 1

2 y$
)c(n(2m−1),$)

(
1 − p2n−1qmy$

)c((2n−1)m,$)

Z+−(p, q, y) =
∏

n>0, m,l≥0

(
1 − p2nqm− 1

2 y$
)c(n(2m−1),$)

(
1 − p2n−1qmy$

)c((2n−1)m,$)

Z−+(p, q, y) =
∏

n>0, m,l≥0

(
1 + p2nqmy$

)c(2nm,$)

(
1 − p2n−1qmy$

)c((2n−1)m,$)

Z−−(p, q, y) = −
∏

n>0, m,l≥0

(
1 − p2nqmy$

)c(2nm,$)

(
1 − p2n−1qmy$

)c((2n−1)m,$)
(4.7)

Theorem 4.1.

(4.8) Zα(p, q, y) =
1

2
(Z++ + Z+− + Z−+ + Z−−) .

We begin by recalling a variation on Lemma 4.5 from [BL1]

Lemma 4.1. Let V = V0⊕V1 be a super vector space, and A and B two commuting op-
erators acting semisimply on V and preserving the parity decomposition of V . Assume
furthermore that B only has non-negative eigenvalues in 1

2Z, and that the bigraded pieces
Vm,l = {v ∈ V |Av = lv,Bv = mv} are finite-dimensional. Let d(m, l) = sdim(Vm,l),
where sdim denotes superdimension. Define the superdimension of V with respect to
A,B to be the series

χ(V )(y, q) = Supertrace(V, yAqB) = tr(V0, y
AqB) − tr(V1, y

AqB) =
∑

m,l

d(m, l)qmyl

Let SymNV denote the N th supersymmetric product of V . The operators A and B act
on SymNV , and

∑

N

pN Supertrace(SymNV, yAqB) =
∏

m,l

1

(1 − pqmyl)d(m,l)

where the right hand side is expanded in a power series in q and p.

Let ΛNV denote the Nth supersymmetric wedge product of V . Since ΛNV is iso-
morphic to SymNV , where V denotes V with its parity reversed (or directly from the
argument in the proof of lemma 4.5 in [BL1]), we obtain the following:
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Corollary 4.1. Let V be as in Lemma 4.1. Then
∑

N

pN Supertrace(ΛNV, yAqB) =
∏

m,l

(1 − pqmyl)d(m,l)

Proof. (Of Theorem 4.1)
Let SN denote the symmetric group on N letters. We recall that conjugacy classes in
SN are parametrized by partitions of N . The conjugacy class of an element g ∈ SN

is therefore uniquely determined by the numbers aj of j–cycles in the cycle decom-
position of g. Recall moreover that the centralizer of an element with cycle type
[g] = (1)a1(2)a2 · · · (k)ak is

k∏

i=1

Sai
! (Z/iZ)ai

where the Z/iZ act by powers of the i–cycles and Sai
permutes the i–cycles among

themselves.
Let cj ∈ Sj be a j–cycle, and denote Ω

ch,cj

Xj simply by Ωch,j
Xj . Recall that this is a sheaf

on Xj supported on X diagonally embedded, whose fibers are twisted modules over
the chiral de Rham vertex algebra. Let H[g] = H∗(XN ,Ωch,g

XN ) and Hj = H∗(Xj ,Ωch,j
Xj ),

viewed as a super vector space where the parity is given by the sum of the cohomology
index and the fermionic charge grading. Furthermore, introduce the operator D which
acts on Hj by multiplication by −j dim(X)/2. We have

Ωch,g
XN = "

k
j=1(Ω

ch,j
Xj )!aj

and so by the Kunneth formula

H[g] =
k⊗

j=1

H
⊗aj

j

We have
∑

N

pNEllαorb(X
N , SN , q, y) =

∑

N

pN
∑

[g]∈SN

Supertrace(qL0yJ0+D,HC(g)α

[g] )

where the subscript on C(g)α indicates that invariants are being taken with respect to
the α-twisted action of C(g). If h ∈ C(g), and Th denotes the operator of h acting on
H[g] untwisted by α, then the α–twisted action is given by δ(g, h)Th.

As explained in for instance [Di], the value δ(g, h) depends on the parity of g and h,
where the latter is given by

p(g) =
k∑

j=1

(j − 1)aj mod 2

=
k∑

j=1, j even

aj mod 2
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C(g) is generated by transpositions τ(j)ab interchanging two cycles of length j, as well
as the j–cycles cj in the cycle decomposition of g (we use the short-hand notation
cj ∈ g). The result is as follows:

(4.9) δ(g, τ(j)ab) = (−1)j−1

and if cj ∈ g, then

(4.10) δ(g, cj) =

{
1, if j is odd,

(−1)p(g)−1 if j is even

It follows from 4.9 and 4.10 that

HC(g)α

[g] =
k⊗

j=1 odd

Symaj (HZ/jZα

j ) ⊗
k⊗

j=1 even

Λaj (HZ/jZα

j )

The space HZ/jZα will depend on how α twists the Z/jZ–action. For j odd, there is
only one possibility, and

HZ/jZα

j = HZ/jZ

j

When j is even, let

H+
j = HZ/jZα

j , when [g] is odd

H−
j = HZ/jZα

j , when [g] is even

It was shown in [BL1] that with H = HZ/jZ

j or H+
j

Supertrace(qL0yJ0+D,H) =
1

j

j−1∑

r=0

Ell(X, q
1
j ξr, y)

=
1

j

∑

m,l

c(m, l)(
j−1∑

r=0

ξmr)q
m
j yl

=
∑

m,l

c(mj, l)ylqm.(4.11)

where ξ = exp(2πi/j). Similarly, using the holomorphic Lefschetz fixed-point formula,
one finds

Supertrace(qL0yJ0+D,H−
j ) =

1

j

j−1∑

r=0

(−1)rEll(X, q
1
j ξr, y)

=
1

j

∑

m,l

c(m, l)(
j−1∑

r=0

(−1)mξmr)q
m
j yl

=
∑

m>0,l≥0

c((m −
1

2
)j, l)ylqm− 1

2 .(4.12)

Let
S =

⊗

j odd

Sympj HZ/jZ
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and let

Λ+ ∈
⊗

j even

ΛpjH+
j(4.13)

Λ− ∈
⊗

j even

ΛpjH−
j(4.14)

denote the subspaces corresponding to permutations of odd (resp. even) parity. We
have that
∑

N

pNEllαorb(X
N , Sn, q, y) = Supertrace(qL0yJ0+D, S

⊗
Λ+)+Supertrace(qL0yJ0+D, S

⊗
Λ−)

The result now follows from Lemma 4.1, Corollary 4.1, and the observation that

Supertrace(qL0yJ0+D,Λ+) =
1

2
Supertrace(qL0yJ0+D,

⊗

j even

ΛpjH+
j )

−
1

2
Supertrace(qL0yJ0+D,

⊗

j even

Λ−pjH+
j )

and

Supertrace(qL0yJ0+D,Λ−) =
1

2
Supertrace(qL0yJ0+D,

⊗

j even

ΛpjH−
j )

+
1

2
Supertrace(qL0yJ0+D,

⊗

j even

Λ−pjH−
j ).

!

Remark. There is an equivariant version of the theorem 4.1 which is also a twisted
form of the product formula for the generating functions for the wreath products (con-
jectured in [WZ] and proven in [BL1] Remark 4.6. p.341). Let X and G be as above
and let

(4.15) Ell(X,G; q, y) =
∑

m,$

cG(m, ,)qmy$

The wreath product G 0 SN (consisting of pairs ((g1, ..., gN );σ), gi ∈ G,σ ∈ SN with
multiplication: ((g1, ..., gN );σ1) ·((h1, ..., hN );σ2) = ((g1 ·hσ−1

1 (1), ..., gN ·hσ−1
1 (N));σ1σ2)

acts on the symmetric products XN . The nontrivial class in H2(SN , U(1)) can be
pulled back to the class in H2(G 0 SN , U(1)) which we denote again as α. Then the
generating function Zα(X,G, p, q, y) =

∑
N≥0 pNEllαorb(X

N , G 0SN , q, y) is given by the
theorem 4.1 with the coefficients c(m, l) in the formulas 4.6 being replaced by cG(m, l)
from 4.15.
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